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Abstract—Remote patient monitoring has emerged as
a prominent non-invasive method, using digital technolo-
gies and computer vision (CV) to replace traditional in-
vasive monitoring. While neonatal and pediatric depart-
ments embrace this approach, Pediatric Intensive Care
Units (PICUs) face the challenge of occlusions hindering
accurate image analysis and interpretation. Goal: In this
study, we propose a hybrid approach to effectively seg-
ment common occlusions encountered in remote moni-
toring applications within PICUs. Our approach centers
on creating a deep-learning pipeline for limited training
data scenarios. Methods: First, a combination of the well-
established Google DeepLabV3+ segmentation model with
the transformer-based Segment Anything Model (SAM) is
devised for occlusion segmentation mask proposal and
refinement. We then train and validate this pipeline us-
ing a small dataset acquired from real-world PICU settings
with a Microsoft Kinect camera, achieving an Intersection-
over-Union (IoU) metric of 85%. Results: Both quantita-
tive and qualitative analyses underscore the effectiveness
of our proposed method. The proposed framework yields
an overall classification performance with 92.5% accu-
racy, 93.8% recall, 90.3% precision, and 92.0% F1-score.

Received 18 July 2024; revised 8 October 2024 and 15 November
2024; accepted 15 November 2024. Date of publication 20 November
2024; date of current version 6 December 2024. This work was sup-
ported in part by Natural Sciences and Engineering Research Coun-
cil (NSERC), in part by the Institut de Valorisation des données de
l’Université de Montréal (IVADO), and in part by the Fonds de la
recherche en sante du Quebec (FRQS). The review of this article was
arranged by Editor Paolo Bonato. (Corresponding author: Rita Noumeir.)

Mario Francisco Munoz is with the Electrical Engineering Department,
École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada, and
also with the Saint-Justine Mother and Child University Hospital Cen-
ter, Montréal, QC H3C 1K3, Canada (e-mail: mario.munoz.hsj@ssss.
gouv.qc.ca).

Hoang Vu Huy is with the Biomedical Information Processing Lab,
École de Technologie Supérieure, University of Québec, Montréal H3C
1K3, Canada (e-mail: hoang.vu-huy.1@ens.etsmtl.ca).

Thanh-Dung Le is with the Biomedical Information Processing Lab,
École de Technologie Supérieure, University of Québec, Montréal H3C
1K3, Canada, and also with the Interdisciplinary Centre for Security, Re-
liability, and Trust (SnT), University of Luxembourg L-1855, Luxembourg
(e-mail: thanh-dung.le@uni.lu).

Philippe Jouvet is with the CHU Sainte-Justine Hospital, University
of Montreal, Montréal H3C 1K3, Canada (e-mail: philippe.jouvet.med@
ssss.gouv.qc.ca).

Rita Noumeir is with the Biomedical Information Processing Lab,
École de Technologie Supérieure, University of Québec, Montréal H3C
1K3, Canada (e-mail: rita.noumeir@etsmtl.ca).

Digital Object Identifier 10.1109/OJEMB.2024.3503499

Consequently, the proposed method consistently improves
the predictions across all metrics, with an average of 2.75%
gain in performance compared to the baseline CNN-based
framework. Conclusions: Our proposed hybrid approach
significantly enhances the segmentation of occlusions in
remote patient monitoring within PICU settings. This ad-
vancement contributes to improving the quality of care
for pediatric patients, addressing a critical need in clinical
practice by ensuring more accurate and reliable remote
monitoring.

Index Terms—Computer vision, data augmentation, deep
learning, model fusion, occlusions, pediatrics intensive
care, remote patient monitoring (RPM), segmentation.

Impact Statement— This study presents a hybrid deep-
learning approach for segmenting occlusions in remote
patient monitoring within PICUs, effectively addressing
limited training data challenges. Combining the Google
DeepLabV3+ model with the transformer-based SAM, the
method demonstrates high accuracy and reliability in real-
world PICU settings. This practical application of advanced
deep-learning techniques enhances image analysis and in-
terpretation, ultimately improving the quality of pediatric
care.

I. INTRODUCTION

R EMOTE patient monitoring (RPM) [1] is a promising al-
ternative to invasive monitoring, driven by advancements

in deep learning-based computer vision (CV). CV tasks like
remote photoplethysmography (R-PPG) [2], pose estimation [3],
and thermal monitoring [4] provide critical, non-invasive physi-
ological data. RPM is especially vital in pediatrics for improved
access, chronic disease management, reduced hospitalizations,
tailored monitoring, parental involvement, and timely interven-
tion [5].

Downstream CV task performance relies on high-quality in-
put data, as noise and outliers hinder accuracy. Deep learning
models, especially those trained on limited data, are sensitive to
irrelevant information, which must be addressed. For instance,
R-PPG methods require precise regions of interest; occlusions
like tubes can impair estimation accuracy [6]. Treating occlu-
sions through localization and segmentation [7] can mitigate
these issues, with semantic segmentation grouping pixels by
class [8].
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Fig. 1. An illustrative image of a PICU patient with different occlusions
in our CHU Sainte Justine’s database.

Deep learning’s success often depends on extensive training
datasets, which are scarce in PICU settings due to consent and
image quality issues. Transfer learning can leverage large exter-
nal datasets to improve training, using fine-tuning or zero-shot
learning. However, gaps between pre-training and target medical
domains can limit zero-shot performance [9], [10]. Thus, robust
segmentation algorithms for environments with limited data and
annotation remain crucial.

Understanding these challenges as well as being motivated by
the necessity of occlusion processing in RPM applications, in
this work we proposed a novel deep learning-based framework
for occlusion segmentation in PICU settings. Our contributions
include:

� First, a real-world dataset of pediatric patients’ images at
CHU Sainte Justine Hospital (CHUSJ) with occlusions
of various kinds, shapes, and sizes has been collected
and annotated, which can readily be used for training and
evaluating different algorithms on occlusion detection and
segmentation tasks.

� Second, a convolutional neural network (CNN)-based
model is trained and evaluated on the dataset, reporting
plausible performance and generalization for occlusion
segmentation in PICU settings where limited and unbal-
anced training data is a challenging problem.

� Third, a novel data-efficient fusion pipeline named
SOSS (SAM-powered Occlusion Segmentation via Soft-
voting) is introduced (Fig. 2). This pipeline leverages a
foundation-class transformer-based image segmentation
model as a means to refine the output of the preceding
CNN-based occlusion segmentation model, effectively
proving its capability of segmenting occlusions of various
kinds in our considered clinical use case.

With this novel framework, we intend to promote the applica-
bility of RPM for PICU deployments and other real-world uses
of computer vision.

II. MATERIALS AND METHODS

In this section, we summarize related works in segmentation,
and deep-learning for occlusion handling. Other relevant works
about learning-based semantic segmentation are included in the
supplementary documents. Additionally, we discuss our specific
training methods and data pipelines.

A. Related Works

Convolutional Neural Networks (CNNs) have been essential
for semantic segmentation, utilizing convolutions for multi-
scale semantic and spatial extraction. Fully Convolutional Net-
works (FCN) [11] and U-Net [12] introduced effective encoder-
decoder structures, with U-Net excelling in preserving details via
skip connections. DeepLab [13] advanced this by incorporating
atrous convolutions to enhance receptive fields without exces-
sive parameters, and DeepLabV3+ [14] further improved with
ASPP and U-Net-like architectures, achieving state-of-the-art
results. Despite CNNsâ efficiency, handling complex occlusions
remains a challenge. Solutions like BCNet [15], ORM [7], and
hierarchical models aim to model occlusion relationships and
improve instance segmentation but often fall short in medical
contexts with device obstructions and irregular poses. Vision
transformers like Segmenter [16] and SegFormer [17] capture
global context but require extensive data and may lack gener-
alizability in data-scarce domains like pediatric ICU imaging.
Our approach integrates SAM’s zero-shot segmentation with
DeepLabV3+ fine-tuning to enhance segmentation under com-
plex occlusions in clinical environments, balancing pre-trained
transformer strengths with tailored CNN-based precision.

B. Methods

In this work, occlusions are defined as common objects near
a PICU patient that can obstruct a direct view of the body. Back-
ground elements like walls, floors, and ceilings, as well as objects
not typically on the patient’s bed, are considered non-occlusions.
The varying patient poses often make it challenging to locate
obscured body parts under occlusions. Items such as blankets or
tubes beside the patient may also be labeled as occlusions.

A simplified workflow is shown in Fig. 3, outlining the
pipeline from data acquisition to prediction enhancement. The
main stages are:

� Data Acquisition: Collecting images with target occlu-
sions, processing, and storing them for annotation and
segmentation.

� Labeling: Preprocessing (ROI cropping and padding) and
annotating occluded regions using polygon labeling to
ensure accurate training data.

� Data Augmentation: Enhancing model robustness through
augmentations like flipping, color jittering, and brightness
& contrast adjustments. More details are in the supplemen-
tary materials.

� Model Fine-Tuning: Using a DeepLabV3+ model for se-
mantic segmentation, optimized with a cosine annealing
schedule, batch optimization, and data shuffling.

� Prediction Enhancement: Refining initial segmentation
with SAM-based image segmentation and applying se-
mantic soft-voting for improved occlusion mask accuracy.

C. Data Acquisition, Labeling and Data
Augmentation

The study was approved by the research ethics board (REB)
of CHUSJ (project number 2020-2287) and was conducted on
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Fig. 2. Our proposed pipeline (SOSS) for occlusion segmentation. The input image is fed to both the top branch and bottom branch simultaneously.
Top branch: our DeepLabV3+-based network segments the input image and produces a semantic (occlusion) mask proposal. Bottom branch: the
SAM-based generator produces a partitioning of the input image without corresponding semantic labels. Both kinds of masks are then fused using
our proposed confidence-based soft voting mechanism for the final occlusion segmentation mask. This aims to add semantic information to the
SAM branch while simultaneously improving the segmentation quality of the DeepLab branch.

Fig. 3. A summary of our workflow, including 4 steps: labeling, data augmentation, model fine-tuning, and prediction.

a video database approved by the same REB (database project
number 2016-1242).

In the PICU at CHUSJ, 175 high-resolution color digital
photographs from consenting patients were acquired. We split
the dataset into three different parts where 80% of the dataset was
kept for training, 10% of the dataset was used for validation and
the remaining 10% of the dataset was used for testing. Because
of the ethical implications of our dataset, we cannot publicly
release it; however, access to the database can be granted upon
request by Dr. Philippe Jouvet.

Instance segmentation masks for occlusions were generated
in the form of polygons. The different occlusion polygons were
classified to better understand the most common occlusions in
the PICU and how much space each occupies. Specificities on
these operations are detailed in the supplementary materials.

D. Training Semantic Segmentation Network

We trained a DeepLabV3+ network for the task of binary
classification for 122 epochs on the augmented dataset. Further
details are available in the supplementary materials.For the
purpose of our experiments, we denote this model as our se-
mantic segmentation model (MSEM).

E. Prediction Enhancement with SAM

Although the trained MSEM demonstrates potential in recog-
nizing and localizing occlusions, its accuracy in shaping occlu-
sions can be limited due to:

� Limited training dataset size.
� Small or thin occlusions combined with noisy, low-

resolution input images.
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Fig. 4. An example of MSEM’s prediction. (Left) Input image. (Middle)
Occlusion segmentation annotation. (Right) Occlusion segmentation
mask by MSEM. The scarf (highlighted in the red box) is roughly localized
and identified as occlusion. However, the predicted mask shape of the
scarf is inaccurate.

To address these limitations, we integrated the Segment-
Anything-Model (SAM), a transformer-based image segmen-
tation model with strong zero-shot learning capabilities. SAM
can be guided using prompts like bounding boxes, points, or text.
However, due to the complex, overlapping nature of occlusions
(e.g., cables and tubes) in PICU settings, bounding boxes were
not effective. Initial experiments showed single points and text
prompts were insufficient for robust segmentation.

We adopted an automatic prompting method, similar to [18],
using a 40× 40 point grid to prompt SAM, ensuring higher
point density suited for small occlusions. We set a confidence
threshold of 90%, a stability score of 85%, and a minimum
segmentation area of 5 pixels to exclude irrelevant regions.

While SAM produced high-quality image segmentation with
accurate boundaries, it presented limitations:

� Image segments lacked explicit semantic class associa-
tions.

� Segments might only represent parts of objects.
To leverage the strengths of MSAM and MSEM, we in-

troduced the SAM-powered Occlusion Segmentation via Soft-
voting (SOSS) mechanism. Our pipeline, illustrated in Fig. 2,
includes:

� A DeepLabV3+-based network generating a coarse se-
mantic mask proposal.

� A SAM-based network providing fine-grained segmenta-
tion without semantic labels.

These outputs are combined using a confidence-based soft-
voting approach to create an enhanced occlusion segmentation
mask.

Assumption 1: For any pair of pixel ith and jth of the same
input image (I), with their respective SAM output denoted as
M(i)

SAM and M(j)
SAM, and their hidden occlusion class respectively

denoted as o(i) and o(j), it is assumed that:

P
(
o(i) = o(j)|M(i)

SAM = M(j)
SAM

)
= 1 (1)

Under this assumption, any pair of points belonging to the
same segment by SAM should have the same occlusion class.

This implies that SAM segments can be regarded as the finest
granularity for semantic segmentation. In fact, this assumption
is supported by the observations made by the original paper [18]
for object proposal tasks, instance segmentation tasks, as well
as SAM’s potential to carry semantic information in the latent

TABLE I
PERFORMANCE OF CHU-SJ ARTIFACT SEGMENTATION TASK

Algorithm 1: SAM-Powered Occlusion Segmentation via
Soft-Voting (SOSS).

PREDICT (MSEM MSAM I)
j = (1, 1)
PSAM ← MSAM(I)
PSEM ← MSEM(I)
∀ S ∈ PSAM :
Pmod ← PSEMS
C ← argmax(Pmodj)
PFINAL ← CS+PFINAL

return PFINAL

embedding space without explicit semantic supervision. This
assumption is very powerful since it allows us to effectively
constrain the semantic relationship of neighboring pixels and
integrate SAM into more complicated tasks in a flexible fashion.

Based on this assumption, we then proposed our fusion algo-
rithm (SAM-powered Occlusion Segmentation via Soft-voting,
or SOSS for short) as follows:

Using these settings, any image (I) of sizeH ×W can be used
by our MSAM to infer a binary prediction matrix (PSAM ). Given
a total number of O separate objects detected by MSAM, PSAM

will be of (H,W,O) dimensions. Therefore, insidePSAM , there
are O binary 2-dimensional matrices (B), each representing a
“patch” (equivalently, “superpixel” or segment proposal) which
corresponds to the filled silhouette of different objects in the
image. These O matrices are believed to have better edges than
the semantic predictions of PSEM after applying any given
threshold. In order to leverage the classification aspect of our
MSEM and the sharp segmentation masks of our MSAM, we used
a soft-voting algorithm. This algorithm attributes a class C from
N different classes to each matrix B in PSAM . In order to
calculate which class to attribute, we mask PSEM along its
H and W dimensions using every matrix B in PSAM . The
resulting masked prediction (Pmod) is used to determine the class
C by locating the index of the maximum semantic confidence
value. To do so, we sum Pmod along its N dimension, resulting
in a uni-dimensional vector of length N . The index of the
maximum value in this vector corresponds to the final occlusion
class C.

The algorithm’s intuition is that SAM’s accurate segmentation
allows querying all pixels in each segment for their occlusion
classes from MSEM. The class with the highest votes is selected
as the final segment prediction. To mitigate MSEM’s overcon-
fidence due to limited training data, a soft-voting mechanism
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Fig. 5. Improved predictions on the held-out test data. From left to right: input images (1st column), ground truths (2nd column), SAM masks (3rd

column), predictions from MSEM (4th column), and final binary occlusion segmentation mask (5th column). In the 2nd, 4th and 5th columns, white
regions are classified as occlusions while black ones are classified as non-occlusions. In the 3rd column, different colors simply indicate different
image segments without associated occlusion class, which is the main shortcoming of SAM in our task. Green boxes highlight occlusion easily
visible segmentation improvements.

is used instead of hard voting, ensuring conservative polling.
This fusion approach addresses SAM’s limitations by merging
segments where the majority of pixels agree on a class, creating
unified segments with semantic labels. It also refines MSEM’s
outputs by forming semantic segments with more precise bound-
aries.

III. RESULTS

A variety of tools have been used to implement our proposed
pipeline. To annotate the dataset we used the LabelStudio [19]
toolset. The training of our MSEM network was done using
Pytorch[20]. The data was also augmented using the Albumen-
tations [21] library, besides the CopyPaste augmentation that
was made to fit as another transform in the same pipeline. We
also leveraged OpenCV[22] and Numpy [23] for image manip-
ulation. To evaluate the pipeline, a held-out test set consisting of
10% of the total images was used without any augmentations.

To alleviate the effect of class imbalance, which can be
strong in our dataset, we included the following metrics for
performance comparison:

� Accuracy: Acc = TP+TN
TP+TN+FP+FN

� Precision: Prec = TP
TP+FP

� Recall: Rec = TP
TP+FN

� F1 score: F1 = ( 0.5
Prec +

0.5
Rec )

−1
� Intersection over Union (IoU): IoU = |True∩Predicted|

|True∪Predicted|
� Area Under the receiver operating characteristic Curve

(AUC)
where F and T stand for False and True; P and N stand for
Positive and Negative, respectively. Furthermore, TN and TP
stand for true negative and true positive respectively, and are
the number of negative and positive cases correctly classified.
FP and FN represent false positives and false negatives and the
number of incorrectly predicted positive and negative cases.
These metrics are per class; we report them for the occlusion
class (class 1) in the following discussion. In this work, a true
positive is defined as any pixel within the ROI that is correctly
classified as an occlusion (class 1) based on the binary ground
truth mask. The ground truth occlusions are represented as
binary masks encompassing annotated polygon areas, which
may include portions of the body or other structures due to the
nature of occlusions in clinical settings. Therefore, a detected
occlusion is counted as a true positive if it overlaps with any
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Fig. 6. Failure examples of SOSS. From left to right: input images (1st column), ground truths (2nd column), SAM masks (3rd column), predictions
from MSEM (4th column), and final binary occlusion segmentation mask (5th column). In the 2nd, 4th and 5th columns, white regions are classified as
occlusions while black ones are classified as non-occlusions. In the 3rd column, different colors simply indicate different image segments without
associated occlusion class, which is the main shortcoming of SAM in our task. Red boxes highlight occlusion segmentation failures.

part of the ground truth occlusion mask, even if the outline does
not perfectly match the occlusion’s exact shape. This approach
ensures that minor variations in the segmentation boundaries do
not penalize the model’s performance excessively.

Specifically, Table I shows the occlusion segmentation per-
formance of our MSEM, and then those attained by the whole
proposed SOSS pipeline. To ensure statistical rigor, we con-
ducted the training and testing over random split and reported the
average performance. The reported results were obtained using
a three-part split of the dataset, where 80% of the images were
used for training, 10% for validation, and the remaining 10%
for testing. We can see that the proposed method consistently
improves the predictions across all metrics, with an average
of 2.75% gain in performance. Note that our performance
evaluation considered all occlusions in the image, including
those in both the foreground and the patient’s side regions.
Focusing solely on foreground occlusions would likely have
resulted in a more significant performance gain because these
regions are typically less ambiguous and easier to segment.
However, our current analysis does not exclude patient-side
occlusions, as we aimed to comprehensively evaluate the seg-
mentation model across different contexts. Overall, this increase
clearly demonstrates the effectiveness of our proposed pipeline
in the intended task of occlusion segmentation.

IV. DISCUSSION

Figs. 5 and 6 illustrate test set samples with corresponding
predictions at various pipeline stages to analyze the improve-
ments brought by the proposed method.

By comparing the right-most columns with the input images
(1st column) and the occlusion mask annotations (2nd column),
the quality of segmentation masks at each step can be assessed.
For example, in the second row of Fig. 5, a pediatric patient
in the PICU shows a fine cable attached to the right arm.

While SAM (3rd column) provides precise segmentation, it
lacks semantic labels. In contrast, MSEM (4th column) assigns
occlusion classes but may produce coarser shapes. The SOSS
predictions (5th column) accurately capture both the label and
shape.

Visual inspection reveals that MSEM effectively localizes oc-
clusions despite limited training data, handling varied illumina-
tion, patient demographics, and dense occlusions with stable
boundaries, albeit with occasional over-smoothing and over-
representation of thin objects.

SAM’s predictions, though accurate in segment shape, lack
semantic labeling, leading to ambiguity. The SOSS method
improves segmentation quality by:

� Preserving fine details of thin or small objects and aligning
segments closely with the ground truth.

� Recovering missing details from MSEM and maintaining
small objects like electrodes and patches.

Failure cases of SOSS, shown in Fig. 6, highlight challenges
with thin objects like cables. The pipeline’s reliance on SAM
can lead to missed detections if assumptions about SAM’s
completeness are unmet.

In summary, combining DeepLabV3+ and SAM yields a
2.75% performance gain on average and enhances occlusion
segmentation in clinical settings, even with limited data. How-
ever, limitations include sensitivity to small occlusions and in-
creased computational complexity from SAM’s detailed masks,
affecting inference speed. Despite these challenges, integrating
SAM with CNN models through a soft-voting mechanism im-
proves overall robustness.

V. CONCLUSION

In this paper, we proposed a pipeline for efficiently
segmenting occlusions in a clinical setting with little data by
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leveraging pre-trained semantic segmentation models, data aug-
mentation, and mature promptable segmentation models like
SAM. Our findings suggest that efficient segmentation of oc-
clusions in a PICU setting is a task that can be accomplished
with limited data and the help of strong zero-shot segmentation
models.

On the other hand, there are certain shortcomings associated
with our methodology, mostly associated with SAM:

� Slow inference: The main bottleneck in our pipeline is
SAM, which takes significantly longer time for inference
compared to MSEM.

� Prompting resolution: Masks generated by SAM can be
quite sensitive to the chosen prompting resolution. SAM
can skip objects because of their small or thin size, as in the
case of cables that perhaps fall between prompting points
in the image. Generally, more prompted points require
higher computing resources. This is however limited by
the computational power of the existing hospital’s dedi-
cated server; in other words, sufficiently fine-grained point
prompting might not be attainable.

� Overconfidence in SAM: Our proposed pipeline is based
on the assumption of SAM accuracy. Even though SAM’s
predictions are very accurate in general, there are certain
cases where SAM is unaware of very small, irregular
objects.

Therefore, our future research can be extended in the follow-
ing directions:

� Utilizing SAM in a more efficient way: For example, we
can optimize the prompting resolution to balance between
accuracy and inference speed. Another possible improve-
ment is to use faster implementation of SAM, for example
with a recently proposed architecture in [24].

� Misclassification analysis: We plan to conduct a com-
prehensive error analysis to identify specific occlusion
types that are challenging for the model to recognize. This
will involve comparing multi-class manual labels with the
model’s predictions to identify common misclassifications
and refine our framework, improving accuracy and robust-
ness.

� Leveraging multi-modality: Additional synchronized
modalities such as depth images and thermal images cap-
tured by the hospital acquisition system can be provided
for our dataset. SAM is also reported to work with depth
modality [25] and thus can exploit rich geometric infor-
mation from depth images aside from textural information
given by RGB images, which might further boost the
segmentation performance.
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