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Abstract

Predictive analytics using Electronic Health Records (EHRs) have become an active research 

area in recent years, especially with the development of deep learning techniques. A popular 

EHR data analysis paradigm in deep learning is patient representation learning, which aims to 

learn a condensed mathematical representation of individual patients. However, EHR data are 

often inherently irregular, i.e., data entries were captured at different times as well as with 

different contents due to the individualized needs of each patient. Most of the work focused 

on the provision of deep neural networks with attention mechanisms that generate complete 

patient representations that can be readily used for downstream prediction tasks. However, such 

approaches fail to take patient similarity into account, which is generally used in clinical reasoning 

scenarios. This study presents a new Contrastive Graph Similarity Network for similarity 

calculation among patients in large EHR datasets. Particularly, we apply graph-based similarity 

analysis that explicitly extracts the clinical characteristics of each patient and aggregates the 

information of similar patients to generate rich patient representations. Experimental results on 

real-world EHR databases demonstrate the effectiveness and superiority of our method for the task 

of vital signs imputation and ICU patient deterioration prediction.

Index Terms—

Patient Similarity Calculation; Patient Representation Learning; Graph Contrastive Learning

I. Introduction

With the adoption of digital health systems, large amounts of EHRs are available, but 

the major problem is how to translate the existing information into useful knowledge and 

decision-support tools to guide clinical practice. Data mining is the process of analyzing 
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large datasets to discover patterns and meaningful insights. Specifically, it involves a process 

of analysis in which data scientists employ machine learning and statistical methods to build 

predictive models for decision support.

Various machine learning methods have been developed for clinical and research 

applications using EHR data, such as clinical risk prediction [1]–[5], phenotype analysis 

[6]–[8], disease prediction and progression [9]–[11].

However, EHR data are often inherently irregular, i.e., data entries were captured at different 

times as well as with different contents due to the individualized needs of each patient. 

For example, vital sign measurements are gathered from multiple sources at various time 

points during an ICU stay [12], [13]. A patient’s vital signs are measured as indicators of 

their health status. When a patient’s condition deteriorates or new symptoms appear, the 

corresponding vital signs are more frequently measured and recorded [14]. Accordingly, this 

results in the creation of multiple incomplete patient data, where missing values need to 

be filled with plausible values through imputation. A general practice is to provide missing 

data recovery in EHR data using deep representation learning. Existing studies focused on 

the provision of recurrent neural networks or generative adversarial networks with attention 

mechanisms that generate complete representations that can be readily used for downstream 

prediction tasks [15]–[20].

Although existing studies have confirmed the effectiveness of deep neural networks with 

attention mechanisms, the similarity between samples/patients has not been fully taken into 

consideration in deep representation learning. Patient similarity analysis aims to classify 

patients into medically relevant groups likely to have similar health outcomes or temporal 

experiences [21]. In real clinical reasoning scenarios, it is a general practice to utilize data 

from similar patients to generate hypotheses and make decisions (i.e., precision medicine 

[22]). Accordingly, we argue that desirable patient representations could be generated by 

aggregating the information from similar patients. Since no set criteria are available, a new 

challenge we face is how to calculate the similarity between patients in a large EHR dataset.

In this paper, we present a new Contrastive Graph Similarity Network for similarity 

calculation among patients in large EHR datasets. The core idea of our method is borrowed 

from Graph Contrastive Learning (GCL). The GCL is a self-supervised graph learning 

technique that exploits the structure of graphs with data augmentation techniques for 

contrastive learning to create different views [23]. To this end, we construct multiple 

patient-patient similarity graphs using vital signs and demographics as well as diagnosis and 

procedure codes as relational information and then aggregate the information from similar 

patients to generate rich patient representations (Figure 1a). To further put similar patients 

closer and push dissimilar patients apart, we construct positive and negative sample pairs in 

contrastive learning using the generated patient representations. We arbitrarily select a node 

as an anchor (Figure 1b). Positive samples for an anchor are defined as (i) the same nodes as 

the anchor in different views, (ii) the nodes connected to the anchor within the same view, 

and (iii) the nodes connected to the anchor from different views. The remaining samples 

are negative. For the imputation task, we construct sample pairs by pairing a positive (or 

negative) sample with the anchor. For the prediction task, we repeat the above sample 
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pairing process with the constraint that the pairs must be formed between samples with the 

same binary label. We design a composite loss for imputation and prediction, where two 

hyper-parameters are used to control the ratio between imputation loss and prediction loss to 

minimize the overall loss.

The main contributions are listed as follows:

• We present a new Contrastive Graph Similarity Network for similarity 

calculation among patients in large EHR datasets.

• We apply graph-based similarity analysis that explicitly extracts the clinical 

characteristics of each patient and aggregates the information of similar patients 

to generate rich patient representations.

• We evaluate our method against competing baselines on real-world EHR 

databases, and the results indicate the superiority of our method in vital signs 

imputation and ICU patient deterioration prediction.

II. Related Work

A. Graph Contrastive Learning

Recent advances in graph contrastive learning have achieved promising performance in node 

classification [24], social and medication recommendation [25], anomaly detection [26], 

molecular property prediction [27]. More recent attention has focused on the provision of 

learnable data augmentation techniques [23], [28]–[31]. These studies aim to create high-

quality contrastive views via learnable data augmentation techniques. Different from those 

found in the literature in the following aspects: (i) we design a learnable graph augmentation 

technique that uses vital signs and demographics as well as diagnosis and procedure codes 

as relational information to construct multiple patient-patient similarity graphs and (ii) we 

propose a novel approach to construct multiple positive sample pairs in contrastive learning. 

The idea is borrowed from homophily in graphs [32]–[34]. Homophily in our patient-patient 

similarity graphs is the similarity between connected patient pairs, where connected patients 

are similar rather than far apart. Moreover, connected patients are considered similar if they 

share the same binary label.

B. Missing Data Recovery via Deep Representation Learning

A large and growing body of literature has focused on the provision of deep imputation 

methods. Representative methods include Recurrent Neural Networks (RNN) [15], [35] 

and Generative Adversarial Networks (GAN) [16]–[18], [20]. GRU-D [35] imputes missing 

values by combining the empirical mean value and the previous observed value. Brits [15] 

employs a bidirectional RNN to generate prefilled values for missing values, which are then 

used to generate imputed values. Given the actual samples with many missing values, GAN-

based methods [16]–[18], [20] include making a generator for generating imputed values 

for missing values and then a discriminator for distinguishing these imputed values from 

actual values. Through the imputation process, the generated representations are used for 

downstream prediction tasks. Different from the aforementioned methods, we apply graph-

based similarity analysis that explicitly extracts the clinical characteristics of each patient 

Liu et al. Page 3

Proc (IEEE Int Conf Healthc Inform). Author manuscript; available in PMC 2024 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and aggregates the information of similar patients to generate rich patient representations. 

It is also worth noting that a recent study by [36] integrated graph representation learning 

and contrastive learning into a stacked neural network architecture. However, there may 

be conflicts between graph representation learning and contrastive learning, as contrastive 

learning may push away the connected nodes in the graph. Note that our approach is based 

on the graph contrastive learning paradigm, which is significantly different from using 

contrastive learning as a module in the neural network architecture.

III. Method

A. Basic Notations

Let D = Xi, Y i i = 1
P  represent the EHR dataset with up to P  samples/patients. X contains 

multivariate time series data X t  and static data X s . Particularly, X t  contains vital sign 

measurements (oxygen saturation, fraction inspired oxygen, and temperature, etc), and X s

contains demographics (age, sex, and ethnicity) as well as diagnosis and procedure codes 

(unique medical codes). Y  represents target labels for the benchmarks/tasks. We represent 

the elements in X t  using x1
t , ⋯, xT

t ∈ ℝd × T , where T  is the number of time steps and 

d is the number of vital signs. We represent missing values in X t  using a mask matrix 

M ∈ ℝd × T .

B. Architecture Overview

Figure 1 displays the overview of the proposed Contrastive Graph Similarity Network.

1) Learning patient representation with learnable graph augmentation: Let 

G = P, ℰ  represent a patient-patient similarity graph. P is a set of nodes, where each 

node represents a patient. ℰ is a set of edges that connects patients. The adjacency matrix A
represents the causal connections between patients. For example, Ai, j is 1 if patients i and j
are connected, and 0 otherwise.

Now, we feed X into a multi-channel attention module to generate up to N adjacency 

matrices. The multi-channel attention module has up to N channels, where each channel has 

an attention layer. Specifically, the following steps were taken: (i) we apply adaptive average 

pooling to X (i.e., at the horizontal dimension) to generate a new feature representation X‾ . 

(ii) we apply a linear transformation to X‾  to generate query and key vectors. (iii) we take the 

dot product between query and key vectors and then apply the Softmax function to obtain a 

set of attention weight matrices. We formulate the above process as:

Qi = W i
Q ⋅ X‾ , Ki = W i

K ⋅ X‾ ,
Ai = Softmax Qi ⋅ Ki

⊤ , i ∈ 1, 2, ⋯, N ,

(1)

where all W  are learnable weight matrices. Q and K are query and key vectors. Ai i = 1
N

is a set of attention weight matrices, where each attention weight matrix corresponds to 

a patient-patient similarity graph. We introduce a learnable threshold φ to those matrices 
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to generate binary matrices as adjacency matrices to consider the information from similar 

patients.

Next, we feed X into the Transformer encoder [37] to generate a rich feature representation. 

To be specific, we apply a linear transformation to X to generate Q′, K′, and V ′ and then take 

the dot product between Q′ and K′ and apply the Softmax function to obtain attention scores 

on V ′. We formulate the above process as:

Q′ = W Q′ ⋅ X, K′ = W K′ ⋅ X, V ′ = W V ′ ⋅ X,
αj = Softmax Qj

′ ⋅ Kj
′⊤ ,

ℎeadj = αj ⋅ V j
′, j ∈ 1, 2, ⋯, L ,

Z = ℎead1 ⋯ ℎeadL ⋅ W O,

(2)

where all W  are learnable weight matrices. || is the concatenation operator. L is the number 

of heads. Subsequently, we feed Z into a normalized layer with the residual connection [38], 

followed by a feed-forward network (FFN). In the same vein, we feed the output of FFN into 

a normalization layer with the residual connection again to obtain Z as:

Z′ = norm X + Z ,
ZFFN = ReLU Z′ ⋅ W 1 ⋅ W 2,
Z = norm Z′ + ZFFN ,

(3)

where all W  are learnable parameters.

Last, we combine Z with Ai i = 1
N  to aggregate the information from similar patients as:

Ẑ i = Ai ⋅ Z, i ∈ 1, 2, ⋯, N .

(4)

Subsequently, we apply adaptive average pooling to Ẑ to generate the patient representation 

Z‾ .

2) Contrastive Learning: To further put similar patients closer and push dissimilar 

patients apart, we construct positive and negative sample pairs in contrastive learning using 

the generated patient representations Z‾ i
i = 1

N
. We arbitrarily select a node as an anchor (as 

shown in Figure 1b). Positive samples for an anchor are defined as (i) the same nodes as 

the anchor in different views, (ii) the nodes connected to the anchor within the same view, 

and (iii) the nodes connected to the anchor from different views. The remaining samples 

are negative. For the imputation task, we construct sample pairs by pairing a positive (or 

negative) sample with the anchor. For the prediction task, we repeat the above sample 

pairing process with the constraint that the pairs must be formed between samples with the 

same binary label. This process is repeated for all nodes.
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Contrastive Imputation Loss: We select Z‾ p
1  as an anchor. The contrastive loss between 

Z‾ 1  and Z‾ 2  as:

ℒCL
Imp Z‾ p

1 =

− 1
2 N p + 1 log

exp sim Z‾ p
1 , Z‾ p

2 /τ
exp sim Z‾ j

1 , Z‾ p
2 /τ

+∑k ∈ N p exp sim Z‾ p
1 , Z‾ k

1 /τ
+∑k ≠ p exp sim Z‾ p

1 , Z‾ k
1 /τ

+exp sim Z‾ p
1 , Z‾ p

2 /τ
+exp sim Z‾ p

1 , Z‾ p
2 /τ

,

(5)

where N p  is a set of neighbors in Z‾ p
1 ⋅ sim ⋅  is the dot product operation. τ is a 

temperature parameter used to handle the strength of penalties on negative pairs. Since the 

two views are symmetric, we select Z‾ p
2  as an anchor again. The contrastive loss ℒCL

Imp Z‾ p
2

can be done in the way as Eq. (5). Accordingly, the contrastive loss between Z‾ 1  and Z‾ 2

as:

ℒCL
Imp Z‾ 1 , Z‾ 2 = 1

2 P p = 1

P
ℒCL

Imp Z‾ p
1 + ℒCL

Imp Z‾ p
2 .

(6)

Through the processes above, we have been able to calculate the contrastive loss between 

Z‾ 1  and Z‾ 2 . Since Z‾ i
i = 1

N
 is set of patient representations, we arbitrarily select one and 

then calculate the contrastive loss between it and the others. Accordingly, we utilize the total 

contrastive loss as the contrastive imputation loss:

ℒCL
Imp = 1

N n = 1, n ≠ l

N
ℒCL

Imp Z‾ l , Z‾ n .

(7)

Contrastive Prediction Loss: We select Z‾ p
1  as an anchor. The contrastive loss between Z‾ 1

and Z‾ 2  as:

ℒCL
pre Z‾ p

1 = − 1
2NY p + 1 log

exp sim Z‾ p
1 , Z‾ p

2 /τ
exp sim Z‾ p

1 , Z‾ p
2 /τ

,
+∑k = 1

P 1 Y p = Yk exp sim Z‾ p
1 , Z‾ k

1 /τ

+∑k = 1
P 1 k ≠ p exp sim Z‾ p

1 , Z‾ k
1 /τ

,

+exp sim Z‾ p
1 , Z‾ k

2 /τ
+exp sim Z‾ p

1 , Z‾ k
2 /τ

,

(8)
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where Y p is the label of node p (i.e., patient p). NY p is the number of nodes with the same 

label as node p . sim ⋅  is the cosine similarity. 1 ⋅  is an indicator function. Similar to the 

imputation task, we utilize the total contrastive loss as the contrastive prediction loss:

ℒCL
pre Z‾ 1 , Z‾ 2 = 1

2 P p = 1

P
ℒCL

pre Z‾ p
1 + ℒCL

pre Z‾ p
2 ,

ℒCL
pre = 1

N n = 1, n ≠ l

N
ℒCL

pre Z‾ l , Z‾ n .

(9)

3) Composite Loss: Since the imputation task can be viewed as a regression task, we 

employ the mean absolute error (MAE) as the objective function between the original X and 

predicted X̂ of each patient as:

X̂ = W r ⋅ Z + br,

ℒMAE
Imp = 1

P p = 1

P
Xp ⊙ Mp − X̂p ⊙ Mp .

(10)

Accordingly, the imputation loss ℒ Imp  is the summation of the MAE and the contrastive 

imputation loss as:

ℒ Imp = λMAE ⋅ ℒMAE
Imp + 1 − λMAE ⋅ ℒCL

Imp ,

(11)

where λMAE is a scaling parameter used to make the trade-off between the MAE and the 

contrastive imputation loss.

In order to perform prediction tasks, we employ the cross entropy (CE) as the objective 

function between the target label Y  and predicted label Ŷ  of each patient as:

Ŷ = Softmax Z* ⋅ W c + bc

ℒCE
Pre = − 1

P p = 1

P
Y p

⊤ ⋅ log Ŷ p + 1 − Y p
⊤ ⋅ log 1 − Ŷ p ,

(12)

where Z* is the pooled representation obtained by applying adaptive average pooling to Z
before feeding into the Softmax output layer. Accordingly, the prediction loss ℒ Pre  is the 

summation of the CE and the contrastive prediction loss as:

ℒ pre = λCE ⋅ ℒCE
pre + 1 − λCE ⋅ ℒCL

pre ,

(13)
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where λCE is a scaling parameter used to make the trade-off between the CE and the 

contrastive prediction loss.

We design a composite loss for imputation and prediction, where two scaling parameters 

λ pre  and λ Imp  are used to make the trade-off between imputation loss and prediction loss 

as:

ℒ = λ pre ⋅ ℒ pre + λ Imp ⋅ ℒ Imp .

(14)

IV. Experiments

A. Datasets

We conduct extensive experiments on the MIMIC-III1 and eICU2 databases with ICU 

patient deterioration prediction and vital signs imputation [12], [13]. The details of the two 

databases are described in the literature [39], [40]. We extract vital sign measurements (e.g., 

oxygen saturation, fraction inspired oxygen, and temperature), demographics (i.e., age, sex, 

and ethnicity), as well as diagnosis and procedure codes (i.e., unique medical codes) from 

the two databases. For the former dataset, the sample size is 17,886, where the Positive 

(likely to die)/Negative (unlikely to die) ratio is 1:6.59. For the latter dataset, the sample size 

is 36,670, where the Positive/Negative ratio is 1:7.49.

B. Baseline Methods

We evaluate the performance of our method against representative deep imputation methods, 

including Recurrent Neural Networks (RNN) based methods [15], [35] and Generative 

Adversarial Networks (GAN) based methods [16]–[18], [20]. Detailed description of [15]–

[18], [20], [35] can be found in the related work. We also compare our method with MTSIT 

[41]. MTSIT is an attention-based method that combines a Transformer encoder with a 

linear decoder as the network backbone. The source code and data extraction, statistics 

of features, as well as implementation details of baselines, are released at the Github 

repository3.

C. Implementation Details & Evaluation Metrics

The two EHR datasets are derived from the MIMIC-III and eICU databases. Each EHR 

dataset is randomly split into the training, validation, and testing set in a 0.7:0.15:0.15 ratio. 

For the former dataset, the number of channels in the multi-channel attention module is 

2, and the dimension size of W i
Q and W i

K are 17; the number of heads in the Transformer 

encoder is 4, the number of layers is 1, and the dimension size of W Q, W K and W V  is 24; 

the temperature parameter τ is 0.6; the scaling parameters λMAE and λCE are 0.8; the scaling 

parameters λ Imp  and λ pre  are 0.5 and 0.7, respectively. For the latter dataset, the number 

1 https://mimic.physionet.org 
2 https://eicu-crd.mit.edu/ 
3 https://github.com/LZlab01/CGSNet 
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of channels in the multi-channel attention module is 4, and the dimension size of W i
Q and 

W i
K are 16; the number of heads in the Transformer encoder is 2, the number of layers is 

1, and the dimension size of W Q, W K and W V  is 26; the temperature parameter τ is 0.5; the 

scaling parameters λMAE and λCE are 0.95; the scaling parameters λ Imp  and λ Pre  are 0.9 and 

0.7, respectively. For the ICU patient deterioration prediction, the dropout method is also 

employed for the Softmax output layer, and the dropout rates of MIMIC-III and EICU are 

0.1 and 0.2, respectively. We adopt MAE, MRE (mean relative error), AUROC, AUPRC, F1 

Score, and Min(Se, P+) to evaluate imputation and prediction performance. Each experiment 

is run ten times, and the average performance is reported.

D. Performance Comparison

We report the result of ICU patient deterioration prediction in Table I. As Table I 

shows, our method reaches the highest AUROC, AUPRC, F1 Score, and Min(Se, P+) 

with 0.8967, 0.5863, 0.5517, and 0.5668. Besides, there was no significant prediction 

performance difference between RNN-based methods (GRU-D, Brits) and GAN-based 

methods (Conditional GAN, STING, MBGAN, SA-EDGAN). It is difficult to explain this 

result, but it might be related to the quality of the input data. We report the result of vital 

signs imputation in Figures 2 and 3. Our method reports the lowest MAE and MRE scores. 

The most striking result from the data comparison is that MTSIT (i.e., an attention-based 

network architecture) resulted in the lowest MAE and MRE scores among the baselines 

(except for 48 hours after eICU admission). Therefore, the network architecture could be a 

major factor, if not the only one, causing the differences in imputation performance.

E. Analysis of Hyper-parameters

Now, we make a comparison between the proposed method and its variants that change parts 

of the contrastive learning module. Doing such a comparison can allow us to understand 

how the contrastive learning module makes decisions. Since our method runs on the network 

as a unit, this is the way to implement the hyper-parameter (i.e., λ Pre  and λ Imp ) studies. 

The results obtained from the visualization analysis of the contrastive learning module can 

be compared in Figure 4. The experimental data were gathered 48 hours after admission 

(MIMIC-III). As shown in Figure 4, positive represents the patient who died, and negative 

represents the patient who did not die. From Figure 4a to Figure 4d, we omit the contrastive 

learning component; λ Imp  is greater than λ Pre ; λ Pre  is greater than λ Imp ; λ Imp  is equal 

to λ pre . The two scaling parameters λ Imp  and λ pre  are used to make the trade-off between 

imputation loss and prediction loss. Looking at Figure 4a, the instances from the positive 

and negative classes are scattered. Compared with the instances in Figure 4a, the instances 

in Figure 4b are clustered together, and each cluster has instances from both positive and 

negative classes. From the data in Figure 4c, we can see that the instances from the positive 

and negative classes are clustered together towards two distinguishable clusters. From the 

data in Figure 4d, we can see the instances from the positive and negative classes in each 

cluster towards two distinguishable sub-clusters. These results are in agreement with our 

expectations. We also analyze the prediction performance of our method with different 

dropout rates, temperature parameters, and number of channels, as shown in Figures 5 and 6.
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V. Conclusions

In this paper, a new Contrastive Graph Similarity Network was presented, which focused 

on the provision of similarity calculation among patients in large EHR datasets. The core 

idea of our method is to incorporate graph contrastive learning in representation learning 

for EHR data. Particularly, we apply graph-based similarity analysis that explicitly extracts 

the clinical characteristics of each patient and aggregates the information of similar patients 

to generate rich patient representations. Experimental results indicate the superiority of the 

proposed method across real-world EHR databases on ICU patient deterioration prediction 

and vital signs imputation.

VI. Limitations and Future Works

A major problem with the proposed method is that it fails to take the temporal nature of 

EHR data into account, such as the time interval between vital signs. Since our method runs 

on the network as a unit, this makes an ablation study on the network architecture extremely 

difficult. Some of the distribution of patient-specific characteristics, such as age, sex, and 

ethnicity, are imbalanced, which, although considered, is not thoroughly analyzed when 

computing patient similarity in the proposed Contrastive Graph Similarity Network. These 

characteristics are sensitive attributes that may lead to bias in imputation and prediction 

results. In addition, there might still be many “unseen” attributes that could significantly 

affect the model training process. For example, the missing rates among vital signs vary 

significantly, ranging from less than 40% (e.g., diastolic blood pressure, oxygen saturation, 

and respiratory rate) to exceeding 90% (e.g., capillary refill rate, fraction inspired oxygen, 

and pH), causing concerns about the fairness of the patient similarity model. Therefore, 

continued effort should be made to develop patient models that minimize unfairness in the 

future.
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Fig. 1. 
The proposed Contrastive Graph Similarity Network.
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Fig. 2. 
Overall performance of vital signs imputation on the MIMIC-III dataset.
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Fig. 3. 
Overall performance of vital signs imputation on the eICU dataset.
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Fig. 4. 
The t-SNE plot of the feature representation Z. (a) w/o contrastive learning module; (b) 

λ Imp  is greater than λ pre ; (c) λ pre  is greater than λ Imp ; (d) λ Imp  is equal to λ pre .

Liu et al. Page 16

Proc (IEEE Int Conf Healthc Inform). Author manuscript; available in PMC 2024 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
The AUROC, AUPRC, F1 Score, and Min(Se, P+) of our method with different dropout 

rates, temperature parameters, and number of channels.

Liu et al. Page 17

Proc (IEEE Int Conf Healthc Inform). Author manuscript; available in PMC 2024 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
The AUROC, AUPRC, F1 Score, and Min(Se, P+) of our method with different dropout 

rates, temperature parameters, and number of channels.
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