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Abstract

Heart Failure (HF) is common, with worldwide prevalence of 1%-3% and a lifetime risk of

20% for individuals 40 years or older. Despite its considerable health economic burden,

techniques for early detection of HF in the general population are sparse. In this work we

tested the hypothesis that a simple Transformer neural network, trained on comprehensive

collection of secondary care data across the general population, can be used to prospec-

tively (three-year predictive window) identify patients at an increased risk of first hospitalisa-

tion due to HF (HHF). The model was trained using routinely-collected, secondary care

health data, including patient demographics, A&E attendances, hospitalisations, outpatient

data, medications, blood tests, and vital sign measurements obtained across five years of

longitudinal electronic health records (EHRs). The training cohort consisted of n = 183,894

individuals (n = 161,658 age/sex-matched controls and n = 22,236 of first hospitalisation

due to HF after a three-year predictive window). Model performance was validated in an

independent testing set of n = 8,977 patients (n = 945 HHF patients). Testing set probabili-

ties were well-calibrated and achieved good discriminatory power with Area Under Receiver

Operating Characteristic Curve (AUROC]) of 0.86, sensitivity of 36.4% (95% CI: 33.33%-

39.56%), specificity of 98.26% (95% CI: 97.95%-98.53%), and PPV of 69.88% (95% CI:

65.86%-73.62%). At Probability of HHF� 90% the model achieved 100% PPV (95% CI:

96.73%-100%) and sensitivity of 11.7% (95% CI: 9.72%-13.91%). Performance was not

affected by patient sex or socioeconomic deprivation deciles. Performance was significantly

better in Asian, Black, and Mixed ethnicities (AUROC 0.932–0.945) and in the 79–86 age

group (AUROC 0.889). We present the first evidence that routinely collected secondary

care health record data can be used in the general population to stratify patients at risk of

first HHF.
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Introduction

Heart Failure (HF) is a multi-faceted clinical syndrome characterised by the reduced ability

of the heart to pump and/or fill with blood [1]. HF has been defined as a global pandemic

[2], with prevalence of 1%-3% worldwide [1]. The lifetime risk of developing HF for indi-

viduals 40 years or older is 20% [3], whilst one-, five-, and 10-year survival rates have

remained largely unchanged at 80.8%, 48.2%, and 26.2% respectively [4]. Health economic

impacts are considerable, with the total cost of HF in USA and UK estimated to be $30.7 bil-

lion and £2 billion respectively, with projections suggesting an increase in costs by 127%

2030 [3,5,6].

Historically, post-diagnostic care has been the focus of HF patient management and rela-

tively little attention has been devoted to earlier detection and diagnosis of HF [7–9]. Indeed,

for at least 68% of all new cases of HF [10], the diagnosis has been made during an acute hospi-

talisation, yet half of these people had symptoms for up to 5 years prior to hospital admission

[11]. There is an urgent need to embed effective strategies within HF services and primary

care, to enable earlier disease detection and evidence-based treatment initiation, to reduce the

risk of unplanned hospitalisation and premature mortality.

The increased availability of electronic health records (EHRs) opens new opportunities to

develop predictive case finding algorithms that facilitate early HF detection and surveillance

[11]. However, despite proliferation of machine-readable datasets, development and scaling of

predictive models has been limited [12]. Complexities of real-world clinical data, replete with

thousands of potential predictor variables and missing values are seen as the key barriers to

implementation [12–14]. Deep Neural Networks (DNNs) have emerged as robust tools with

applications to sequence prediction within mixed modality data sets [13–16]. The key advan-

tages of DNN methods are their ability to handle large volumes of relatively noisy data, includ-

ing errors in labels, as well as large numbers of input variables [14].

Existing HF hospitalisation prediction models have been developed in groups of patients

who are already at an increased risk of adverse outcomes, including patients who: were under-

going clinically indicated cardiovascular magnetic resonance imaging (cMRI) [17]; had previ-

ous hospitalisations for HF [18]; have undergone cardiac transplantation [19]; or have an

increased risk of HF-related mortality [20]. Furthermore, although longitudinal EHRs com-

bined with conventional machine learning techniques (Logistic Regression and Random For-

est) have shown some utility in incident HF prediction [8], model performance was marginal,

with Area Under Received Operating Characteristic Curve (AUROC) of 0.80 for prediction

windows�1 year, declining rapidly for prediction window lengths longer than 2 years [8].

In this work we tested the hypothesis that a simple Transformer neural network, trained on

comprehensive collection of secondary care data in a general population, including inpatient

and outpatient interactions, can be used effectively to predict patients at an increased risk of

first hospitalisation with HF (HHF).

Materials and methods

Delegated research and ethics approvals for this study were granted by the Local Advisory

Committee at NHS Greater Glasgow and Clyde (NHS GG&C). Cohorts and de-identified

linked data were prepared by the West of Scotland Safe Haven at NHS GG&C. In Scotland,

patient consent is not required where routinely collected patient data are used for research

purposes through an approved Safe Haven [21]. For that reason, informed consent was not

required and was not sought. All research was performed in accordance with relevant guide-

lines/regulations.
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Study population

A nested case-control design was used on a large patient population from NHS GG&C col-

lected between 2002 and 2021. The data was accessed and analysed between December 12,

2022 and January 4, 2024. The authors did not have access to information that could identify

individual participants during or after data collection. Qualifying criteria for incident 1st HHF

was adopted using the International Classification of Diseases–Tenth Revision (ICD-10) codes

for HF (I11.0, I13.0, I13.2, I25.5, I42.0, I42.9, I50.0, I50.1, I50.9, I50.90, I50.91), in the first cod-

ing position. All incident 1st HHF cases had at least 60 months before the first occurrence of a

HF ICD-10 code diagnosis, without an indication that HF was previously diagnosed or treated.

Finally, the incident first HHF cohort comprised of patients still alive 12 months following the

first occurrence of HF ICD-10 code diagnosis. All patients had to have at least 60 months of

in-patient clinical history. Exclusion criteria consisted of patients younger than 40 years of age

at prediction date.

Up to ten eligible sex- and age-matched controls were selected for each incident HHF case.

Dataset was split into randomised training (90%), validation (5%), and testing (5%) parti-

tions, such that distribution of age, gender, and outcomes were stratified across each partition.

To avoid data leakage across data partitions, we ensured that there were no overlapping patient

identifiers.

Data representation and ground truthing

Each patient’s longitudinal EHR vector was split into an Observation and Prediction Windows

(Fig 1). Prediction Date for case patients was calculated as the date 36 months prior to the first

hospitalisation with one or more HF-related ICD10 codes (see Study Population section). Pre-

diction Date for age- and sex-matched controls was calculated as the date 36 months prior to

the last EHR entry. Observation Window comprised all EHR vectors during a five-year period

in the run up to the Prediction Date. Only data in the observation window was used to repre-

sent the patient during model training, validation, and testing.

Patient features used in predictive modelling are shown in Table 1. For each patient, two

feature vector representations were generated. The first representation consisted of static fea-

tures–age, ethnicity and sex. The second representation reflected dynamic features associated

with inpatient and outpatient activity over a five-year period of the Observation Window. This

temporal input vector was discretised into twelve exponentially increasing time bins, such that

the most recent time points were assigned to the shortest time bin. This is expressed as T *
(1-np.linspace(0.0, 1.0, n = 12)**2), where T is 60 months (5-year prediction window) and n is

the number of bins. If a feature (e.g. ICD-10 codes) within an observation window contained

multiple values, the most frequent value was retained. In cases where numerical feature (e.g.

BMI) contained multiple entries within one observation window, an average was calculated.

Missing values were filled by forward propagation.

Numerical data was scaled to a range between 0 and 1, whilst categorical data was repre-

sented as 32-dimensional vectors of a large pre-trained language model [22,23]. Briefly, an

uncased DistilBERT model was initialised using weights provided by Sanh et al [24]. We then

continued to pre-train the model for three epochs using n = 2,067,531 full text PubMed arti-

cles distributed under Creative Commons (CC) BY or CC0 license [25], totalling n =

224,427,218 sentences. All words were converted to lower case and punctuation was removed.

Tokenization was performed using a WordPiece tokenizer with a vocabulary size of 52,000

words and word occurrence frequency of greater or equal to two. Embedding layer was modi-

fied to 32 dimensions and the 32 dimensional vector was used to represent all categorical vari-

ables, including sex and ethnicity.

PLOS ONE Heart failure prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0314145 December 18, 2024 3 / 15

https://doi.org/10.1371/journal.pone.0314145


Model training

Given significant variation in length and density of patient records (e.g., vital sign measure-

ments in an intensive care unit vs outpatient clinic), we formulated a simple Transformer

architecture with multi-head attention [26], to take advantage of such data.

Fig 1. Schematic representation of an EHR vector. The patient’s timeline is represented by horizontal arrows and each data point is depicted by colour-coded

tokens. Predictive models were trained on the data in the Observation Window, whilst a binary outcome for first HHF was used as a ground truth.

https://doi.org/10.1371/journal.pone.0314145.g001

Table 1. Features of the patient EHR used as inputs into the predictive model.

Data Type Description Percentage missing

information

Age Patient age at Prediction Date 0%

Sex Patient sex at Prediction Date 0%

Ethnicity Patient ethnicity at Prediction Date 8%

Medications British National Formulary (BNF) Subsection codes <5%

Laboratories Urea, Estimated Glomerular Filtration Rate (EGFR), Creatinine, Potassium, Haemoglobin, Neutrophils, Lymphocytes,

N-terminal pro b-type natriuretic peptide (NT-proBNP),

<5

Hospitalisations All ICD-10 codes associated with admission, Length of stay associated with admission, Primary clinical speciality 0%

A&E

Attendances

ICD-10 codes associated with attendances 0%

Outpatients Appointment speciality, ICD-10 codes associated with each appointment 0%

Vital Signs Systolic blood pressure, Body Mass Index (BMI) 58%

https://doi.org/10.1371/journal.pone.0314145.t001
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Input layers of the Transformer network were adjusted to concurrently use time-invariant

and time-dependent features. Multiple inputs were concatenated along a horizontal axis and

passed to four Transformer encoder blocks with multi-head attention. Four attention heads

were used with head size fixed at 256. The classification head of the network consisted of a

global average pooling layer, followed by a dense layer with rectified linear unit [27] activation

and a dropout layer. A softmax activation function was applied to the final dense layer.

The number of neurons in the penultimate dense layer and the dropout rate were tunable

hyperparameters optimized during training using the Hyperband algorithm [28], with the best

set of parameters corresponding to the lowest sparse categorical cross-entropy loss on the vali-

dation set. The number of neurons was selected from the range of [32, 512], and the dropout

rate took values from the range [0, 0.2].

Training was performed with batch size of 512 using an Adam optimizer with a learning

rate of 1 × 10−4 while minimizing the sparse categorical cross-entropy loss.

The network was trained to output the probability of first HHF following a 36-month pre-

diction window. Training was terminated early if validation loss did not improve after ten con-

secutive epochs.

Statistical analysis

Model performance was assessed using area under the receiver operating characteristic (AUC)

curve, overall accuracy, sensitivity, specificity, and positive predictive value (PPV). For AUC

measures, 95% CIs were calculated empirically using 2,000 bootstrap samples. CIs for sensitiv-

ity, specificity and accuracy are exact Clopper-Pearson CIs. Patient demographics were com-

pared across the training/validation, internal testing, and clinical evaluation sets using

ANOVA for continuous variables and Chi-square for categorical variables. P-values < 0.05

were considered as significant.

Dimensionality reduction was performed out using the Ivis algorithm [29]. Briefly, prior to

analysis, categorical variables were one-hot encoded, whilst numerical variables were scaled to

values between 0 and 1. The dataset was reduced to two components using the ‘maaten’ twin

Neural network architecture and default Ivis hyperparameter values. To identify the salient

features captured by the Transformer model, we calculated the coefficient of determination

(R2) between low-dimensional representations of the model global average pooling layer and

training set features. Where categorical features were used, their numerical representation

were extracted from the model’s feature embedding layer.

All statistical tests were carried out using the SciPy module (version 1.7.3) for Python (ver-

sion 3.9.14).

Results

Dataset characteristics

Electronic Health Records, collected consecutively over 19 years, from n = 310,859 patients

across Greater Glasgow and Clyde were included in initial data extract. Following application

of the inclusion and exclusion criteria, the final cohort consisted of n = 183,894 individuals

(n = 161,658 controls and n = 22,236 cases). The average age for male and female patients with

first HHF was 75.7 (+/- 11.3) and 80.4 (+/-11.4) years respectively. Similarly, the average age

for male and female controls was 75.7 (+/- 10.4) and 80.1 (+/- 10.8) years respectively (Fig 2A

and 2B). There was no statistically-significant difference between age distribution of cases and

controls (Kolmogorov-Smirnov p-value = 0.86).

The most and least common patient ethnicities in the dataset were White (94%) and Black

(Black British, Black Welsh, Caribbean or African [0.13%], Fig 2C). Incidence of first HHF
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Fig 2. Demographic characteristics of the dataset. A, B) Histograms of patient age distributions at Prediction Date. Green and Red bars reflect patients

without and with first HHF. C) Bar plots demonstrating incidence of first HHF (red) and Controls (green) across broad ethnicity groupings. D) Bar

demonstrating incidence of first HHF (red) and Controls (green) across Scottish Index of Multiple Deprivation (SIMD) deciles. Patients in the most and least

deprived 10% of the population have SIMDs of one and ten respectively.

https://doi.org/10.1371/journal.pone.0314145.g002
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across all ethnicity groups ranged from 8% (Mixed of Multiple) to 15.5% (Other). First HHF

was most prevalent (17.5%) in the first decile of the Scottish Index of Multiple Deprivation

(SIMD) (Fig 2D).

Prediction of First HHF

Transformer neural network was trained for three epochs before reaching early stopping

criteria. Dimensionality reduction of the global average pooling layer confirmed model pro-

pensity to learn the target class (Fig 3A). The model performance was evaluated on an inde-

pendent set of n = 8,977 patients (n = 945 patients with first HHF). The model achieved

AUROC of 0.86 (95% CI: 0.860, 0.861) (Fig 3B). Binarizing predicted cases and controls

using an operating point of Probability of HHF � 50%, resulted in sensitivity of 36.4% (95%

CI: 33.33%-39.56%) specificity of 98.26% (95% CI: 97.95%-98.53%), and PPV of 69.88%

(95% CI: 65.86%-73.62%). Model probabilities were well calibrated, with a Pearson’s R2-val-

ues of 0.99 (two-sided p-value = 9.9x10-4, Fig 3C). At Probability of HHF � 90% the model

achieved 100% PPV (95% CI: 96.73%-100%) and sensitivity of 11.7% (95% CI: 9.72%-

13.91%, Fig 3D).

Coefficients of Determination (see Methods) were calculated for every input feature. Fea-

tures that correlated the most with the global average pooling layer of the model were Age (R2

= 0.198), Clinical Specialty assigned to the patient at the time of an in-patient admission (R2 =

0.134), and diagnoses following in-patient stay (R2 = 0.103–0.115). Blood tests, including

NTproBNP were expressed low Coefficients of Determination (R2 = 0–0.008) (Fig 4).

Model misclassifications were interpretable. For example, at probability of HHF� 50%, the

model identified n = 140 false positive cases. Of these, n = 16 patients (11%) and n = 12 (8.5%)

had recent diagnoses (within three years) of Atherosclerotic heart disease of native coronary

artery (I25.1) and Unstable Angina (I20.0) respectively. Furthermore, n = 32 (22.8%), n = 30

(21.4%), and n = 29 (20.7%) patients had at least a three-year history of lipid regulators, beta

adrenoreceptor blockers, and antiplatelet drug usage. Finally, n = 127 patients (90.7%) had in-

patient stays under Cardiology services as their primary specialty.

Conversely, at probability of HHF� 50%, the model identified n = 601 false negative cases.

Of these, the most common diagnoses upon discharge over a five-year Observation Window

were Unspecified Cataract (n = 73 patients [12.1%], H26.9), Unspecified Chest Pain (n = 35

patients [5.8%], R07.4), and Diverticular disease of large intestine without perforation or

abscess (n = 26 patients [4.3%], K57.3). Interestingly, only n = 29 patients (4.8%) had a diag-

nostic code pertaining to the cardiovascular system. The most common primary specialty

amongst the false negative cases was Opthalmology (n = 511 patients, 85%), followed by

Trauma and Orthopaedics (n = 348 patients, 57.9%) and General Surgery (n = 319 patients,

53%). N = 276 patients (45.9%) were under Cardiologist management. Finally, the most fre-

quently prescribed medication classes were Non-opioid analgesics (n = 326 patients, 54.2%),

Renin-Angiotensin system drugs (n = 292 patients, 48.6%), and lipid regulating drugs (n = 275

patients, 45.8%). Of note, whilst only one patient had an acute myocardial infarction within

the Observation Window, n = 246 (40.9%) experienced a myocardial infarction within the Pre-

diction Window period.

Subgroup analysis

Model performance was assessed in patient subgroups, defined by sex, age quartiles, ethnicity,

and SIMD quartiles (Table 2). Model AUROC was consistent across Male and Female

patients. The performance in the third age quartile (79–86 years old) was significantly better

compared to the rest of the population (AUROC:0.889 vs. 0.840–0.859, DeLong’s p-values:
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0.03–0.05). The model also performed better in patients of Asian, Black, and Mixed ethnicities

(AUROC: 0.932–0.945 vs. AUROC: 0.859–0.880, DeLong’s p-values: 0.001–0.03), with positive

predictive values of 100% at probability of first HHF�50%. There was no statistically signifi-

cant difference in performance across SIMD quartiles.

Fig 3. Transformer neural network performance in detection of testing set patients (n = 8,977) with first HHF after a 3-year predictive window. A)

Scatterplot shows two-dimensional twin neural network (Ivis) embedding of the global average pooling layer values in the trained Transformer neural

network. Each point represents a single patient in the testing set. Green and red dots represent controls and first HHF cases respectively. B) Received

Operating Characteristic Curve for first HHF prediction. Shaded areas are 95% Confidence Intervals (CIs) generated using 2000 bootstrapped samples. C)

Calibration plot demonstrating the relationship between model probabilities (HHF probability) and prevalence of first HHF in the testing set. D) Line

plots of model positive predictive value (orange), specificity (blue), and sensitivity (green) at each HHF probability threshold. AUC = Area Under the

Curve.

https://doi.org/10.1371/journal.pone.0314145.g003
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Discussion

HF is a considerable global health economic burden. However, techniques for early prediction

and detection of HHF in the general population are sparse. We demonstrate that a simple

Transformer neural network model, trained on routinely-collected secondary care electronic

health record data, produces well-calibrated probabilities and achieved good discriminatory

power within a long (3-year) predictive window, with AUROC of 0.86, sensitivity of 36.4%

(95% CI: 33.33%-39.56%), specificity of 98.26% (95% CI: 97.95%-98.53%), and PPV of 69.88%

(95% CI: 65.86%-73.62%).

The HHF classifier is a Transformer neural network, described in [26]. Traditionally, the

Transformer architecture was extensively applied to natural language processing, achieving

state-of-the-art performance in text annotation [22], named entity recognition [30], and repre-

sentation learning [31]. More recently, the utility of the Transformer architecture was explored

in longitudinal EHRs, demonstrating striking capacity to parse heterogeneous data sequences

and predict multiple clinical trajectories [32,33], considerably outperforming conventional

machine learning techniques. The propensity of this technique to handle large volumes of

Fig 4. Bar plot showing model input features and their respective coefficient of determination (R2) values. Values reflect

variance within the global average pooling layer explained by each feature.

https://doi.org/10.1371/journal.pone.0314145.g004
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relatively noisy data, including errors in labels, as well as large numbers of input variables [14],

makes it an attractive tool for interrogation of real-world EHRs.

Previous models detected incident HHF with varying degrees of accuracies, which

depended heavily on the length of the prediction window (i.e. the duration of time before HF

diagnosis) [34]. For example, interrogation of longitudinal EHRs with classical machine learn-

ing methods, such as Random Forests and Logistic Regression, yielded AUROC of 0.80 for

prediction windows�1 year. This metric declined rapidly for prediction window lengths lon-

ger than 2 years (AUROC 0.58–0.74) [8]. Incident HF detection within a short predictive win-

dow (�1 year), was improved by a Transformer neural network, trained on linked primary

and secondary care EHRs from 100,071 patients in England, achieving AUROC 0.93 in

6-month incident HF detection [35].

Recently, A Cox proportional hazards model, developed to predict risk of hospitalisation

for heart failure or all-cause mortality at 3 years after cardiac magnetic resonance imaging

(cMRI), achieved Harrell’s C-index of 0.805 (95% CI 0.793–0.829) in the development cohort

and 0.793 (0�766–0�820) in the external validation cohort [17]. Similarly, Khan and colleagues

have derived race-specific and sex-specific models for the 10-year risk of incident heart failure

Table 2. Model performance metrics across confounder subgroups using operating point of�50% (probability of first HHF). 95% CIs are shown in parentheses.

AUROC = Area under Receiver Operating Characteristics Curve.

Confounder Number of

Patients

AUROC Sensitivity Specificity Positive Predictive

Value

Sex Male 4,510 0.861 (0.859–

0.861)

36% (35%-

38%)

99% (97%-100%) 75% (73%-79%)

Female 4,467 0.855 (0.855–

0.857)

37% (35%-

39%)

98% (97%-100%) 68% (66%-71%)

Age 40–71 2,182 0.852 (0.852–

0.853)

39% (37%-

41%)

97% (96%-100%) 65% (64–67%)

71–79 2,170 0.859 (0.858–

0.860)

43% (41%-

44%)

98% (97%-100%) 68% (66%-70%)

79–86 2,248 0.889 (0.888–

0.889)

41% (40%-

43%)

99% (97%-100%) 79% (78%-82%)

86+ 2,377 0.84 (0.83–0.841) 24% (23%-

27%)

99% (97%-100%) 77% (76%-79%)

Ethnicity Asian, Asian British, Asian Welsh 140 0.940 (0.940–

0.944)

17% (15%-

19%)

100% (97%-

100%)

100% (98%-100%)

Black, Black British, Black Welsh, Caribbean or

African

113 0.932 18% (16%-

21%)

100% (96%-

100%)

100% (97%-100%)

Mixed or Multiple 120 0.945 (0.943–

0.948)

21% (19%-

24%)

100% (98%-

100%)

100% (98%-100%)

White 8,151 0.859 (0.859–

0.856)

38% (37%-

39%)

98% (97%-100%) 71% (70%-73%)

Other 114 0.874 (0.869–

0.873)

29% (28%-

31%)

99% (98%-100%) 80% (79%-82%)

Unknown 339 0.880 (0.880–

0.885)

13% (12%-

16%)

100% (97%-

100%)

100% (98%-100%)

SIMD 1–2 2,945 0.863 (0.863–

0.864)

40% 98% 75% (74–77%)

2–4 2,164 0.852 (0.851–

0.853)

32% 99% 75% (74%-77%)

4–8 2,291 0.857 (0.857–

0.858)

35% 98% 68% (67%-70%)

8–10 1,577 0.849 (0.849–

0.851)

36% 97% 64% (63%-66%)

https://doi.org/10.1371/journal.pone.0314145.t002
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in the general population using age, blood pressure, fasting glucose, body-mass index, choles-

terol, smoking status, and QRS complex duration [36]. External validation of the Cox regres-

sion model demonstrated good discrimination (C-statistic ranging from 0.71–0.85) and strong

calibration. In this work we achieve a good balance between prediction window length

(3-years) and model performance (AUROC 0.86). Indeed, shorter prediction windows provide

limited therapeutic benefit, with underlying disease mechanisms becoming less modifiable

[17], whilst longer prediction windows may result in large number of false positives, rendering

proactive therapeutic or lifestyle intervention less practicable [8,37].

The need to shift HF diagnosis upstream to improve clinical outcomes and operational effi-

ciencies has been well-documented [38–40]. Nevertheless, the feasibility of clinical implemen-

tation of existing risk models in routine clinical practice is challenged by sparse and

inconsistent availability of features such as systolic blood pressure, body mass index, and total

cholesterol in asymptomatic community-dwelling population [39]. Our models were trained

on opportunistically acquired data in secondary care and alleviate the need for targeted data

collection in the community. We envisage a potential clinical case for a proactive community-

based stratification of asymptomatic adults who may be at risk first HHF using routinely col-

lected secondary care data.

Model performance remained consisted across patient sex and SIMD groupings. Interest-

ingly, we observed statistically-significant improvement in model performance for patients

with Asian, Black, and Mixed ethnicities (Table 2). These results seem to be consistent with

previous findings [36], where higher C-statistic values were observed in black men and women

at a 10-year risk of HF. Although it is of note that positive predictive values were 100% across

these ethnicities, it is likely that observed performance improvement is simply an artifact of

relatively small numbers of these patients in our testing set (n = 8,151 White patients vs.

n = 353 Asian, Black, and Mixed ethnicity patients).

We utilised a data-driven strategy to delineate the salient features captured by our model by

computing the coefficient of determination (R2) between low-dimensional representations of

the model global average pooling layer and input features. Although a number of algorithms

exist to explain black box models [41,42], they are limited to lower-dimensional tabular data.

Our approach, validated in medical imaging [43], attempts to explain features captured within

the unstructured temporal information. Patient age as well as primary inpatient specialty, and

diagnostic codes accounted for 20%, 13%, and 11% of variance in the global average pooling

embedding. Of note, natriuretic peptide concentrations had no effect on model performance.

This is in contrast to a limitless-arity multiple-testing procedure approach which identified

that a cumulative combination of proton pump inhibitors, high plasma BNP levels, diuretics

use, advanced age, and lack of anti-dyslipidemia drugs increases the overall risk of HF [44].

This discrepancy is likely due to low clinical suspicion of HF in our training population and

largely normal levels of this test in the training set.

Surprisingly, known risk factors for HF, such as high systolic blood pressure and increased

BMI accounted for<3% of variance learned by the transfomer model. It is likely that this

reflects poor record of these values in the secondary care EHR. For example, BMI was not

recorded in 58% of the study population and in remaining patients recorded only once during

a five-year observation window. Similarly, blood pressure was recorded opportunistically dur-

ing an A&E attendance only in 27% of the population, with remaining values missing. It is

likely that more accurate inclusion of these variables from primary care sources will both

improve overall model performance and provide a realistic estimate of their contribution to

patient’s risk. Nevertheless, robustness of our Transformer model to incomplete information

was confirmed.
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Our Transformer model presents several advantages. Firstly, it was trained on a large and

diverse population using routinely-collected EHR data. Indeed, to the best of our knowledge,

this is the largest training cohort to date (n = 183,894 individuals, n = 22,236 first HHF cases).

This minimises selection bias and offers a robust inclusion criterion for a population-level risk

stratification algorithm. Secondly, model probabilities were well calibrated and robust across,

sex, ethnicities, age, and socioeconomic groups. Finally, an accurate inference at three-year

prediction window resolution offers an opportunity for a timely, low-cost preventative inter-

vention in the general population.

Our study had limitations. First, our inclusion criteria focuses on patients diagnosed with

heart failure during hospitalization. This selection criterion may overlook pre-hospitalization

stages of HF. Despite this, Index diagnosis of HF through inpatient hospital admission consti-

tutes over 80% [45] of all new HF diagnoses and may be associated with a significantly

increased short-term risk of mortality and substantially higher long-term cost compared with

community pathways [11]. Furthermore, selecting a prediction time exactly three years before

a future heart failure hospitalization is a methodological choice that is only feasible in a retro-

spective study and does not reflect real-world scenarios where continuous prediction over dif-

ferent time points is required. Second, model validation was not performed on an out-of-

sample dataset. This presents an urgent requirement to validate model generalisability in other

healthcare systems outside of Scotland. This should be feasible due to routine availability of

model features and is currently our primary focus of research. Third, the retrospective nature

of this study resulted in a level of class balance that may not represent real-world prevalence.

This phenomenon will affect the meaning of performance metrics such as Negative and Posi-

tive Predictive Values [46] and may be misleading when applied to different case-control ratios

or other populations. Therefore, any future validation should involve prospectively-selected

cohorts of patients and appropriately-selected validation metrics. Finally, despite our work on

coefficient of determination, the black-box nature and the dimensionality of training data

makes interpretation of our model unintuitive. This can present a challenge to clinical

implementation.

In conclusion, this study demonstrates that a simple Transformer model utilising routinely-

collected secondary care her data may offer a robust clinical decision support tool for commu-

nity-based risk stratification of patients at risk of first HHF. Future work will involve a pro-

spective study, which would allow for evaluation of the algorithm when exposed to real-world

class distributions, assessing its effect on workflow safety and operational efficiency, including

economic evaluation.
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