Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Apr;148(1):49–56. doi: 10.1042/bj1480049

Deoxyribonucleic acid-dependent ribonucleic acid polymerase activity in rat liver after protein restriction.

G M Andersson, A von der Decken
PMCID: PMC1165505  PMID: 1156400

Abstract

Rats were fed for 6 days on a diet containing either 3 or 20% high-quality protein. Nuclei were isolated from liver and DNA-dependent RNA polymerases (EC 2.7.7.6) extracted with 1 M-(NH4)2SO4. The proteins were then precipitated with 3.5 M-(NH4)2SO4 and after dialysis applied to a DEAE-Sephadex column. The column was developed with a gradient of (NH4)2SO4. Polymerase I separated well from alpha-amanitin-sensitive polymerase II. The enzyme activities were compared between the two dietary groups. Rats that had received 3% protein showed a lower polymerase I activity per g wet wt. of liver, per mg of DNA and per mg of protein. Polymerase II was lower in activity per g wet wt. of liver and per mg of DNA, but was higher per mg of protein. Polyacrylamide-gel electrophoretograms showed a higher proportion of contaminating proteins in polymerase II fractions isolated from 20%-protein-fed rats. The data explain the lower activity obtained per mg of protein in these rats. It is concluded that a decrease in dietary protein content from 20 to 3% induces a fall in content and specific activity of RNA polymerase I and II in liver.

Full text

PDF
49

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chesterton C. J., Humphrey S. M., Butterworth P. H. Comparison of the multiple deoxyribonucleic acid-dependent ribonucleic acid polymerase forms of whole rat liver and a minimal-deviation rat hepatoma cell line. Biochem J. 1972 Feb;126(3):675–681. doi: 10.1042/bj1260675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  3. Doenecke D., Pfeiffer C., Sekeris C. E. Multiple forms of DNA-dependent RNA polymerase from insect tissue. FEBS Lett. 1972 Mar 15;21(2):237–243. doi: 10.1016/0014-5793(72)80145-5. [DOI] [PubMed] [Google Scholar]
  4. Flint S. J., De Pomerai D. I., Chesterton C. J., Butterworth P. H. Template specificity of eucaryotic DNA-dependent RNA polymerases. Effect of DNA structure and integrity. Eur J Biochem. 1974 Mar 1;42(2):567–579. doi: 10.1111/j.1432-1033.1974.tb03372.x. [DOI] [PubMed] [Google Scholar]
  5. Henderson A. R. The effect of diet on rat liver nucelar DNA-dependent RNA polymerase. Proc Nutr Soc. 1972 Dec;31(3):291–295. doi: 10.1079/pns19720053. [DOI] [PubMed] [Google Scholar]
  6. Kedinger C., Chambon P. Animal DNA-dependent RNA polymerases. 3. Purification of calf-thymus BI and BII enzymes. Eur J Biochem. 1972 Jul 13;28(2):283–290. doi: 10.1111/j.1432-1033.1972.tb01912.x. [DOI] [PubMed] [Google Scholar]
  7. Kedinger C., Gniazdowski M., Mandel J. L., Jr, Gissinger F., Chambon P. Alpha-amanitin: a specific inhibitor of one of two DNA-pendent RNA polymerase activities from calf thymus. Biochem Biophys Res Commun. 1970 Jan 6;38(1):165–171. doi: 10.1016/0006-291x(70)91099-5. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Lindell T. J., Weinberg F., Morris P. W., Roeder R. G., Rutter W. J. Specific inhibition of nuclear RNA polymerase II by alpha-amanitin. Science. 1970 Oct 23;170(3956):447–449. doi: 10.1126/science.170.3956.447. [DOI] [PubMed] [Google Scholar]
  10. MASTER R. W. POSSIBLE SYNTHESIS OF POLYRIBONUCLEOTIDES OF KNOWN BASE-TRIPLET SEQUENCES. Nature. 1965 Apr 3;206:93–93. doi: 10.1038/206093b0. [DOI] [PubMed] [Google Scholar]
  11. Mathews M. B. Comparative biochemistry of chondroitin sulphate-proteins of cartilage and notochord. Biochem J. 1971 Nov;125(1):37–46. doi: 10.1042/bj1250037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Näslund P., Liljesvan B., Abrahamsson L. High-resolution analyzer of thermal denaturation. Anal Biochem. 1974 Jan;57(1):211–218. doi: 10.1016/0003-2697(74)90066-9. [DOI] [PubMed] [Google Scholar]
  13. Omstedt P. T., von der Decken A. Functional instability of skeletal muscle ribosomes after protein restriction of rats. J Nutr. 1974 Aug;104(8):1061–1068. doi: 10.1093/jn/104.8.1061. [DOI] [PubMed] [Google Scholar]
  14. Reeder R. H., Roeder R. G. Ribosomal RNA synthesis in isolated nuclei. J Mol Biol. 1972 Jun 28;67(3):433–441. doi: 10.1016/0022-2836(72)90461-5. [DOI] [PubMed] [Google Scholar]
  15. Roeder R. G., Rutter W. J. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature. 1969 Oct 18;224(5216):234–237. doi: 10.1038/224234a0. [DOI] [PubMed] [Google Scholar]
  16. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  17. Sugden B., Keller W. Mammalian deoxyribonucleic acid-dependent ribonucleic acid polymerases. I. Purification and properties of an -amanitin-sensitive ribonucleic acid polymerase and stimulatory factors from HeLa and KB cells. J Biol Chem. 1973 Jun 10;248(11):3777–3788. [PubMed] [Google Scholar]
  18. Versteegh L. R., Warner C. DNA-dependent RNA polymerases from normal mouse liver. Biochem Biophys Res Commun. 1973 Aug 6;53(3):838–844. doi: 10.1016/0006-291x(73)90169-1. [DOI] [PubMed] [Google Scholar]
  19. Von der Decke A. Activation in vitro of rat liver polyribosomes. J Cell Biol. 1969 Oct;43(1):138–147. doi: 10.1083/jcb.43.1.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weaver R. F., Blatti S. P., Rutter W. J. Molecular structures of DNA-dependent RNA polymerases (II) from calf thymus and rat liver. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2994–2999. doi: 10.1073/pnas.68.12.2994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  22. Weinmann R., Roeder R. G. Role of DNA-dependent RNA polymerase 3 in the transcription of the tRNA and 5S RNA genes. Proc Natl Acad Sci U S A. 1974 May;71(5):1790–1794. doi: 10.1073/pnas.71.5.1790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zylber E. A., Penman S. Products of RNA polymerases in HeLa cell nuclei. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2861–2865. doi: 10.1073/pnas.68.11.2861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. von der Decken A. Modification of the in vitro amino acid incorporation capacity of rat liver after in vivo and in vitro treatments. Eur J Biochem. 1968 Mar;4(1):87–94. doi: 10.1111/j.1432-1033.1968.tb00176.x. [DOI] [PubMed] [Google Scholar]
  25. von der Decken A., Omstedt P. T. Dietary protein quality measured by in vitro protein synthesis in rat skeletal muscle ribosomes. J Nutr. 1972 Dec;102(12):1555–1562. doi: 10.1093/jn/102.12.1555. [DOI] [PubMed] [Google Scholar]
  26. von der Decken A., Omstedt P. T. Effect of dietary protein and amino acid mixture on protein synthesis in vitro in rat liver. Nutr Metab. 1974;16(6):325–336. doi: 10.1159/000175506. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES