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Abstract

With the rapidly development of biotechnology, it is now possible to obtain single-cell

multi-omics data in the same cell. However, how to integrate and analyze these single-cell

multi-omics data remains a great challenge. Herein, we introduce an interpretable multi-

task framework (scMoMtF) for comprehensively analyzing single-cell multi-omics data.

The scMoMtF can simultaneously solve multiple key tasks of single-cell multi-omics data

including dimension reduction, cell classification and data simulation. The experimental

results shows that scMoMtF outperforms current state-of-the-art algorithms on these

tasks. In addition, scMoMtF has interpretability which allowing researchers to gain a reli-

able understanding of potential biological features and mechanisms in single-cell multi-

omics data.

Author summary

The rapidly developing single-cell multi-omics technologies enable the measurement of

various modalities from the same cell. Integrative analysis of multi-modal data can pro-

vide new biological insights into the cellular state from different perspectives. However,

this also poses challenges for the development of computational methods and tools for

integrative analysis. We have developed a model called scMoMtF, which is capable of

addressing multiple key tasks of single-cell multi-omics data analysis within a unified

framework, including dimension reduction, cell classification and data simulation. Fur-

thermore, scMoMtF is interpretable and can reveal potential marker genes and capture

the complex relationships between single-cell multi-omics data.

Introduction

The rapid development of single-cell sequencing technology makes it easier to analyze cell

identity and behavior [1–4]. For example, the single-cell RNA sequencing (scRNA-seq) is
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widely used to measure the gene expression [5, 6] and the single-cell Assay for Transposase

Accessible Chromatin with high-throughput (scATAC-seq) can measure chromatin accessibil-

ity [7]. However, these sequencing techniques only focus on the special molecular characteris-

tics of single modality [8]. Therefore, the analysis of single-omics single-cell data only obtains

partial information about the heterogeneity among various cells and fails to reveal the differ-

ences between cells [2].

The single-cell multi-omics technology can deconstruct the heterogeneity of cells within

complex biological systems. For example, single-nucleus chromatin accessibility and mRNA

expression sequencing (SNARE-seq) [9] and simultaneous high-throughput ATAC and RNA

expression with sequencing (SHARE-seq) [10] techniques can measure gene expression and

chromatin accessibility simultaneously in the same cell. In addition, cellular indexing of tran-

scriptomes and epitopes by sequencing (CITE-seq) can measure single-cell gene expression

and use the counting of antibody-derived tags (ADT) to quantify surface protein [11]. These

single-cell omics data provide useful biological information from different views. Therefore, it

is important to integrate these single-cell multi-omics data for obtaining a deeper biological

understanding of cell [12–14].

Increasing methods based on deep learning have been proposed for analyzing single-cell

multi-omics data such as dimension reduction, cell classification and data simulation. Dimen-

sion reduction is an important step in clustering analysis which can explore biological infor-

mation at the cell type or subtype level. MultiVI [15] and totalVI [16] can obtain single-cell

multi-omics joint embeddings by dimension reduction and perform cluster analysis by using

some simple clustering algorithms. However, these methods only focus on joint embedding

which prevents them from obtaining dimension reduction data that more conducive to cluster

analysis. To address this issue, Lin et al. [17] propose an end-to-end deep learning model to

learn the potential features of embedding for clustering analysis. In addition, cell classification

task is also a key task in single-cell multi-omics data analysis. Many methods have been pro-

posed recently for transferring cell type labels across modalities [18]. For example, Lin et al.

[19] propose a scalable transfer learning method to annotate scATAC-seq data by using a large

amount of high-quality annotated scRNA-seq data and Cao et al. [20] designed a cell label

transmission strategy for single-cell multi-omics data based on coupled-VAE and Minibatch-

UOT methods. However, few methods are designed for cell classification by using all modal

data of single-cell multi-omics data. Currently, many methods which focus on cell classifica-

tion only use single-omics data (such as scRNA-seq data). For example, Alquicira-Hernandez

et al. [21] propose a method to classify cells in scRNA-seq data by combining unbiased feature

selection from a reduced-dimension space and machine-learning probability-based prediction

method and Lin et al. [22] propose a multiscale classification framework based on ensemble

learning to classify cells of scRNA-seq data. For data simulation task, the goal is to increase the

number of cells in sparse cell clusters to improve the quality of multi-omics single-cell data.

For example, Liu et al. [23] propose a multi-tasking method (Matilda) to simulate single-cell

multi-omics data. These methods have achieved a great success in single-cell multi-omics data.

However, most of methods only focus on solving a single problem and require a lot of training

time which makes it difficult to adapt the gradually growing needs of single-cell multi-omics

data analysis. In addition, most methods increase the depth of the model in order to obtain

stronger learning ability which makes it difficult to track the contribution of model inputs and

loss the interpretability of model [24].

In this paper, we propose an interpretable multitask learning framework (scMoMtF) for

single-cell multi-omics data analysis. scMoMtF can simultaneously solve multiple key tasks of

single-cell multi-omics data analysis including dimension reduction, cell classification and

data simulation. The shared information between tasks can be utilized to complement each
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other to improve the learning ability of scMoMtF and the depth of scMoMtF can be reduced

to ensure interpretability by using multitask learning. We evaluate the dimension reduction

performance of scMoMtF on four different datasets from SNARE-seq, peripheral blood mono-

nuclear cell (PBMC) [25], SHARE-seq and CITE-seq [26]. The experimental results indicate

that dimension reduction data of scMoMtF can better distinguish cell subtypes and have

higher clustering consistency than the current state-of-the-art methods. For cell classification

task, we compare scMoMtF with four cutting-edge single-omics classification methods. The

results of five-fold cross-validation show that scMoMtF has significantly higher accuracy in

cell classification than other methods. In addition, scMoMtF can accurately simulate cells in

different modalities. We also analyze the interpretability of scMoMtF and the results indicate

that scMoMtF has the ability to reveal potential marker genes and capture complex relation-

ships between single-cell multi-omics data [27]. Finally, we demonstrate that scMoMtF can

correct batch effect and requires shorter training time than other methods.

Results

The scMoMtF model

scMoMtF is composed of encoder module, decoder module, discriminator module and classi-

fication module (Fig 1A). Two independent modal encoders are designed to obtain embedding

which contain key biological information from two modalities of single-cell multi-omics data

(RNA, ATAC/ADT), respectively. Then, the two embeddings are concatenated and the

concatenated embedding are input to cell encoder to obtain the final cell embedding. Further,

the reconstructed data is obtained from cell embedding by using two independent modal

decoders. In addition, the classification module is utilized to classify cell types based on final

cell embedding. Finally, the discriminator module is designed to against the generator module

which consist of the encoder and decoder module [28]. scMoMtF can complete three impor-

tant tasks simultaneously. For example, the encoder module of scMoMtF can achieve dimen-

sion reduction for single-cell multi-omics data, the classification module of scMoMtF allows

for accurate cell classification by using the encoded cell embedding and the generator module

can simulate the data which input into the model (Fig 1B). In addition, the interpretability

module is used to provide additional insights on the importance of genes in dimension reduc-

tion task and cell classification task. This helps to discover potential marker genes in the cell

(Fig 1C).

Performance on single-cell multi-omics data dimension reduction

To evaluate the performance of dimension reduction task on single-cell multi-omics data, we

compare scMoMtF with current popular methods including MultiVI [15], totalVI [16],

scMDC [17] and Matilda [23]. In these method, MultiVI [15] are designed for RNA modality

and ATAC modality. totalVI [16] are designed for RNA modality and ADT modality. scMDC

[17] and Matilda [23] are designed for RNA and ATAC/ADT modalities. We set the dimen-

sion of the biological information vector of each modality as 150, which is obtained by modal-

ity encoder. In addition, the dimension of cell embedding is set to 64 by using cell encoder.

For all comparison methods, we use their default dimension for experiments. It should be

noted that the donor 2 of CITE dataset and all data of other three datasets are selected as exper-

imental data. We visualize the cell embedding of each model by using uniform manifold

approximation and projection (UMAP) (Fig 2A–2D). It can be found the cell embedding of

scMoMtF can provide clearer division between different cell clusters, especially for small num-

bers of cell subtypes. For example, scMoMtF can clearly separate the three cell subtypes (B

intermediate, B memory and B naive), while the other methods can not exhibit clear cell
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cluster boundaries in CITE-seq dataset. In order to intuitively show the dimension reduction

performance of each method, we use k-means clustering algorithm to cluster the cell embed-

ding with same parameters (n_clusters is the number of cell types for the corresponding data-

set and n_init is set to 30). We use three quantitative metrics including adjusted mutual

information (AMI), normalized mutual information (NMI) and adjusted rand index (ARI) by

five-fold cross-validation to measure the cluster performance [29–31]. It can be found that

scMoMtF achieves higher AMI, NMI and ARI scores in different datasets (Fig 2E–2H). For

example, in PBMC dataset, the AMI, NMI and ARI scores of scMoMtF are 0.847, 0.852, 0.740,

Fig 1. scMoMtF overall structure and task module diagram. A scMoMtF uses the matched single-cell multi-omics data as the input to the model and

the overall model framework is encoder-decoder-discriminator-classifier. B The tasks process of scMoMtF. C The research process for the

interpretability of scMoMtF.

https://doi.org/10.1371/journal.pcbi.1012679.g001
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which outperforms other methods (MultiVI: 0.743, 0.752, 0.510; scMDC: 0.767, 0.775, 0.660;

Matilda: 0.821, 0.827, 0.645). In addition, although the performance of Matilda is close to

scMoMtF in the SNARE-seq dataset, scMoMtF performs more stable in the other datasets.

These experimental results demonstrate the superior performance of scMoMtF in dimension

reduction task for single-cell multi-omics data.

Performance on single-cell multi-omics data cell classification

Previous methods focus on cell label transmission between different data modalities. There are

few methods for cell type classification task by using all single-cell multi-omics data together.

In order to prove that scMoMtF has better performance and robustness in classifying cell types

by using single-cell multi-omics data, we compare scMoMtF with the state-of-the-art methods

for cell type classification based on RNA modality including scPred [21], scClassify [22],

scmap [32] and CHETAH [33]. We also use five-fold cross-validation to evaluate the classifica-

tion accuracy. It can be observed that scMoMtF has a higher classification accuracy on these

datasets than other methods which only with RNA modality (Fig 3A). It should be noted that

the classification accuracy of scMoMtF are all over 84% on these datasets and this reflects the

robustness of scMoMtF to different single-cell data. In addition, it also can be found that

scMoMtF is able to correctly classify rare cells in these datasets. For example, comparing with

scPred [21] which is the second best model in performance. scMoMtF achieves better classifi-

cation performance on rare cells (the cell types that have small proportion in the dataset) such

as Plasma (0.1% in the dataset), Treg (1.6% in the dataset) and gdT (1.4% in the dataset) (Fig

Fig 2. Visualization and performance evaluation of dimension reduction task of scMoMtF compared with other comparison algorithms. A-C

Visualization of dimension reduction data generated by scMoMtF, Matilda, scMDC, and MultiVI on SNARE-seq, PBMC, and SHARE-seq datasets. D

Visualization of dimension reduction data generated by scMoMtF, Matilda, scMDC and totalVI on the CITE-seq dataset. E-G Evaluate the clustering

performance of dimension reduction data generated by scMoMtF, Matilda, scMDC, and MultiVI on SNARE-seq, PBMC, and SHARE-seq datasets

using AMI, NMI, and ARI. H The clustering performance of dimension reduction data generated by scMoMtF, Matilda, scMDC and totalVI on CITE-

seq dataset.

https://doi.org/10.1371/journal.pcbi.1012679.g002
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3B and 3C). The classification accuracy of scMoMtF for Plasma, Treg and gdT is 100%, 80.6%

and 85.7%, respectively. The classification accuracy of scPred for Plasma, Treg, and gdT is

66.7%, 77.4% and 53.6%. These results demonstrates that scMoMtF improves the classification

accuracy of rare cells which contributes to whole performances improvement of cell classifica-

tion on different datasets.

Performance on single-cell multi-omics data simulation

There are two tasks on the single-cell multi-omics data simulation: specific cell type data simu-

lation and multiple cell types data simulation. For specific cell type data simulation task, we

apply scMoMtF to the PBMC and CITE-seq datasets. In the PBMC dataset, we use the genera-

tor of the trained model to simulate 200 CD14 Mono cells. Then, we use UMAP to visualize

CD14 Mono cells of real data and simulated data in the RNA modality and ATAC modality,

respectively. It can be seen that there is almost no difference between the real data represented

by the red dots and the simulated data represented by the blue dots (Fig 4A and 4B). In addi-

tion, it can be found that the simulated data generated by scMoMtF can eliminate outliers in

the real data (Fig 4A). This result shows that scMoMtF is able to accurately simulate the CD14

Mono cells of real data in both RNA modality and ATAC modality. In the CITE-seq dataset,

we simulate NK cells and visualize NK cells of real data and simulated data in ADT modality

(Fig 4C). It can be observed that NK cells of simulated data and real data are highly similar.

The experimental results show that scMoMtF can simulate single-cell multi-omics data well

with specific cell types. For the multiple cell types data simulation task, we select top-100 highly

variable genes (HVGs) in both the real data and the simulated data and calculate the pearson

correlation of HVGs between the real data and simulated data on the SNARE-seq, PBMC,

Fig 3. Cell classification performance of scMoMtF. A Comparison of classification accuracy between scMoMtF and other comparison algorithms

under five-fold cross-validation. B The classification results of scMoMtF for each cell type in the PBMC dataset. C The classification results of scPred for

each cell type in the PBMC dataset.

https://doi.org/10.1371/journal.pcbi.1012679.g003
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SHARE-seq and CITE-seq datasets. We compare scMoMtF with Matilda [23] and SPARsim

[34] on RNA modality. It can be seen that scMoMtF achieves higher pearson correlation

between real data and simulated data on four datasets (Fig 4D). This indicates that scMoMtF

makes the correlation structures between real data and simulated data more similar than other

methods in multiple cell types data simulation task. In summary, scMoMtF has a good effect

on single-cell multi-omics data simulation tasks.

scMoMtF corrects batch effects

For single-cell multi-omics data, the batch effect mask true biological variation which may

obtian the unreliable analysis result [35]. Therefore, it needs to correct batch effect in single-

cell multi-omics data analysis [36]. In order to demonstrate the performance of scMoMtF in

correcting batch effects, we selecte the first five donors out of the eight donors as five batch

data (P1,2,3,4,5) in the CITE-seq dataset and use UMAP to visualize the raw data. It can be

found that there is a serious batch effect in the raw data and cells tended to cluster by donor

rather than by cell type (Fig 5A). We train scMoMtF on individual batch as reference data to

correct the remaining batches. It can be observed that scMoMtF can effectively correct batch

effects to make cells of the same type gather well together (Fig 5B). In addition, for evaluating

the performance of cell classification across batch, we use each batch as training data and other

remaining batches as test data. It should be noted that the average classification accuracy of

other batches is used as final classification result for each batch. The results show that

scMoMtF can obtain more than 90% classification accuracy across batches with almost no

fluctuation (Fig 5C). In summary, scMoMtF can be used to solve the batch effect problem to

obtain more reliable results in single-cell multi-omics data.

Fig 4. scMoMtF single-cell multi-omics data simulation performance. A-B scMoMtF visualizes the simulation effects of specified cell types on PBMC

datasets. C scMoMtF visualizes the simulation effects of specified cell types on the CITE-seq dataset. D Pearson’s correlation between scMoMtF and

other single-cell data simulation methods for highly variable genes in real and simulated data. Lower and upper hinges, first and third quartiles(Q1,Q3);

whiskers, range of 1.5-times the interquartile; Centre line, median; Dot, outliers.

https://doi.org/10.1371/journal.pcbi.1012679.g004

PLOS COMPUTATIONAL BIOLOGY An interpretable multitask learning framework for single-cell multi-omics data analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012679 December 18, 2024 7 / 18

https://doi.org/10.1371/journal.pcbi.1012679.g004
https://doi.org/10.1371/journal.pcbi.1012679


The interpretability of scMoMtF

In order to show the interpretability of scMoMtF, we use SHapley Additive exPlanation

(SHAP) [37] to analyze the model. The core idea of SHAP is to calculate the marginal contri-

bution of features of the model. We embed SHAP into our interpretability module. Herein, we

analyze scMoMtF on the PBMC dataset by interpretability module. We visualize the data in

RNA modality and ATAC modality, respectively (Fig 6A). Among all cell types, we focus on

CD8+ T cells which contians three cell subtypes including CD8 Naive, CD8 TEM_1 and CD8

TEM_2. In addition, the peaks of ATAC data in the PBMC dataset are mapped to correspond-

ing genes. Then, the interpretability module is used to calculate the important scores of genes

of RNA modality and ATAC modality for dimension reduction and cell classification tasks.

And top rank important genes are selected based on important scores.

In the RNA modality, it can be found that genes CD8B, CCL5 and GZMK with significant

different contribution to the three cell subtypes (Fig 6B). The gene CD8B provides more contri-

bution to subtype CD8 Naive than the other two subtypes. The gene CCL5 provides more con-

tribution to subtypes CD8 TEM_1 and CD8 TEM_2. The gene GZMK provides more

contribution to subtype CD8 TEM_1. In addition, we visualize these genes in their correspond-

ing modalities. It can be seen that these genes with higher expression to their corresponding

high contributing cell subtypes (Fig 6C). It indicates that these genes are cell-specific genes of

CD8+ T cells and play an critical role in CD8+ T cells functions. The results can be proved by

the previous study that the marker genes of CD8+ T cells contain CD8B and GZMK [38]. And it

has been demonstrated that the low expression of gene CCL5 decreases the number of CD8+ T

cells in cancer cells [39].

Fig 5. scMoMtF corrects batch effect in the CITE-seq dataset. A Visualization of selected data before removing batch effect. B Visualization of the

results of batch correction by scMoMt using different batches. C The average classification accuracy across data batches of different batches.

https://doi.org/10.1371/journal.pcbi.1012679.g005
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In the ATAC modality, genes IL17C, LINC02446 and JAKMIP1 also with great different

contribution (Fig 6B). Similarly, we visualize the expression degree of these genes. The results

(Fig 6C) show that these genes are also important genes of CD8+ T cells. It is proved by the lat-

est research that the LINC02446 enhances IL7R abundance which leads to increase the propor-

tion of Treg cells to promote melanoma metastasis and Treg cells are driven by CD8+ T cells

which indicates that the increase of Treg cells will lead to simultaneously increase CD8+ T

cells [40]. In addition, it has been domanstrated the JAKMIP1 may regulate CD8+ T cell infil-

tration by leukocyte migration, DCs, and T-cell recruitment [41].

Moreover, we use the t-SNE to visualize the cell embeddings of single-cell multi-omics data

at different stages of training. It can be observed that cells gradually gather together and cell

clustering becomes more pronounced with the training progresses (Fig 6D). The above experi-

ments show that scMoMtF has reliable interpretability to help us reveal potential marker genes

and can effectively capture complex relationships to obtain better cell embedding during train-

ing in single-cell multi-omics data.

Training efficiency of scMoMtF

In the field of single-cell multi-omics data analysis, the performance and training efficiency of

deep learning models are important criteria for evaluating their superiority. We record the

runtime of all models in the experiment and the results are shown in Table 1. It can be found

that scMoMtF has a significantly shorter training time by compared to other models (includ-

ing both multi-task and single-task models). Although the training time of scmap [32] is

shorter than scMoMtF, the accuracy of scmap in the cell classification task is much lower than

Fig 6. Interpretability analysis diagram of scMoMtF. A Visualize the location of the cell subtype of CD8+ T cells in both the RNA and ATAC

modalities. B The characteristics with high contribution in CD8+ T cells are normalized to a value between 0 and 1. C The expression degree of CD8B,

CCL5 and GZMK in RNA modality and the expression degree of IL17C, LINC02446 and JAKMIP1 in ATAC modality. D Visualize the cell embedding

of scMoMtF at different training periods using t-SNE.

https://doi.org/10.1371/journal.pcbi.1012679.g006
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scMoMtF. Therefore, scMoMtF not only demonstrates superior performance in multitasking

capabilities but also exhibits exceptional competitiveness in training efficiency. And scMoMtF

is a powerful tool for efficiently handling single-cell multi-omics data.

Discussion

The current single-cell sequencing technology can simultaneously measure multiple molecular

information (RNA, chromatin accessibility and proteins) of the same cell. It demand to com-

bine different tasks to fully understand these single-cell multi-omics data. However, many cur-

rent methods for analyzing single-cell multi-omics data are designed to perform a single task

and rely on specific datasets which make it fail to fully utilize the potential of single-cell multi-

omics data. For example, scMDC performs well on PBMC and CITE-seq datasets but performs

poorly on other datasets in dimension reduction task. And the accuracy of scmap is signifi-

cantly lower on the SHARE-seq dataset in cell classification task. In addition, many methods

lack corresponding interpretability which is difficult to provide biologically reliable insights.

To address this issue, we propose an interpretable multitask framework (scMoMtF) for com-

prehensive analyzing single-cell multi-omics data. We evaluate the performance of scMoMtF

in data dimension reduction, cell classification and data simulation tasks. The experimental

results indicate that scMoMtF can obtain better performance on all tasks and correct the batch

effect of single-cell multi-omics data. In addition, scMoMtF can reveal potential marker genes

to provide reliable biological insights. Furthermore, scMoMtF can be a convenient analysis

tool without too much parameters adjustment and training time.

In future work, we also plan to explore potential improvements to the method, such as

enhancing its computational efficiency to handle larger datasets more effectively and expand-

ing its applicability to a broader range of single-cell multi-omics datasets. Moreover, we will

investigate potential applications of scMoMtF in related areas, such as integrating spatial tran-

scriptomics data or applying the framework to other types of multi-modal data.

Materials and methods

Overview of scMoMtF

The scMoMtF is a neural network model that can perform multiple single-cell multi-omics

tasks. The scMoMtF consists of an encoder module, a decoder module, a discriminator

Table 1. Task training time (in seconds) of each method on different datasets.

Task Method SNARE-seq (9190 Cells) PBMC (9631 Cells) SHARE-seq (17115 Cells) CITE-seq (32231 Cells)

Dimension Reduction MultiVI 613 782 2269 -

totalVI - - - 2039

scMDC 313 324 417 1033

Cell Classification scPred 382 305 1260 4106

scClassify 29 37 157 106

scmap 3 5 15 9

CHETAH 39 22 81 84

Data Simulation SPARSim 152 180 279 587

Multiple Tasks Matilda 40 42 67 143

scMoMtF 14 14 28 46

Note: Among all the models scMoMtF and Matilda are multi-task models and the rest are single-task models. - : indicates that the model cannot be applied to the

dataset.

https://doi.org/10.1371/journal.pcbi.1012679.t001
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module and a classification module. We suppose that XðmÞ 2 Rn�vðmÞ (m = 1,. . .,M) represents

single-cell data from modalityM, where n represents the number of cells and v(m) represents

the number of features in X(m). In addition,M is equal to 2 in this paper.

The encoder module of scMoMtF

In the encoder module, we design two independent modality encoders Eð1ÞModality and Eð2ÞModality for

different modalities, where Eð1ÞModality encodes the data from modality 1 and Eð2ÞModality encodes the

data from modality 2. The each modal data in cell i (i = 1,. . .,n) is mapped to specific modal

embedding hðmÞi for important multi-omics information extraction:

hð1Þi ¼ E
ð1Þ

Modalityðx
ð1Þ

i Þ ð1Þ

hð2Þi ¼ E
ð2Þ

Modalityðx
ð2Þ

i Þ ð2Þ

where xð1Þi is a row of X(1) denotes the data of cell i from modality 1 and xð2Þi is a row of X(2)

denotes the data of cell i from modality 2. Next, hð1Þi and hð2Þi are concatenated to input into the

cell encoder ECell to obtain the final cell embedding zi of cell i:

zi ¼ ECellðconcatenateðh
ð1Þ

i ; h
ð2Þ

i ÞÞ ð3Þ

where the length of hð1Þi and hð2Þi are lð1Þi and lð2Þi , respectively. And the length of concatenated

embedding is lð1Þi þ l
ð2Þ

i .

The decoder module of scMoMtF

In the decoder module, we use two decoders Dð1ÞModality and Dð2ÞModality to reconstruct zi to the origi-

nal feature dimensions of each modal data:

x̂ð1Þi ¼ D
ð1Þ

ModalityðziÞ ð4Þ

x̂ð2Þi ¼ D
ð2Þ

ModalityðziÞ ð5Þ

where x̂ð1Þi is reconstructed data of xð1Þi and x̂ð2Þi is reconstructed data of xð2Þi .

The discriminator module of scMoMtF

In scMoMtF, we treat the encoder module and decoder module as a single-cell multi-omics

data generator. The discriminator module assists the generator generate data that is more simi-

lar to the original data. We design Dis(m) as a discriminator of modalityM, and the input of the

discriminator Dis(m) is x̂ðmÞi which is generated by using generator and raw data xðmÞi . The pur-

pose of Dis(m) is to achieve binary classification, and the result is the probability that the input

data comes from a real data (as opposed to fake data).

The classification module of scMoMtF

We input zi into a fully connected network to obtain a cell label vector yi with a length of C (C
is the number of cell types in the input data) for cell i. The yðcÞi (c = 1,2,. . .,C) represents the
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probability of cell i is predicted as the c class:

yi ¼ layerðziÞ ð6Þ

where layer is fully connected network.

Reconstruction loss

The original data is mapped to the low dimensional common embedding space based on

encoder module, and reconstructed to the original dimension based on the decoder module.

The reconstruction loss is defined as:

Lres ¼
1

nM

Xn

i¼1

XM

m¼1

�
�
�
�x̂
ðmÞ
i � x

ðmÞ
i

�
�
�
�

20

ð7Þ

Lres is used to measure the distance between the original data and the reconstructed data.

Classification loss

We use LSR (Label Smoothing Regularization) [42] to improve cross entropy loss function.

We replace the real label vector yreal with the updated label vector yls based on label smoothing

method:

yls ¼ ð1 � aÞ � yreal þ a=C ð8Þ

where α is a hyperparameter. Therefore, the cross entropy loss can be rewritten as follow:

Lcls ¼ �
XC

c¼1

yðcÞls log yðcÞi ð9Þ

Generator loss

We use the least square loss [43] as the loss function to train the generator. The generator loss

is defined as follow:

Lgen ¼
1

nM

Xn

i¼1

XM

m¼1

kDisðmÞðx̂ðmÞi Þ � 1k
2

20 ð10Þ

Lgen is to make the simulated data generated by the generator similar to the original data to the

discriminator.

Discriminator loss

We also use the least square loss as the loss function for the discriminator. The discriminator

loss is defined as follow:

Ldis ¼
1

nM

Xn

i¼1

XM

m¼1

�
�
�
�Dis

ðmÞðx̂ðmÞi Þ
�
�
�
�

2

2

þ
1

nM

Xn

i¼1

XM

m¼1

�
�
�
�Dis

ðmÞðxðmÞi Þ � 1

�
�
�
�

2

20

ð11Þ

Ldis is to make the discriminator predict the simulated data as fake and the original data as

true.
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scMoMtF training

For all datasets, we normalize the original count matrix by using scanpy to select the top 4000

highly variable genes for RNA modality, using episcanpy to select the top 4000 highly variable

peaks for ATAC modality and preserving all features in ADT modality. Subsequently, the pre-

processed data is input into the model for training, and the overall loss function during the

training process is defined as follow:

Ltotal ¼ Lres þ g� Lcls þ Lgen þ Ldis ð12Þ

where γ is a hyperparameter to control the influence of the classification module. We train

scMoMtF on all experimental datasets and update each module to determine the optimal

hyperparameter based on the loss function.

Description of the dataset

The datasets used in the experiment are mainly matched datasets which contain matched RNA

and ATAC/ADT data. There are four datasets used in the experiment:

SNARE-seq dataset. The original RNA and ATAC count matrices are measured from the

mouse cerebral cortex by Chen et al. [9] and can be downloaded from the GEO website (acces-

sion code GSE126074). SNARE-seq contain matched RNA and ATAC data. We follow the

processing steps of Lin et al. [19] for this dataset and obtain the pre-processed data. It consists

of 9190 cells with 241757 features in ATAC and 28930 genes in RNA whit 22 cell types.

PBMC dataset. The 10x-Multiome-Pbmc10k dataset is downloaded from the 10 xge-

nomics [25] to obtain original gene expression and chromatin accessibility. We download this

dataset from the preprocessed data provided by Cao et al. [44]. It consists of 9631 cells with

107194 features in ATAC and 29095 genes in RNA with 19 cell types.

SHARE-seq dataset. This dataset measures gene expression and chromatin accessibility

in the same single-cell in mouse skin samples which is derived from Ma et al. [10]. The raw

data is available to download from the GEO website (accession code GSE140203). The gene

activity score matrix is obtained by Seurat [26], and cells with less than 1% gene expression are

filtered out. It consists of 32231 cells with 340341 features in ATAC and 21478 genes in RNA

with 22 cell types.

CITE-seq dataset. The raw data of this dataset is downloaded from the GEO website

(accession code GSE164378) and provided by Hao et al. [26]. We download a preprocessing

file of this dataset provided by Lakkis et al. [45] and remove cells labeled as Doublet from the

cell type. This dataset consists of 161159 cells with 224 proteins in ATAC and 20729 genes in

RNA from eight donors, which is treated as eight batches. And it has three cell type resolu-

tions: L1 (8 types), L2 (30 types) and L3 (57 types). L1, L2 and L3 represent different levels of

cell type resolution, L1 represents coarse-grained division of cell types, L2 and L3 represent

higher-resolution subpopulation division. We only use L2 (30 types) in our experiment.

Dimension reduction methods

MultiVI (https://github.com/scverse/scvi-tools). The input of MultiVI are matched raw

count matrices of RNA and gene activity score matrices from ATAC. We use the default

parameters in the experiment. Following the author’s tutorial, we first connect the RNA and

ATAC data and then train the model through the ‘scvi.model.MULTIVI.setup_anndata’, ‘scvi.

model.MULTIVI’ and ‘train’ functions. The final embedding can be obtained by the ‘get_la-

tent_representation’ function.
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totalVI (https://github.com/scverse/scvi-tools). The input of totalVI are matched raw

count matrices of RNA and ADT. We use the default parameters in the experiment. Following

the author’s tutorial, we normalize the raw data through the ‘normalize_total’ and ‘log1p’ func-

tions. And then we train the model through the ‘scvi.model.TOTALVI.setup_anndata’, ‘scvi.

model.TOTALVI’ and ‘train’ functions. The final embedding can be obtained by the ‘get_la-

tent_representation’ function.

scMDC (https://github.com/xianglin226/scMDC). There are two types inputs of

scMDC: matched raw count matrices of RNA and gene activity score matrices from ATAC;

matched raw count matrices of RNA and ADT. We use the default parameters in the experi-

ment. Following the author’s tutorial, we normalize the raw data through the ‘normalize’ func-

tion. And then we train the model through the ‘scMultiCluster’ and ‘pretrain_autoencoder’

functions. The final embedding can be obtained by the ‘encodeBatch’ function.

Matilda (https://github.com/PYangLab/Matilda). There are two types inputs of Matilda:

matched raw count matrices of RNA and gene activity score matrices from ATAC; matched

raw count matrices of RNA and ADT. We use the default parameters in the experiment. Fol-

lowing the author’s tutorial, we normalize the raw data through the ‘compute_log2’ and ‘com-

pute_zscore’ functions. Then we concatenate the data of the two modalities and train the

model through the ‘CiteAutoencoder_SHAREseq’ (or ‘CiteAutoencoder_CITEseq’) and

‘train_model’ functions. The final embedding can be obtained by the ‘get_encodings’ function.

Cell classification methods

scPred (https://github.com/powellgenomicslab/scPred). The input of scPred is raw

count matrices of RNA. We use the default parameters in the experiment. Following the

author’s tutorial, we preprocess the raw data through the ‘NormalizeData’, ‘FindVariableFea-

tures’, ‘ScaleData’, ‘RunPCA’ and ‘RunUMAP’ functions. And then we train the model

through the ‘getFeatureSpace’ and ‘trainModel’ functions. The result of cell classification can

be obtained by the ‘scPredict’ function.

scClassify (https://github.com/SydneyBioX/scClassify). The input of scClassify is raw

count matrices of RNA. We use the default parameters in the experiment. Following the

author’s tutorial, we normalize the raw data through the ‘NormalizeData’ function. And then

we train the model and obtain the result of cell classification through the ‘scClassify’ function.

scmap (https://github.com/hemberg-lab/scmap). The input of scmap is raw count

matrices of RNA. We use the default parameters in the experiment. Following the author’s

tutorial, we train the model and obtain the result of cell classification through the ‘selectFea-

tures’, ‘indexCluster’ and ‘scmapCluster’ functions.

CHETAH (https://github.com/jdekanter/CHETAH). The input of CHETAH is raw

count matrices of RNA. We use the default parameters in the experiment. Following the

author’s tutorial, we train the model and obtain the result of cell classification through the

‘CHETAHclassifier’ function.

Data simulation methods

SPARsim (https://gitlab.com/sysbiobig/sparsim). The input of SPARsim is raw count

matrices of RNA. Following the author’s tutorial, we normalize the raw data through the

‘scran_normalization’ function. The parameters of SPARsim are estimated by ‘SPARSim_esti-

mate_parameter_from_data’ function. And then we train the model and generate simulated

data through the ‘SPARSim_simulation’ function.

Matilda. The detailed information of Matilda can be seen in ‘Dimension reduction meth-

ods’ section. Matilda can generate simulated data of two modalities. After the Matilda is
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trained, we use the function ‘get_vae_simulated_data_from_sampling’ to generate simulated

data. And then we select the simulated data of RNA from the result.

Evaluation metrics

Adjusted Rand Index (ARI). The ARI score measures measures the agreements between

two sets P (the clustering result of the predicted by model) and T (the clustering result of real

label). Assuming N1 represent the number of pairs of objects that are assigned to the same clus-

ter in both P and T; N2 represent the number of pairs of objects that are assigned to different

clusters in both P and T; N3 represent the number of pairs of objects that are assigned to the

same cluster in P but to different clusters in T; N4 represent the number of pairs of objects that

are assigned to the same cluster in T but to different clusters in P. the ARI is calculated using

the following formula:

ARI ¼

n
2

� �
ðN1 þ N2Þ � ½ðN1 þ N3ÞðN1 þ N4Þ þ ðN4 þ N2ÞðN3 þ N2Þ�

n
2

� �
� ½ðN1 þ N3ÞðN1 þ N4Þ þ ðN4 þ N2ÞðN3 þ N2Þ�

ð13Þ

And the ARI is near one when the clustering result from the model aligns well with the

observed cell type labels, while it is close to zero when the clustering resembles a random

assignment.

Normalized mutual information (NMI). Similar to ARI score, let P = {P1, P2, . . ., Pnp}
and T = {T1, T2, . . ., Tnt} be the predicted and real labels on a dataset with n cells. NMI is

defined as follows:

NMI ¼
IðP;TÞ

maxfHðPÞ;HðTÞg
ð14Þ

IðP;TÞ ¼
Xnp

i¼1

Xnt

j¼1

jPi
\
Tjjlog

njPi \ Tjj
jPij � jTjj

ð15Þ

HðPÞ ¼ �
Xnp

i¼1

jPijlog
jPij
n

ð16Þ

HðTÞ ¼ �
Xnt

j¼1

jTjjlog
jTjj
n ð17Þ

where I(P, T) represents the mutual information between P and T,H(P) andH(T) are the

entropy of partitions.

Adjusted Mutual Information (AMI). AMI is an adjusted version of NMI and AMI

takes into account the effects of random assignment and category imbalance. AMI is defined

as follows:

AMIðP;TÞ ¼
IðP;TÞ � EfIðP;TÞg

maxfHðPÞ;HðTÞg � EfIðP;TÞg
ð18Þ

where E{I(P, T)} is the expected mutual information between P and T under random labeling

assumption.
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