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eLife Assessment
The authors analyze a comprehensive cohort of human plasma samples to identify an extracellular 
vesicles protein signature for early diagnosis of pancreatic cancer. The application of liquid biopsies 
is valuable, and the work addresses a key clinical problem as pancreas cancer is often diagnosed 
in late stages. The strength of evidence is solid. Altogether, this work supports the potential use of 
extracellular vesicles in clinical settings, with promising value to scientists and clinicians.

Abstract Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diag-
nosis could increase survival rates and better assessment of metastatic disease could improve 
patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malig-
nancy. Analyzing circulating extracellular vesicles (cEVs) using ‘liquid biopsies’ offers an attractive 
approach to diagnose and monitor disease status. However, it is important to differentiate EV-as-
sociated proteins enriched in patients with pancreatic ductal adenocarcinoma (PDAC) from those 
with benign pancreatic diseases such as chronic pancreatitis and intraductal papillary mucinous 
neoplasm (IPMN). To meet this need, we combined the novel EVtrap method for highly efficient 
isolation of EVs from plasma and conducted proteomics analysis of samples from 124 individuals, 
including patients with PDAC, benign pancreatic diseases and controls. On average, 912 EV proteins 
were identified per 100 µL of plasma. EVs containing high levels of PDCD6IP, SERPINA12, and 
RUVBL2 were associated with PDAC compared to the benign diseases in both discovery and vali-
dation cohorts. EVs with PSMB4, RUVBL2, and ANKAR were associated with metastasis, and those 
with CRP, RALB, and CD55 correlated with poor clinical prognosis. Finally, we validated a seven EV 
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protein PDAC signature against a background of benign pancreatic diseases that yielded an 89% 
prediction accuracy for the diagnosis of PDAC. To our knowledge, our study represents the largest 
proteomics profiling of circulating EVs ever conducted in pancreatic cancer and provides a valuable 
open-source atlas to the scientific community with a comprehensive catalogue of novel cEVs that 
may assist in the development of biomarkers and improve the outcomes of patients with PDAC.

Introduction
Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis of all common tumors, with a 5-year 
survival of 10% (Siegel et al., 2020). With rising incidence, it is expected that PDAC will become the 
second leading cause of cancer-related deaths by 2030 (Rahib et al., 2014). A critical factor for this 
dismal development is the late diagnosis, with less than 20% of patients presenting with a potentially 
resectable and curable tumor (Kamisawa et al., 2016; Rahib et al., 2016; Bockorny et al., 2022). 
Earlier cancer diagnosis could increase the survival rates by an estimated fivefold, and more reliable 
and real-time assessment of treatment effects in patients with cancer could improve quality of life 
and reduce healthcare costs (Ghatnekar et al., 2013; Matsuno et al., 2004). Unfortunately, there are 
no credentialed serologic biomarkers with high enough performance to assist in the early detection 
of PDAC. The best-established biomarker for PDAC, carbohydrate antigen 19–9 (CA19-9), is fraught 
with poor sensitivity and specificity and is only used for monitoring disease on treatment or after 
surgical resection (Locker et al., 2006; Galli et al., 2013).

Extracellular vesicles (EVs), including exosomes and microvesicles, are nanosized particles released 
by most cell types and can be detected in the circulation (Chen et al., 2017). EVs play important roles 
in transmission of oncogenic and inflammatory signals (Costa-Silva et  al., 2015), communications 
between cells and their microenvironment (van Niel et al., 2022). In addition, exoDNA, exoRNA and 
protein profiles highly reflect parental cells, therefore offering an attractive strategy for diagnosing 
cancers non-invasively by analyzing EVs in the circulation (Costa-Silva et al., 2015; Melo et al., 2015). 
Previous studies employed EVs to discover biomarkers for PDAC (Melo et  al., 2015; Madhavan 
et al., 2015; Yang et al., 2017; Castillo et al., 2018); however, those discovery proteomics exper-
iments were carried out using cell lines or tumor tissue, which are not representative of the hetero-
geneity of human PDAC and are unable to recapitulate the systemic responses to cancer (Madhavan 
et al., 2015; Yang et al., 2017; Castillo et al., 2018). In addition, the EV biomarkers discovered in 
those studies have been compared only against healthy controls (Madhavan et al., 2015; Yang et al., 
2017; Castillo et al., 2018). It is unclear how they would perform in subjects with underlying benign 
diseases of the pancreas, which is highly desirable from the clinical standpoint as many patients with 
PDAC have underlying chronic pancreatitis and cysts.

To meet this need, we conducted a large EV proteomics study from peripheral blood across a 
range of patients with pancreatic cancer, benign pancreatic diseases such as chronic pancreatitis and 
intraductal papillary mucinous neoplasm (IPMN), and healthy controls. Circulating EV (cEV) proteins 
detected included those involved in metabolism and immune regulation, in addition to proteins 
involved in protein binding, exocytosis, endocytosis and regulation of cellular protein localization that 
have been identified in previous studies (Fahrmann et al., 2020; Hoshino et al., 2020). We subse-
quently discovered multiple biomarker candidates for cancer diagnosis and verified several of them 
in an independent cohort of patients with the potential to aid in diagnosing pancreatic cancer. In 
addition, we identified a set of cEV proteins associated with metastasis which could provide a valuable 
resource for future biomarker studies.

Results
Proteomics characterization of circulating EVs
In this study, we sought to identify proteins in extracellular vesicles in the blood that may be used as 
biomarkers for the diagnosis and prognosis of pancreatic cancer. With the approval of our institutional 
review board (DF/HCC IRB#17–640), we enrolled a total of 124 patients to the discovery cohort of this 
biomarker study (Methods and Supplementary file 1). Subjects in the pancreatic cancer group (N=93) 
had a mean age of 66.5 years (range, 37–91), and 48.4% were female. All subjects had biopsy-proven 
disease. Thirty subjects had early-stage disease (stages I-II) and 63 had advanced disease (stages 
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III-IV). Patients with benign pancreatic diseases included chronic pancreatitis (N=12) with a mean age 
of 57.5 years (range 37–78) and with 50% females, whereas IPMN included individuals with main duct 
and side branch IPMNs (N=8) with a mean age of 68.2 years (range 50–89) and with 87.5% being 
females. Subjects in the healthy control group (N=11) had a mean age of 53.4 years (range, 31–83) 
with 54.5% females (Supplementary file 1).

We employed the novel EVtrap method (Extracellular Vesicles Total Recovery And Purification) to 
capture EVs from plasma samples and overcome the traditional laborious techniques for EV isolation, 
which are not scalable for large clinical studies. As described in recent reports, EVtrap is a magnetic 
bead‐based isolation method that enables highly efficient capture of EVs from biofluids, confirmed by 
multiple common EV markers (Iliuk et al., 2020; Wu et al., 2018; Nunez Lopez et al., 2022; Hinzman 
et al., 2022a; Hinzman et al., 2022b). Previous analyses using electron microscopy and nanoparticle 
tracking also confirmed that the vast majority of particles isolated by EVtrap had diameters between 
100 and 200 nm, consistent with exosomes (Iliuk et al., 2020). In addition, EVtrap isolates demon-
strates higher abundance of CD9, a common exosome marker, as compared to isolates from other 
traditional EV isolation methods such as size exclusion chromatography and ultracentrifugation (Iliuk 
et al., 2020). Over 95% recovery yield can be achieved by EVtrap with less contamination from soluble 
proteins, a significant improvement over current commercially available methods as well as ultracen-
trifugation (Iliuk et al., 2020; Nunez Lopez et al., 2022; Shuen et al., 2022).

Following EV isolation, samples were digested in-solution and analyzed by liquid chromatography-
tandem mass spectrometry (nanoLC-MS/MS) on a high-resolution mass spectrometer (Q-Exactive 
HF-X). The workflow for cEVs isolation and enrichment and subsequent cEV mass spectrometry anal-
ysis is illustrated in Figure 1A.

First, to confirm that EVtrap can efficiently isolate extracellular vesicles from plasma, a test plasma 
sample was processed to remove platelets and other large particles and enriched for EVs using 
EVtrap beads (see Methods for details). Transmission electron microscopy (TEM) analysis of the EV 
pellet showed cup-shaped extracellular vesicles (exosomes and microvesicles; Figure  1—figure 

Discovery Cohort
N=124

EV Isolation

EVtrap

LC-MS/MS EV Proteome Profile

Controls

IPMN

CP

PDAC

Figure 1. Study design. The discovery cohort was comprised of 124 individuals, including pancreatic ductal adenocarcinoma (PDAC, N=93), chronic 
pancreatitis (CP, N=12), intraductal papillary mucinous neoplasm (IPMN, N=8) and healthy controls (N=11). Plasma samples were processed for EV 
isolation using EVtrap and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. EVtrap isolation of extracellular vesicles.

Figure supplement 2. EV proteomics analytical performance.
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supplement 1A), and nanoparticle tracking analysis (NTA) using ZetaView instrument (Particle Metrix) 
demonstrated that the isolated EVs were in the 100–200 nm diameter range, with a mean diameter of 
152 nm (Figure 1—figure supplement 1B). Second, to assess the technical reproducibility of the EV 
proteomics approach, the test plasma sample was processed in six replicates and Pearson correlation 
analysis revealed a very high correlation (r2 >0.97) between replicates (Figure 1—figure supplement 
2A, Supplementary file 2). These results provided the confidence to proceed with the analysis of our 
discovery set of plasma from 124 subjects. In this cohort, we identified 1708 unique proteins (Supple-
mentary file 3). The number of unique EV proteins detected per 100 µL of plasma sample varied from 
817 to 1128, with an average of 912 unique proteins per sample (Figure 1—figure supplement 2B). 
We did not observe differences between non-tumor and tumor samples regarding the overall number 
of EV proteins identified. Within the PDAC group, we did not observe significant differences in the 
average number of EV proteins detected for different disease stages. Collectively, these data demon-
strate high reproducibility of EV isolation and robust label-free MS quantification of cEVs.

Diseases of the pancreas express distinct circulating EV proteome 
compared to controls
Next, we aimed at identifying specific cEV proteins associated with clinical parameters with the poten-
tial to serve as diagnostic biomarkers. We first compared the proteomics profile of individuals with 
underlying pancreatic diseases (PDAC, chronic pancreatitis and IPMN) against healthy controls. We 
selected EV proteins expressed in at least 50% of subjects in the disease group with a fold change 
of expression ≥2 or≤2 compared to controls and p-value ≤0.01 after adjusting for multiple testing. 
A total of 207 proteins were identified that met the criteria, with the largest number of differentially 
expressed markers in PDAC (176), followed by chronic pancreatitis (55) and IPMN (3) (Supplemen-
tary file 4). Principal component analysis (PCA) of these markers showed control samples as a tight 
cluster segregated away from PDAC samples but closer to IPMN and chronic pancreatitis patients 
(Figure 2A).

Circulating EV proteome discriminates pancreatic cancer from benign 
pancreatic diseases
To further assess the potential of cEV proteins for cancer detection, we compared proteomic profiles 
of cEVs between patients with PDAC with those with underlying benign diseases of the pancreas 
(chronic pancreatitis and IPMN). We identified 182 differentially expressed proteins in malignant cases 
(92 over-expressed and 90 with reduced expression; Supplementary file 5). Several of those markers 
had remarkable overexpression in PDAC (greater than tenfold), including PDCD6IP, SERPINA12, 
RUVBL2, among others, as shown in the volcano plot (Figure 2B). Unsupervised clustering showed 
a clear separation between PDAC and benign pancreatic diseases. Individuals with IPMN were 
more closely related to controls, whereas chronic pancreatitis cases were more related to PDAC 
(Figure 2C). In addition, the PDAC cohort was separated into two subgroups: the first, enriched for 
early-stage tumors and more closely related to the other pancreatic diseases (chronic pancreatitis and 
IPMN); the second, enriched for advanced and metastatic cases with expression profiles further apart 
from early-stage cancer and pancreatic diseases (Figure 2C). We further noticed that some proteins 
such as PDCD6IP, SERPINA12, KRT20 showed statistically significant population-wise enrichment in 
pancreatic cancer compared to benign pancreatic diseases (Figure  2D, Figure  2—figure supple-
ment 1). Together, these data indicate the existence of EV markers that can separate controls, benign 
and malignant pancreatic diseases, as well as proteins that separate early versus late-stage PDAC, 
suggesting their potential to serve as diagnostic biomarkers.

Functional and systems biology of cEV proteome
To gain molecular insight into the functions of the 182 proteins differentially expressed in pancreatic 
cancer as compared to benign pancreatic diseases, we conducted pathway analysis using the Gene 
Ontology (GO) and REACTOME databases (Supplementary file 5). We identified protein modules in 
protein localization, biomolecule binding/docking, peptidase activities among changes enriched in 
PDAC compared to benign diseases (Figure 2—figure supplement 2). Interestingly, KRT20 (keratin 
20), a gastrointestinal epithelia-associated keratin, was increased in PDAC patient EVs, while keratins 
associated basal cells, KRT4, KRT15, and KRT3, were reduced. KRT20 overexpression is frequently 
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Figure 2. Identification of cEV proteins differentially expressed in disease groups. (A) Principal component analysis of cEV proteins differentially 
expressed in the plasma of patients with pancreatic diseases compared to controls. Each dot indicates one individual enrolled in the study: green, 
controls; blue, patients with intraductal papillary mucinous neoplasm (IPMN); purple, patients with chronic pancreatitis (CP); salmon, early stage (stages 
I and II) pancreatic ductal adenocarcinoma (PDAC); red, late stage (stages III and IV) PDAC. (B) Volcano plot of circulating EV proteins enriched in the 
plasma of patients with PDAC versus benign pancreatic diseases. X-axis, log base 2 of fold changes; Y-axis, negative of the log base 10 of p values. 
(C) Heatmap of cEV proteins differentially expressed in the plasma of patients with pancreatic diseases compared to controls. Designations of clinical 
parameters were indicated at the top of the heatmap. (D) Expression of enriched cEV proteins in patients with PDAC (N=93) versus benign pancreatic 
diseases (N=20). Each dot indicates the target protein signal from one patient. Y-axis, normalized log base 2 of protein signals detected by mass 
spectrometry; Error bars, min and max values; lines in boxes, median values. * p≤0.05, ** p≤0.01, *** p≤0.001, **** p≤0.0001.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Heatmap of abundance of 25 proteins enriched and 25 proteins reduced in EVs from PDAC patients compared to EVs from 
patients without cancer.

Figure supplement 2. Network analyses of cEV proteins differentially expressed in PDAC compared to benign pancreatic diseases.
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found in pancreatic tumor tissues and correlates with poor prognosis (Schmitz-Winnenthal et  al., 
2006), suggesting a biological basis for their high levels in the cEVs of PDAC patients.

Interestingly, proteins associated with immunological functions showed complex regulation with 
increased representation of leukocyte mediated immunity (GO:0002443), leukocyte degranulation 
(GO:0043299), myeloid leukocyte activation (GO:0002274), and decrease in Fc receptor signaling 
(GO: 0038093), regulation of complement activation (GO:0030449), and immune effector process 
(GO:0002252; Supplementary file 5). These data suggest that direct profiling of cEVs from patient 
plasma provided unique insights into systemic changes in immune biology during pancreatic cancer 
development, which is lacked in analysis restricted to tissue or cell models.

Circulating EV proteomics reveal markers associated with metastasis 
and worse prognosis
We then investigated whether cEV proteins can assist in the distinction of metastatic versus non-
metastatic pancreatic cancer. We compared the cEV proteome profiles of individuals with metastatic 
cancer to those without metastasis and identified 85 proteins differentially expressed between the 
two groups (Supplementary file 6). Supervised clustering between metastatic and non-metastatic 
diseases showed a clear separation with two distinct expression patterns (Figure 3A). In particular, 
PSMB4, RUVBL2, and ANKAR (Figure 3B) EV protein levels were increased in patients with metastatic 
disease, whereas RAP2B, SERPINA12, and IGLV4-69 abundance levels were decreased in the cEVs of 
patients with metastasis (Figure 3C). Together, these findings suggest the presence of a core set of 
cEV proteins with the potential to distinguish early versus metastatic pancreatic cancer.

We further analyzed whether the expression of certain cEV proteins had prognostic relevance in 
our cohort. We first classified individuals with PDAC as having low or high expression of any given 
markers based on each marker’s first and third quartile. Survival was estimated by the Kaplan Meier 
method. We identified that the cEV expression of RALB, CRP, and CD55 had a significant correlation 
with overall survival, with a trend for PDCD6IP (Figure 3D).

Validation of cEV markers using parallel reaction monitoring and 
identification an EV protein signature for pancreatic cancer diagnosis
Because pancreatic cancer is extremely heterogeneous, the chance of identifying a single biomarker 
with sufficient diagnostic performance is likely low. Instead, the identification of a panel of candidate 
markers may have enhanced diagnostic performance.

To identify a signature that shows the most discriminatory power between ‘benign diseases’ and 
‘PDAC,’ we employed a binary classification approach using Support Vector Machines (SVM). Classifi-
cation models, built based on a large number of proteins, contain irrelevant markers that can reduce 
the predictive accuracy. Hence, we implemented a consensus feature selection method based on two 
algorithms: one using recursive feature elimination (RFE) algorithm (SVM-RFE; Guyon et al., 2002) 
and second, RFE combined with a non-parametric Wilcox rank test (sigFeature; Das et al., 2020). The 
top 16 markers were selected whose classification performance can be tested in the independent vali-
dation cohort (Supplementary file 7). A summary of selection process is shown in Figure 4—figure 
supplement 1. The classification performance of these 16 markers, individual and in all combinations, 
were tested using 80% training data and evaluated in the remaining 20% test data. The quality of 
training was assessed using five repetitions of tenfold cross-validation. The optimal kernel parame-
ters were estimated by tuning over a wide range of values. Receiver operating characteristic (ROC) 
analysis was used as the metric to assess the performance of the classifier model. We found a set 
of seven  EV protein signature comprised of RUVBL2, PDCD6IP, ATP5F1, DLD, KRT20, CCT4, and 
SERPINAI2, that gave 100% accuracy when tested in the discovery cohort (Figure 4—figure supple-
ment 2, Figure 4—figure supplement 3). Recurrence of these putative markers in our dataset varied 
from 55% to 97%.

The model was further validated on an independent validation cohort whose proteome was 
obtained using an alternate technology, parallel reaction monitoring (PRM) mass spectrometry. The 
markers chosen for validation included 16 markers selected for SVM classification model and an addi-
tional 9 markers to result in top 25 markers that are significantly differentially expressed in the discovery 
cohort with a fold change increase in PDAC  ≥5.5  and p-value ≤0.01 (Methods, Figure  4—figure 
supplement 4). The independent validation cohort consisted of 36 new subjects (24 with PDAC, 6 
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Figure 3. Circulating EV proteomics reveal markers associated with metastasis and worse prognosis. (A) Heatmap showing EV proteins differentially 
expressed in the plasma of metastatic versus non-metastatic PDAC. Designations of clinical parameters are indicated at the top of the heatmap. (B) 
Expression patterns of cEV proteins associated with metastatic disease. Y-axis, normalized log base 2 of protein signals detected by mass spectrometry; 
N, non-metastatic PDAC group (N=46); M, metastatic PDAC group (N=47). Each dot indicated the target protein signal from one patient. Error bars, 
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with chronic pancreatitis, and 6 with IPMN; Supplementary file 9). A total of 10 proteins, including all 
7 signature proteins, showed a significant difference (p<0.05) in patients with PDAC as compared to 
benign pancreatic diseases (Figure 4A). The performance of individual validated markers according 
to the specific underlying disease in the validation cohort is presented in Figure 4—figure supple-
ment 3. The performance of seven EV protein signature was further tested using SVM model, in our 
independent validation cohort, yielding an 89% prediction accuracy (Figure 4B, Figure 4—figure 
supplement 4). As expected, we observed that no single marker achieved sufficiently high sensitivity 
and specificity as the combined model for the diagnosis of pancreatic cancer.

Discussion
Extracellular vesicles hold a great promise as a source of potential biomarkers, making them attrac-
tive candidates for liquid biopsy tests. Previously, we reported that organoid cultures of pancreatic 
cancer could serve as models to discover tissue-derived EV proteins with high specificity for PDAC, 
as opposed to chronic pancreatitis and other benign gastrointestinal diseases (Huang et al., 2020). 
A shortcoming of these tissue-based studies is the inability to discover markers associated to the 
systemic responses to cancer. Here, we performed a large-scale, comprehensive analysis of circulating 
EV proteomes directly from plasma samples of 124 patients, with subsequent validation in a separate 
cohort of 36 patients. To our knowledge, this represents the largest proteomics profiling dataset of 
circulating EVs conducted in pancreatic cancer to date. In this study, we identified and validated new 
EV markers from plasma that distinguish patients with pancreatic cancer from subjects with benign 
pancreatic diseases. Furthermore, we discovered several cEV proteins associated with metastatic 
disease and poor prognosis. In contrast to the prior studies of experimental cell models or tissues 
extracts that were examined only against healthy subjects (Madhavan et al., 2015; Yang et al., 2017; 
Castillo et al., 2018), we report the identification of EV proteins in plasma of patients with pancreatic 
cancer compared to patients with underlying pancreatic diseases, which is clinically relevant as many 
patients with pancreatic cancer have underlying chronic inflammation and premalignant cystic lesions.

In addition, our study demonstrated the feasibility of using the novel EVtrap method Iliuk et al., 
2020; Wu et al., 2018 for discovery of hundreds of EV proteins directly from a small volume (100 µL) 
of plasma samples. This methodological advance can be adopted for biomarker discovery in other 
cancer types. Other workflows traditionally employed for EV isolation from blood samples require 
laborious techniques including lengthy ultracentrifugation steps which are unsuitable for large-scale 
studies (LeBleu and Kalluri, 2020).

We identified several EV proteins as significantly associated with metastasis or survival. For instance, 
PSMB4 and RUVBL2 levels were increased in cEVs of patients with metastatic PDAC. Notably, PSMB4 
(proteasome subunit beta type-4), a protein of the ubiquitin-proteasome degradation pathway, has 
been identified as the first proteasomal subunit with oncogenic properties and associated to poor 
prognosis in several tumors including melanoma, breast, and ovarian cancers (Liu et al., 2016; Zhang 
et al., 2017; Zheng et al., 2015; Lee et al., 2014). As expected, the EV proteomic profiles of PDAC 
patients exhibited significant heterogeneity. While the above-mentioned markers exhibited strong 
association with disease states at population levels, their abundances in individual patients varied 
significantly. Those observations highlight the need to develop multi-protein panels for pancreatic 
cancer diagnosis and prognosis.

We also discovered RALB, CRP, and CD55 expression on EVs to have a significant correlation 
with poor survival, while PDCD6IP expression was associated with improved outcomes. Interestingly, 
PDCD6IP (programmed cell death 6-interacting protein), was also identified as a PDAC-enriched 
protein in the tissue-based proteomics studies from Le Large et al., 2020 and Hoshino et al., 2020. 
In line with our findings, its tissue expression in liver metastasis of pancreatic cancer has been found 
to also correlate with improved prognosis in patients with PDAC in the study of Law et al., 2020. 
Collectively, these data suggest that some tissue-specific proteins can be isolated from circulating EVs 

min and max values; lines in boxes, median values. * p≤0.05, ** p≤0.01, *** p≤0.001, **** p≤0.0001. (C) As is (B), except for cEV markers with increased 
expression in non-metastatic PDAC. (D) Correlation of cEV marker expression with survival. Kaplan–Meier curves and log-rank test p values of 
representative survival cEV markers quantified in the discovery cohort.

Figure 3 continued

https://doi.org/10.7554/eLife.87369
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Figure 4. Validation of cEV markers and identification of seven EV protein signature for PDAC diagnosis. (A) 
Differences of cEV protein abundances between patients with PDAC (n=24) and benign pancreatic diseases 
(chronic pancreatitis and IPMN) (n=12). x axis, minus log p values of protein abundance differences between PDAC 
and benign groups; y axis, average fold changes of proteins in PDAC group compared to benign group. Size 
of bubbles indicate average protein abundances in PDAC group. Pink color, proteins that had at least twofold 
enrichment in PDAC group (p<0.05). (B) ROC curves were calculated for individual cEV markers as well as for the 
seven EV protein PDAC signature combination to determine optimum diagnostic performance.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Summary of selection process to develop EV signature for pancreatic cancer diagnosis.

Figure 4 continued on next page
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and their quantifiable levels in the blood may have the potential to serve as diagnostic or prognostic 
biomarkers in pancreatic cancer.

In our validation studies, all seven putative markers identified from the model were significantly 
enriched in the plasma of PDAC patients. Based on the top seven markers, we derived a seven EV 
protein panel that yielded an 89% prediction accuracy for diagnosing pancreatic cancer. A recent 
modeling study showed that a new diagnostic assay for PDAC would have to perform with a minimum 
sensitivity of 88% and a specificity of 85% to reduce healthcare expenditure and prolong survival 
(Ghatnekar et al., 2013). Serum CA19-9, the best-established blood test for PDAC, has a pooled 
sensitivity of 75.4% and a specificity of 77.6% (Zhang et  al., 2015). It commonly rises late in the 
disease and may be elevated in nonmalignant conditions such as biliary obstruction and pancreatitis, 
making it unsuitable as a diagnostic biomarker for PDAC (Duffy et al., 2010). As such, our seven EV 
protein signature with 89% prediction accuracy serves as a proof-of-concept and has the potential to 
facilitate the further development of biomarker tests for pancreatic cancer. We anticipate that for clin-
ical use application, an even higher diagnostic performance is needed. Future studies are warranted 
to investigate if combining our validated cEV proteins with other biomarkers such as cell free DNA, 
serum proteins or metabolites, as a multi-analyte biomarker assay, would yield higher accuracy in 
diagnosing pancreatic cancer.

While our work involved a large cohort with 160 patients, the single-center nature is an inherent 
limitation of our study. Also, it would be ideal to perform validation with a larger cohort of controls to 
achieve greater statistical power. To balance this limitation, we increased the rigor of our validation by 
selecting controls with underlying benign diseases of pancreas as opposed to healthy volunteers, and 
an alternate quantitative technology for measuring protein abundance (Parallel Reaction Monitoring 
Mass Spectrometry) instead of MS-LC. While this approach increased the generalizability, it marginally 
reduced model prediction. Thus, the performance of our seven EV protein PDAC panel should be 
cross-validated in larger and multicenter populations. In addition, in this work we only used EVtrap as 
EV isolation method and mass spectrometry for protein quantification, and it is possible that there was 
some degree of heterogeneity in the extracellular vesicles analyzed. The clinical impact of biomarkers 
identified in our study will need to be cross-validated using other methods.

With no major treatment breakthrough for pancreatic cancer in the last decade, every effort should 
be made to diagnose this deadly cancer at earlier stages and to discover new proteins involved 
in tumorigenesis. Our study provides a valuable open resource to the scientific community with a 
comprehensive catalog of novel proteins packaged inside circulating EVs that may assist in the devel-
opment of novel biomarkers and improve the outcomes of patients with pancreatic cancer.

Methods
Study design and patient demographics
We conducted this study at Beth Israel Deaconess Medical Center with the approval of the Harvard 
Cancer Center Institutional Review Board (IRB#17–640). All subjects provided written informed 
consent. Clinical data and blood samples were prospectively collected from 2017 to 2019 from 
patients with pancreatic cancer, chronic pancreatitis, intraductal papillary mucinous neoplasms (IPMN), 
and age-matched controls. A total of 124 patients, including PDAC (N=93), chronic pancreatitis of 
different etiologies (N=12), IPMN (N=8), and controls (N=11), were included in the discovery cohort. 
PDAC diagnosis was established by histology or cytology, and staging was performed according to 
the American Joint Committee on Cancer guidelines (8th Edition 2016; Amin et al., 2017; Supple-
mentary file 1). For the independent validation cohort, a total of 36 patients were enrolled, including 
PDAC (N=24), IPMN (N=6), and chronic pancreatitis (N=6; Supplementary file 9).

Figure supplement 2. Diagnostic performance of the seven EV protein signature compared to performance of 
each of the seven individual marker in patients with benign pancreatic diseases (N=12) or PDAC (N=24).

Figure supplement 3. Validation of individual cEV proteins in an independent cohort of patients.

Figure supplement 4. Performance of PDAC EV signature in both discovery (benign =20, PDAC=93) and 
validation (benign =12, PDAC=24) cohorts.

Figure 4 continued

https://doi.org/10.7554/eLife.87369
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Plasma sample collection and processing
All blood samples were collected and processed following the same standard operating procedure 
optimized for EV analysis and included the following steps: (i) whole blood was collected into one 
10 ml yellow-top tube containing acid citrate dextrose; (ii) blood was mixed by gently inverting the 
tube five times; (iii) vacutainer tubes were stored upright at room temperature (RT); (iv) samples were 
centrifuged at 1300 × g for 15 min in RT; (v) plasma was removed from the top carefully avoiding 
cell pellet; (vi) repeat centrifugation of plasma at 2500 × g for 15 min in RT; (vii) again, plasma was 
removed from the top carefully avoiding cell pellet; (viii) third centrifugation at 2500 × g for 15 min in 
RT, then samples were aliquoted to be stored at –80 °C.

Extracellular vesicle isolation from plasma
We employed EVtrap for EV isolation from plasma samples (Iliuk et al., 2020). EVtrap beads were 
provided by Tymora Analytical (West Lafayette, IN) as a suspension in water and were used as previ-
ously described in more details (Iliuk et al., 2020; Wu et al., 2018). Briefly, 100 μL plasma samples 
were diluted 20 times in the diluent buffer, the EVtrap beads were added to the samples in a 1:2 v/v 
ratio, and the samples were incubated by end-over-end rotation for 30 min according to the manu-
facturer’s instructions. After supernatant removal using a magnetic separator rack, the beads were 
washed with PBS, and the EVs were eluted by a 10 min incubation with 200 mM triethylamine (TEA, 
Millipore-Sigma). The samples were fully dried in a vacuum centrifuge.

Preparation of EV samples
The isolated and dried EV samples were lysed to extract proteins using the phase-transfer surfactant 
(PTS) aided procedure. The proteins were reduced and alkylated by incubation in 10 mM TCEP and 
40 mM CAA for 10 min at 95 °C. The samples were diluted fivefold with 50 mM triethylammonium 
bicarbonate and digested with Lys-C (Wako) at 1:100 (wt/wt) enzyme-to-protein ratio for 3 hr at 37 °C. 
Trypsin was added to a final 1:50 (wt/wt) enzyme-to-protein ratio for overnight digestion at 37 °C. 
To remove the PTS surfactants from the samples, the samples were acidified with trifluoroacetic acid 
(TFA) to a final concentration of 1% TFA, and ethyl acetate solution was added at a 1:1 ratio. The 
mixture was vortexed for 2 min and then centrifuged at 16,000 × g for 2 min to obtain aqueous and 
organic phases. The organic phase (top layer) was removed, and the aqueous phase was collected. 
This step was repeated once more. The samples were dried in a vacuum centrifuge and desalted 
using Top-Tip C18 tips (Glygen) according to the manufacturer’s instructions. The samples were dried 
completely in a vacuum centrifuge and stored at –80 °C.

LC−MS analysis of plasma EV proteome
Approximate 1 μg of each dried peptide sample was dissolved in 10.5 μL of 0.05% trifluoroacetic 
acid with 3% (vol/vol) acetonitrile containing spiked-in indexed Retention Time Standard containing 
11 artificially synthetic peptides (Biognosys). The spiked-in 11-peptides standard mixture was used 
to account for any variation in retention times and to normalize abundance levels among samples. 
10 μL of each sample was injected into an Ultimate 3000 nano UHPLC system (Thermo Fisher Scien-
tific). Peptides were captured on a 2 cm Acclaim PepMap trap column and separated on a heated 
50 cm Acclaim PepMap column (Thermo Fisher Scientific) containing C18 resin. The mobile phase 
buffer consisted of 0.1% formic acid in ultrapure water (buffer A) with an eluting buffer of 0.1% formic 
acid in 80% (vol/vol) acetonitrile (buffer B) run with a linear 60 min gradient of 6–30% buffer B at a 
flow rate of 300 nL/min. The UHPLC was coupled online with a Q-Exactive HF-X mass spectrometer 
(Thermo Fisher Scientific). The mass spectrometer was operated in the data-dependent mode, in 
which a full-scan MS (from m/z 375–1500 with the resolution of 60,000) was followed by MS/MS of 
the 15 most intense ions (30,000 resolution; normalized collision energy - 28%; automatic gain control 
target (AGC) - 2E4, maximum injection time - 200ms; 60 sec exclusion).

EV proteome data processing
The raw files were searched directly against the human Swiss-Prot database with no redundant entries 
using Byonic (Protein Metrics) and Sequest search engines loaded into Proteome Discoverer 2.3 soft-
ware (Thermo Fisher Scientific). MS1 precursor mass tolerance was set at 10 ppm, and MS2 tolerance 
was set at 20ppm. Search criteria included a static carbamidomethylation of cysteines (+57.0214 Da) 

https://doi.org/10.7554/eLife.87369
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and variable modifications of oxidation (+15.9949  Da) on methionine residues and acetylation 
(+42.011 Da) at the N terminus of proteins. The search was performed with full trypsin/P digestion and 
allowed a maximum of two missed cleavages on the peptides analyzed from the sequence database. 
The false-discovery rates of proteins and peptides were set at 0.01. All protein and peptide identifi-
cations were grouped, and any redundant entries were removed. Only unique peptides and unique 
master proteins were reported.

All data were quantified using the label-free quantitation node of Precursor Ions Quantifier through 
the Proteome Discoverer v2.3 (Thermo Fisher Scientific). For the quantification of proteomic data, the 
intensities of peptides were extracted with initial precursor mass tolerance set at 10 ppm, a minimum 
number of isotope peaks as 2, maximum ΔRT of isotope pattern multiplets – 0.2 min, PSM confidence 
FDR of 0.01, with hypothesis test of ANOVA, maximum RT shift of 5 min, pairwise ratio-based ratio 
calculation, and 100 as the maximum allowed fold change. The abundance levels of all peptides 
and proteins were normalized to the spiked-in internal iRT standard. For calculations of fold-change 
between the groups of proteins, total protein abundance values were added together, and the ratios 
of these sums were used to compare proteins within different samples.

The abundances of EV proteins were normalized using indexed retention time (iRT) in Proteome 
Discoverer (Thermo Fisher Scientific). Abundances were categorized into four different categories: 
Control, Chronic Pancreatitis, IPMN, and PDAC. Protein abundances were then log2 transformed and 
quantile normalized for further analysis.

A non-parametric Wilcox Rank Sum test was performed to test the null hypothesis that the distri-
butions of two groups of the patient population are the same, and the fold change and p-values for 
each protein were estimated for the following comparisons: IPMN vs. Control, CP vs. Control, PDAC 
vs. Control, Benign Pancreatic Diseases (CP, IPMN) vs. PDAC. Multiple testing correction was done 
using Benjamini-Hochberg method to control for the false discovery rate (Benjamini and Hochberg, 
1995). Volcano plots were created using those p values and fold change. Heatmaps visualization and 
clustering of statistically significant proteins, with adjusted p-value ≤0.05 and absolute fold change ≥2, 
were created in R using the pheatmap package. Euclidean distance and average cluster method were 
used. The values were row-scaled for normalization. Both rows and columns were allowed to cluster.

Pathways enrichment and protein network analysis
Pathway enrichment analysis was performed on statistically significant genes using g:Profiler (Raud-
vere et al., 2019), a web-based tool that searches for pathways whose genes are significantly enriched 
in our dataset compared to a collection of genes representing Gene Ontology (GO) terms and Reac-
tome pathways. We further used EnrichmentMap (Merico et al., 2010), a Cytoscape, v3.8.2 (Shannon 
et al., 2003) application to create a visual network of connected pathways that helps to identify rele-
vant pathways and theme (Reimand et al., 2019). A Protein-Protein interaction network was gener-
ated using a stringApp, a Cytoscape app. This application allows to import STRING networks into 
Cytoscape and enables to perform complex network analysis and visualization of networks (Szklarczyk 
et al., 2019).

Parallel reaction monitoring and data analysis
Parallel reaction monitoring mass spectrometry (PRM-MS) was employed for validation experiments. 
Twenty-five cEV markers were selected for validation based on fold change increase ≥5.5, p-value 
≤0.01, and technical aspects (number of unique peptides and coverage; Supplementary file 8). Thir-
ty-six plasma samples from a new cohort were used for the validation (24 PDAC, 6 IPMN and 6 chronic 
pancreatitis samples). The EVs were isolated from plasma and the proteins processed as described 
before. Peptide samples were dissolved in 10.8 μL 0.05% TFA & 2% ACN, and 10 μL injected into the 
UHPLC coupled with a Q-Exactive HF-X mass spectrometer (Thermo Fisher Scientific). The mobile 
phase buffer consisted of 0.1% formic acid in HPLC grade water (buffer A) with an eluting buffer 
containing 0.1% formic acid in 80% (vol/vol) acetonitrile (buffer B) run with a linear 60 min gradient of 
5–35% buffer B at a flow rate of 300 nL/min. Each sample was analyzed under PRM with an isolation 
width of ±0.8 Th. In these PRM experiments, an MS2 level at 30,000 resolution relative to m/z 200 
(AGC target 2E5, 200ms maximum injection time) was run as triggered by a scheduled inclusion list. 
Higher-energy collisional dissociation was used with 28 eV normalized collision energy. PRM data were 
manually curated within Skyline-daily (64-bit) 20.2.1.404 (32d27b598) (MacLean et al., 2010).

https://doi.org/10.7554/eLife.87369
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Identification of EV signature for pancreatic cancer diagnosis
To identify a biomarker signature demonstrating the highest discriminatory power between ‘benign’ 
and ‘PDAC’ diseases, we adopted a binary classification approach utilizing Support Vector Machines 
(SVM). Recognizing that classification models built on an extensive array of proteins may incorpo-
rate irrelevant markers, which can diminish the predictive accuracy, we started with a list of signifi-
cantly differentially expressed set of 91 proteins between ‘benign’ and ‘PDAC’ patients and further 
employed a consensus feature selection strategy using two algorithms, ‘Recursive Feature Elimina-
tion’ (SVM-RFE), and ‘Integrated RFE with a non-parametric Wilcox rank test (sigFeature). Subse-
quently, we selected the top 16 markers, the classification performance of which was subjected 
to testing in an independent validation cohort. The classification performance evaluation of these 
markers, both individually and in various combinations, involved a rigorous assessment utilizing 80% 
of the data for training and the remaining 20% for internal-validation. To ensure the quality of the 
training process, we employed five repetitions of a tenfold cross-validation approach. The optimal 
kernel parameters were determined through tuning across a broad range of values. Receiver oper-
ating characteristic (ROC) analysis served as the metric to gauge the performance of the classifier 
model. All algorithms for identifying the EV signature predictive of pancreatic cancer diagnosis were 
implemented in R. We used Support Vector Machine (SVM) using CRAN package, e107 (Meyer 
et  al., 2015). Ranking of genes was achieved using packages ‘sigFeature’ and ‘SVM-RFE’. An R 
package, ‘pROC’ (Robin et al., 2011) was used to build a receiver operating characteristic curve 
(ROC) and to calculate the AUC.

Survival analysis
The prognostic value of every protein was estimated by dividing patients into two groups: group 
1, patients with expression below the 25th percentile, and group 2, patients with expression values 
greater than 75th percentile. The Kaplan-Meier estimator was used to estimate the survival function 
associating survival with EV protein expression, and the log-rank test was used to compare survival 
curves of two groups. ‘survival’ R package was used for the analysis.

Statistical analysis
All statistical analyses were performed using the statistical software R. Statistical significance was 
calculated by two-tailed Student’s t-test or Wilcoxon rank-sum test unless specified otherwise in the 
figure legend. Data are expressed as mean ± SEM. A p-value <0.05 in biological experiments or FDR 
<0.05 after multiple comparison corrections in proteomics data analysis was considered statistically 
significant.

Acknowledgements
We thank the patients and their families for their participation in this study. BB was supported in part 
through UM1 (CA186709-06). SDF was supported in part through the Barbara Janson and Arthur 
Hilsinger Pancreatology Fellowship. Institutional startup funds and UO1 (CA224193) to SKM, and 
seed grant from Hirschberg Foundation for Pancreatic Cancer Research to LH. We thank members of 
the Muthuswamy laboratory for their critical input throughout the development of this project.

Additional information

Competing interests
Bruno Bockorny, Lakshmi Muthuswamy, Ling Huang, Weiguo Andy Tao, Manuel Hildago, Anton Iliuk, 
Senthil K Muthuswamy: Inventor on a pending patent application (US20220291222A1) for pancreatic 
cancer detection, based on data generated from this publication. Joseph E Grossman: Employee of 
Agenus Inc. Supraja Narasimhan: Employee of Deciphera Pharmaceuticals. The other authors declare 
that no competing interests exist.

https://doi.org/10.7554/eLife.87369


 Tools and resources﻿﻿﻿﻿﻿﻿ Cancer Biology

Bockorny, Muthuswamy, Huang et al. eLife 2023;12:RP87369. DOI: https://doi.org/10.7554/eLife.87369 � 14 of 17

Funding

Funder Grant reference number Author

UM1 CA186709-06 Bruno Bockorny

Institutional startup funds, 
Beth Israel Deaconess 
Medical Center

Senthil K Muthuswamy

Hirshberg Foundation Ling Huang

National Institutes of 
Health

UO1 (CA224193) Senthil K Muthuswamy

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Bruno Bockorny, Conceptualization, Resources, Data curation, Formal analysis, Funding acquisition, 
Validation, Investigation, Visualization, Methodology, Writing – original draft, Project administration, 
Writing – review and editing; Lakshmi Muthuswamy, Data curation, Software, Formal analysis, Investi-
gation, Visualization, Methodology, Writing – original draft, Writing – review and editing; Ling Huang, 
Data curation, Formal analysis, Investigation, Visualization, Methodology, Writing – original draft, 
Writing – review and editing; Marco Hadisurya, Data curation, Formal analysis, Writing – review and 
editing; Christine Maria Lim, Data curation, Investigation, Visualization, Writing – review and editing; 
Leo L Tsai, Ritu R Gill, Jesse L Wei, Joseph E Grossman, Robert J Besaw, Mandeep S Sawhney, Steven 
D Freedman, Resources, Investigation, Writing – review and editing; Andrea J Bullock, Resources; 
Supraja Narasimhan, Sofia Perea, Project administration, Writing – review and editing; Weiguo Andy 
Tao, Resources, Investigation, Methodology, Writing – review and editing; Manuel Hildago, Resources, 
Supervision, Investigation, Writing – original draft, Writing – review and editing; Anton Iliuk, Conceptu-
alization, Resources, Data curation, Formal analysis, Supervision, Investigation, Methodology, Writing 
– original draft, Writing – review and editing; Senthil K Muthuswamy, Conceptualization, Resources, 
Supervision, Investigation, Writing – original draft, Writing – review and editing

Author ORCIDs
Bruno Bockorny ‍ ‍ https://orcid.org/0000-0002-9162-1560
Ling Huang ‍ ‍ https://orcid.org/0000-0001-8855-788X
Weiguo Andy Tao ‍ ‍ https://orcid.org/0000-0002-5535-5517
Anton Iliuk ‍ ‍ https://orcid.org/0000-0002-2914-1363
Senthil K Muthuswamy ‍ ‍ https://orcid.org/0000-0001-6564-9634

Ethics
We conducted this study at Beth Israel Deaconess Medical Center with the approval of the Harvard 
Cancer Center Institutional Review Board. All subjects provided written informed consent (DF/HCC 
IRB#17-640).

Peer review material
Reviewer #1 (Public review): https://doi.org/10.7554/eLife.87369.3.sa1
Reviewer #2 (Public review): https://doi.org/10.7554/eLife.87369.3.sa2
Author response https://doi.org/10.7554/eLife.87369.3.sa3

Additional files
Supplementary files
•  Supplementary file 1. Baseline characteristics of patients enrolled on the discovery cohort.

•  Supplementary file 2. Plasma EV analysis reproducibility.

•  Supplementary file 3. LC-MS results of EV analysis of plasma from patients with PDAC (PA), IPMN, 
Chronic Pancreatitis (CP) and Control individuals.

•  Supplementary file 4. List of EV proteins that met the eligibility criteria for principal component 
analysis.

https://doi.org/10.7554/eLife.87369
https://orcid.org/0000-0002-9162-1560
https://orcid.org/0000-0001-8855-788X
https://orcid.org/0000-0002-5535-5517
https://orcid.org/0000-0002-2914-1363
https://orcid.org/0000-0001-6564-9634
https://doi.org/10.7554/eLife.87369.3.sa1
https://doi.org/10.7554/eLife.87369.3.sa2
https://doi.org/10.7554/eLife.87369.3.sa3


 Tools and resources﻿﻿﻿﻿﻿﻿ Cancer Biology

Bockorny, Muthuswamy, Huang et al. eLife 2023;12:RP87369. DOI: https://doi.org/10.7554/eLife.87369 � 15 of 17

•  Supplementary file 5. List of 182 proteins differentially expressed in PDAC compared to benign 
diseases.

•  Supplementary file 6. List of EV proteins that are significantly altered in patients with metastatic 
versus non-metastatic diseases.

•  Supplementary file 7. Table A: Support Vector Machine Prediction model output for the 16 
individual markers included in the in External Validation Cohorts. Table B: The contingency table 
for 7-biomarker signature, offering insights into model accuracy for both the Internal-Discovery and 
External Validation cohorts.

•  Supplementary file 8. List of 25 cEV proteins that met the eligibility criteria for validation studies.

•  Supplementary file 9. Baseline characteristics of patients enrolled in the validation cohort.

•  MDAR checklist 

Data availability
All identified proteins are included in Supplementary files 1–9.

References
Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR, 

Winchester DP. 2017. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a 
population-based to a more “personalized” approach to cancer staging. CA 67:93–99. DOI: https://doi.org/10.​
3322/caac.21388, PMID: 28094848

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: A practical and powerful approach to 
multiple testing. Journal of the Royal Statistical Society Series B 57:289–300. DOI: https://doi.org/10.1111/j.​
2517-6161.1995.tb02031.x

Bockorny B, Grossman JE, Hidalgo M. 2022. Facts and hopes in immunotherapy of pancreatic cancer. Clinical 
Cancer Research 28:4606–4617. DOI: https://doi.org/10.1158/1078-0432.CCR-21-3452, PMID: 35775964

Castillo J, Bernard V, San Lucas FA, Allenson K, Capello M, Kim DU, Gascoyne P, Mulu FC, Stephens BM, 
Huang J, Wang H, Momin AA, Jacamo RO, Katz M, Wolff R, Javle M, Varadhachary G, Wistuba II, Hanash S, 
Maitra A, et al. 2018. Surfaceome profiling enables isolation of cancer-specific exosomal cargo in liquid 
biopsies from pancreatic cancer patients. Annals of Oncology 29:223–229. DOI: https://doi.org/10.1093/​
annonc/mdx542, PMID: 29045505

Chen IH, Xue L, Hsu CC, Paez JSP, Pan L, Andaluz H, Wendt MK, Iliuk AB, Zhu JK, Tao WA. 2017. 
Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. PNAS 114:3175–3180. DOI: 
https://doi.org/10.1073/pnas.1618088114, PMID: 28270605

Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, Becker A, Hoshino A, Mark MT, Molina H, 
Xiang J, Zhang T, Theilen T-M, García-Santos G, Williams C, Ararso Y, Huang Y, Rodrigues G, Shen T-L, 
Labori KJ, et al. 2015. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nature 
Cell Biology 17:816–826. DOI: https://doi.org/10.1038/ncb3169, PMID: 25985394

Das P, Roychowdhury A, Das S, Roychoudhury S, Tripathy S. 2020. sigFeature: novel significant feature selection 
method for classification of gene expression data using support vector machine and t statistic. Frontiers in 
Genetics 11:247. DOI: https://doi.org/10.3389/fgene.2020.00247, PMID: 32346383

Duffy MJ, Sturgeon C, Lamerz R, Haglund C, Holubec VL, Klapdor R, Nicolini A, Topolcan O, Heinemann V. 
2010. Tumor markers in pancreatic cancer: a European Group on Tumor Markers (EGTM) status report. Annals 
of Oncology 21:441–447. DOI: https://doi.org/10.1093/annonc/mdp332, PMID: 19690057

Fahrmann JF, Mao X, Irajizad E, Katayama H, Capello M, Tanaka I, Kato T, Wistuba II, Maitra A, Ostrin EJ, 
Hanash SM, Vykoukal J. 2020. Plasma-derived extracellular vesicles convey protein signatures that reflect 
pathophysiology in lung and pancreatic adenocarcinomas. Cancers 12:1147. DOI: https://doi.org/10.3390/​
cancers12051147, PMID: 32370304

Galli C, Basso D, Plebani M. 2013. CA 19-9: handle with care. Clinical Chemistry and Laboratory Medicine 
51:1369–1383. DOI: https://doi.org/10.1515/cclm-2012-0744, PMID: 23370912

Ghatnekar O, Andersson R, Svensson M, Persson U, Ringdahl U, Zeilon P, Borrebaeck CAK. 2013. Modelling the 
benefits of early diagnosis of pancreatic cancer using a biomarker signature. International Journal of Cancer 
133:2392–2397. DOI: https://doi.org/10.1002/ijc.28256, PMID: 23649606

Guyon I, Weston J, Barnhill S, Vapnik V. 2002. Gene selection for cancer classification using support vector 
machines. Machine Learning 46:389–422. DOI: https://doi.org/10.1023/A:1012487302797

Hinzman CP, Jayatilake M, Bansal S, Fish BL, Li Y, Zhang Y, Bansal S, Girgis M, Iliuk A, Xu X, Fernandez JA, 
Griffin JH, Ballew EA, Unger K, Boerma M, Medhora M, Cheema AK. 2022a. An optimized method for the 
isolation of urinary extracellular vesicles for molecular phenotyping: detection of biomarkers for radiation 
exposure. Journal of Translational Medicine 20:199. DOI: https://doi.org/10.1186/s12967-022-03414-7, PMID: 
35538547

Hinzman CP, Singh B, Bansal S, Li Y, Iliuk A, Girgis M, Herremans KM, Trevino JG, Singh VK, Banerjee PP, 
Cheema AK. 2022b. A multi-omics approach identifies pancreatic cancer cell extracellular vesicles as mediators 
of the unfolded protein response in normal pancreatic epithelial cells. Journal of Extracellular Vesicles 
11:e12232. DOI: https://doi.org/10.1002/jev2.12232, PMID: 35656858

https://doi.org/10.7554/eLife.87369
https://doi.org/10.3322/caac.21388
https://doi.org/10.3322/caac.21388
http://www.ncbi.nlm.nih.gov/pubmed/28094848
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1158/1078-0432.CCR-21-3452
http://www.ncbi.nlm.nih.gov/pubmed/35775964
https://doi.org/10.1093/annonc/mdx542
https://doi.org/10.1093/annonc/mdx542
http://www.ncbi.nlm.nih.gov/pubmed/29045505
https://doi.org/10.1073/pnas.1618088114
http://www.ncbi.nlm.nih.gov/pubmed/28270605
https://doi.org/10.1038/ncb3169
http://www.ncbi.nlm.nih.gov/pubmed/25985394
https://doi.org/10.3389/fgene.2020.00247
http://www.ncbi.nlm.nih.gov/pubmed/32346383
https://doi.org/10.1093/annonc/mdp332
http://www.ncbi.nlm.nih.gov/pubmed/19690057
https://doi.org/10.3390/cancers12051147
https://doi.org/10.3390/cancers12051147
http://www.ncbi.nlm.nih.gov/pubmed/32370304
https://doi.org/10.1515/cclm-2012-0744
http://www.ncbi.nlm.nih.gov/pubmed/23370912
https://doi.org/10.1002/ijc.28256
http://www.ncbi.nlm.nih.gov/pubmed/23649606
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1186/s12967-022-03414-7
http://www.ncbi.nlm.nih.gov/pubmed/35538547
https://doi.org/10.1002/jev2.12232
http://www.ncbi.nlm.nih.gov/pubmed/35656858


 Tools and resources﻿﻿﻿﻿﻿﻿ Cancer Biology

Bockorny, Muthuswamy, Huang et al. eLife 2023;12:RP87369. DOI: https://doi.org/10.7554/eLife.87369 � 16 of 17

Hoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi M, Hernandez J, Zambirinis CP, Rodrigues G, Molina H, Heissel S, 
Mark MT, Steiner L, Benito-Martin A, Lucotti S, Di Giannatale A, Offer K, Nakajima M, Williams C, Nogués L, 
Pelissier Vatter FA, et al. 2020. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell 
182:1044–1061. DOI: https://doi.org/10.1016/j.cell.2020.07.009, PMID: 32795414

Huang L, Bockorny B, Paul I, Akshinthala D, Frappart P-O, Gandarilla O, Bose A, Sanchez-Gonzalez V, Rouse EE, 
Lehoux SD, Pandell N, Lim CM, Clohessy JG, Grossman J, Gonzalez R, Del Pino SP, Daaboul G, Sawhney MS, 
Freedman SD, Kleger A, et al. 2020. PDX-derived organoids model in vivo drug response and secrete 
biomarkers. JCI Insight 5:e135544. DOI: https://doi.org/10.1172/jci.insight.135544, PMID: 32990680

Iliuk A, Wu X, Li L, Sun J, Hadisurya M, Boris RS, Tao WA. 2020. Plasma-derived extracellular vesicle 
phosphoproteomics through chemical affinity purification. Journal of Proteome Research 19:2563–2574. DOI: 
https://doi.org/10.1021/acs.jproteome.0c00151, PMID: 32396726

Kamisawa T, Wood LD, Itoi T, Takaori K. 2016. Pancreatic cancer. Lancet 388:73–85. DOI: https://doi.org/10.​
1016/S0140-6736(16)00141-0, PMID: 26830752

Law HC-H, Lagundžin D, Clement EJ, Qiao F, Wagner ZS, Krieger KL, Costanzo-Garvey D, Caffrey TC, Grem JL, 
DiMaio DJ, Grandgenett PM, Cook LM, Fisher KW, Yu F, Hollingsworth MA, Woods NT. 2020. The proteomic 
landscape of pancreatic ductal adenocarcinoma liver metastases identifies molecular subtypes and associations 
with clinical response. Clinical Cancer Research 26:1065–1076. DOI: https://doi.org/10.1158/1078-0432.​
CCR-19-1496, PMID: 31848187

LeBleu VS, Kalluri R. 2020. Exosomes as a multicomponent biomarker platform in cancer. Trends in Cancer 
6:767–774. DOI: https://doi.org/10.1016/j.trecan.2020.03.007, PMID: 32307267

Lee GY, Haverty PM, Li L, Kljavin NM, Bourgon R, Lee J, Stern H, Modrusan Z, Seshagiri S, Zhang Z, Davis D, 
Stokoe D, Settleman J, de Sauvage FJ, Neve RM. 2014. Comparative oncogenomics identifies PSMB4 and 
SHMT2 as potential cancer driver genes. Cancer Research 74:3114–3126. DOI: https://doi.org/10.1158/0008-​
5472.CAN-13-2683, PMID: 24755469

Le Large TYS, Mantini G, Meijer LL, Pham TV, Funel N, van Grieken NCT, Kok B, Knol J, van Laarhoven HWM, 
Piersma SR, Jimenez CR, Kazemier G, Giovannetti E, Bijlsma MF. 2020. Microdissected pancreatic cancer 
proteomes reveal tumor heterogeneity and therapeutic targets. JCI Insight 5:e138290. DOI: https://doi.org/10.​
1172/jci.insight.138290, PMID: 32634123

Liu R, Lu S, Deng Y, Yang S, He S, Cai J, Qiang F, Chen C, Zhang W, Zhao S, Qian L, Mao G, Wang Y. 2016. 
PSMB4 expression associates with epithelial ovarian cancer growth and poor prognosis. Archives of 
Gynecology and Obstetrics 293:1297–1307. DOI: https://doi.org/10.1007/s00404-015-3904-x, PMID: 
26439929

Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, Somerfield MR, Hayes DF, Bast RC, 
ASCO. 2006. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. 
Journal of Clinical Oncology 24:5313–5327. DOI: https://doi.org/10.1200/JCO.2006.08.2644, PMID: 17060676

MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, 
MacCoss MJ. 2010. Skyline: an open source document editor for creating and analyzing targeted proteomics 
experiments. Bioinformatics 26:966–968. DOI: https://doi.org/10.1093/bioinformatics/btq054, PMID: 
20147306

Madhavan B, Yue S, Galli U, Rana S, Gross W, Müller M, Giese NA, Kalthoff H, Becker T, Büchler MW, Zöller M. 
2015. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer 
diagnosis increases sensitivity and specificity. International Journal of Cancer 136:2616–2627. DOI: https://doi.​
org/10.1002/ijc.29324, PMID: 25388097

Matsuno S, Egawa S, Fukuyama S, Motoi F, Sunamura M, Isaji S, Imaizumi T, Okada S, Kato H, Suda K, Nakao A, 
Hiraoka T, Hosotani R, Takeda K. 2004. Pancreatic cancer registry in Japan: 20 years of experience. Pancreas 
28:219–230. DOI: https://doi.org/10.1097/00006676-200404000-00002, PMID: 15084961

Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, 
Rahbari N, Reissfelder C, Pilarsky C, Fraga MF, Piwnica-Worms D, Kalluri R. 2015. Glypican-1 identifies cancer 
exosomes and detects early pancreatic cancer. Nature 523:177–182. DOI: https://doi.org/10.1038/​
nature14581, PMID: 26106858

Merico D, Isserlin R, Stueker O, Emili A, Bader GD. 2010. Enrichment map: a network-based method for 
gene-set enrichment visualization and interpretation. PLOS ONE 5:e13984. DOI: https://doi.org/10.1371/​
journal.pone.0013984, PMID: 21085593

Meyer D, Dimitriadou E, Hornik K. 2015. Misc Functions of the Department of Statistics. ProbabilityTheory 
Group.

Nunez Lopez YO, Iliuk A, Petrilli AM, Glass C, Casu A, Pratley RE. 2022. Proteomics and phosphoproteomics of 
circulating extracellular vesicles provide new insights into diabetes pathobiology. International Journal of 
Molecular Sciences 23:5779. DOI: https://doi.org/10.3390/ijms23105779, PMID: 35628588

Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. 2014. Projecting cancer incidence 
and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer 
Research 74:2913–2921. DOI: https://doi.org/10.1158/0008-5472.CAN-14-0155, PMID: 24840647

Rahib L, Fleshman JM, Matrisian LM, Berlin JD. 2016. Evaluation of pancreatic cancer clinical trials and 
benchmarks for clinically meaningful future trials: A systematic review. JAMA Oncology 2:1209–1216. DOI: 
https://doi.org/10.1001/jamaoncol.2016.0585, PMID: 27270617

Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J. 2019. g:Profiler: a web server for functional 
enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Research 47:W191–W198. DOI: 
https://doi.org/10.1093/nar/gkz369, PMID: 31066453

https://doi.org/10.7554/eLife.87369
https://doi.org/10.1016/j.cell.2020.07.009
http://www.ncbi.nlm.nih.gov/pubmed/32795414
https://doi.org/10.1172/jci.insight.135544
http://www.ncbi.nlm.nih.gov/pubmed/32990680
https://doi.org/10.1021/acs.jproteome.0c00151
http://www.ncbi.nlm.nih.gov/pubmed/32396726
https://doi.org/10.1016/S0140-6736(16)00141-0
https://doi.org/10.1016/S0140-6736(16)00141-0
http://www.ncbi.nlm.nih.gov/pubmed/26830752
https://doi.org/10.1158/1078-0432.CCR-19-1496
https://doi.org/10.1158/1078-0432.CCR-19-1496
http://www.ncbi.nlm.nih.gov/pubmed/31848187
https://doi.org/10.1016/j.trecan.2020.03.007
http://www.ncbi.nlm.nih.gov/pubmed/32307267
https://doi.org/10.1158/0008-5472.CAN-13-2683
https://doi.org/10.1158/0008-5472.CAN-13-2683
http://www.ncbi.nlm.nih.gov/pubmed/24755469
https://doi.org/10.1172/jci.insight.138290
https://doi.org/10.1172/jci.insight.138290
http://www.ncbi.nlm.nih.gov/pubmed/32634123
https://doi.org/10.1007/s00404-015-3904-x
http://www.ncbi.nlm.nih.gov/pubmed/26439929
https://doi.org/10.1200/JCO.2006.08.2644
http://www.ncbi.nlm.nih.gov/pubmed/17060676
https://doi.org/10.1093/bioinformatics/btq054
http://www.ncbi.nlm.nih.gov/pubmed/20147306
https://doi.org/10.1002/ijc.29324
https://doi.org/10.1002/ijc.29324
http://www.ncbi.nlm.nih.gov/pubmed/25388097
https://doi.org/10.1097/00006676-200404000-00002
http://www.ncbi.nlm.nih.gov/pubmed/15084961
https://doi.org/10.1038/nature14581
https://doi.org/10.1038/nature14581
http://www.ncbi.nlm.nih.gov/pubmed/26106858
https://doi.org/10.1371/journal.pone.0013984
https://doi.org/10.1371/journal.pone.0013984
http://www.ncbi.nlm.nih.gov/pubmed/21085593
https://doi.org/10.3390/ijms23105779
http://www.ncbi.nlm.nih.gov/pubmed/35628588
https://doi.org/10.1158/0008-5472.CAN-14-0155
http://www.ncbi.nlm.nih.gov/pubmed/24840647
https://doi.org/10.1001/jamaoncol.2016.0585
http://www.ncbi.nlm.nih.gov/pubmed/27270617
https://doi.org/10.1093/nar/gkz369
http://www.ncbi.nlm.nih.gov/pubmed/31066453


 Tools and resources﻿﻿﻿﻿﻿﻿ Cancer Biology

Bockorny, Muthuswamy, Huang et al. eLife 2023;12:RP87369. DOI: https://doi.org/10.7554/eLife.87369 � 17 of 17

Reimand J, Isserlin R, Voisin V, Kucera M, Tannus-Lopes C, Rostamianfar A, Wadi L, Meyer M, Wong J, Xu C, 
Merico D, Bader GD. 2019. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, 
Cytoscape and EnrichmentMap. Nature Protocols 14:482–517. DOI: https://doi.org/10.1038/s41596-018-0103-​
9, PMID: 30664679

Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M. 2011. pROC: an open-source package 
for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12:77. DOI: https://doi.org/10.1186/​
1471-2105-12-77, PMID: 21414208

Schmitz-Winnenthal FH, Volk C, Helmke B, Berger S, Hinz U, Koch M, Weitz J, Kleeff J, Friess H, Zöller M, 
Büchler MW, Z’graggen K. 2006. Expression of cytokeratin-20 in pancreatic cancer: an indicator of poor 
outcome after R0 resection. Surgery 139:104–108. DOI: https://doi.org/10.1016/j.surg.2005.06.058, PMID: 
16364723

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. 
Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome 
Research 13:2498–2504. DOI: https://doi.org/10.1101/gr.1239303, PMID: 14597658

Shuen TWH, Alunni-Fabbroni M, Öcal E, Malfertheiner P, Wildgruber M, Schinner R, Pech M, Benckert J, 
Sangro B, Kuhl C, Gasbarrini A, Chow PKH, Toh HC, Ricke J. 2022. Extracellular vesicles may predict response 
to radioembolization and sorafenib treatment in advanced hepatocellular carcinoma: An exploratory analysis 
from the SORAMIC Trial. Clinical Cancer Research 28:3890–3901. DOI: https://doi.org/10.1158/1078-0432.​
CCR-22-0569, PMID: 35763041

Siegel RL, Miller KD, Jemal A. 2020. Cancer statistics, 2020. CA 70:7–30. DOI: https://doi.org/10.3322/caac.​
21590, PMID: 31912902

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, 
Bork P, Jensen LJ, Mering Cvon. 2019. STRING v11: protein-protein association networks with increased 
coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research 
47:D607–D613. DOI: https://doi.org/10.1093/nar/gky1131, PMID: 30476243

van Niel G, Carter DRF, Clayton A, Lambert DW, Raposo G, Vader P. 2022. Challenges and directions in studying 
cell-cell communication by extracellular vesicles. Nature Reviews. Molecular Cell Biology 23:369–382. DOI: 
https://doi.org/10.1038/s41580-022-00460-3, PMID: 35260831

Wu X, Li L, Iliuk A, Tao WA. 2018. Highly efficient phosphoproteome capture and analysis from urinary 
extracellular vesicles. Journal of Proteome Research 17:3308–3316. DOI: https://doi.org/10.1021/acs.​
jproteome.8b00459, PMID: 30080416

Yang KS, Im H, Hong S, Pergolini I, Del Castillo AF, Wang R, Clardy S, Huang C-H, Pille C, Ferrone S, Yang R, 
Castro CM, Lee H, Del Castillo CF, Weissleder R. 2017. Multiparametric plasma EV profiling facilitates diagnosis 
of pancreatic malignancy. Science Translational Medicine 9:eaal3226. DOI: https://doi.org/10.1126/​
scitranslmed.aal3226, PMID: 28539469

Zhang Y, Yang J, Li H, WuY, Zhang H, Chen V. 2015. Tumor markers CA19-9, CA242 and CEA in the diagnosis of 
pancreatic cancer: a meta-analysis. International Journal of Clinical and Experimental Medicine 8:11683–11691.

Zhang X, Lin D, Lin Y, Chen H, Zou M, Zhong S, Yi X, Han S. 2017. Proteasome beta-4 subunit contributes to the 
development of melanoma and is regulated by miR-148b. Tumour Biology 39:1010428317705767. DOI: 
https://doi.org/10.1177/1010428317705767, PMID: 28656878

Zheng P, Guo H, Li G, Han S, Luo F, Liu Y. 2015. PSMB4 promotes multiple myeloma cell growth by activating 
NF-κB-miR-21 signaling. Biochemical and Biophysical Research Communications 458:328–333. DOI: https://​
doi.org/10.1016/j.bbrc.2015.01.110, PMID: 25656574

https://doi.org/10.7554/eLife.87369
https://doi.org/10.1038/s41596-018-0103-9
https://doi.org/10.1038/s41596-018-0103-9
http://www.ncbi.nlm.nih.gov/pubmed/30664679
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1186/1471-2105-12-77
http://www.ncbi.nlm.nih.gov/pubmed/21414208
https://doi.org/10.1016/j.surg.2005.06.058
http://www.ncbi.nlm.nih.gov/pubmed/16364723
https://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
https://doi.org/10.1158/1078-0432.CCR-22-0569
https://doi.org/10.1158/1078-0432.CCR-22-0569
http://www.ncbi.nlm.nih.gov/pubmed/35763041
https://doi.org/10.3322/caac.21590
https://doi.org/10.3322/caac.21590
http://www.ncbi.nlm.nih.gov/pubmed/31912902
https://doi.org/10.1093/nar/gky1131
http://www.ncbi.nlm.nih.gov/pubmed/30476243
https://doi.org/10.1038/s41580-022-00460-3
http://www.ncbi.nlm.nih.gov/pubmed/35260831
https://doi.org/10.1021/acs.jproteome.8b00459
https://doi.org/10.1021/acs.jproteome.8b00459
http://www.ncbi.nlm.nih.gov/pubmed/30080416
https://doi.org/10.1126/scitranslmed.aal3226
https://doi.org/10.1126/scitranslmed.aal3226
http://www.ncbi.nlm.nih.gov/pubmed/28539469
https://doi.org/10.1177/1010428317705767
http://www.ncbi.nlm.nih.gov/pubmed/28656878
https://doi.org/10.1016/j.bbrc.2015.01.110
https://doi.org/10.1016/j.bbrc.2015.01.110
http://www.ncbi.nlm.nih.gov/pubmed/25656574

	A large-­scale proteomics resource of circulating extracellular vesicles for biomarker discovery in pancreatic cancer
	eLife Assessment
	Introduction
	Results
	Proteomics characterization of circulating EVs
	Diseases of the pancreas express distinct circulating EV proteome compared to controls
	Circulating EV proteome discriminates pancreatic cancer from benign pancreatic diseases
	Functional and systems biology of cEV proteome
	Circulating EV proteomics reveal markers associated with metastasis and worse prognosis
	Validation of cEV markers using parallel reaction monitoring and identification an EV protein signature for pancreatic cancer diagnosis

	Discussion
	Methods
	Study design and patient demographics
	Plasma sample collection and processing
	Extracellular vesicle isolation from plasma
	Preparation of EV samples
	LC−MS analysis of plasma EV proteome
	EV proteome data processing
	Pathways enrichment and protein network analysis
	Parallel reaction monitoring and data analysis
	Identification of EV signature for pancreatic cancer diagnosis
	Survival analysis
	Statistical analysis

	Acknowledgements
	Additional information
	﻿Competing interests
	﻿Funding
	Author contributions
	Author ORCIDs
	Ethics
	Peer review material

	Additional files
	Supplementary files

	References


