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Abstract

Cryo-electron tomography (cryo-ET) enables observation of macromolecular complexes in their 

native, spatially contextualized cellular environment. Cryo-ET processing software to visualize 

such complexes at nanometer resolution via iterative alignment and averaging are well-developed 

but rely upon assumptions of structural homogeneity among the complexes of interest. Recently 

developed tools allow for some assessment of structural diversity but have limited capacity to 

represent highly heterogeneous structures, including those undergoing continuous conformational 

changes. Here we extend the highly expressive cryoDRGN deep learning architecture, originally 

created for single particle cryo-electron microscopy analysis, to cryo-ET. Our new tool, 

tomoDRGN, learns a continuous low-dimensional representation of structural heterogeneity in 

cryo-ET datasets while also learning to reconstruct heterogeneous structural ensembles supported 

by the underlying data. Using simulated and experimental data, we describe and benchmark 

architectural choices within tomoDRGN that are uniquely necessitated and enabled by cryo-ET. 

We additionally illustrate tomoDRGN’s efficacy in analyzing diverse datasets, using it to reveal 

high-level organization of HIV capsid complexes assembled in virus-like particles and to resolve 

extensive structural heterogeneity among ribosomes imaged in situ.

INTRODUCTION

An array of large, dynamic macromolecular complexes carry out essential cellular functions. 

The conformational flexibility and compositional variability in these complexes allow cells 

to mount targeted molecular responses to various stresses and stimuli. Structural biology 

has long aimed to visualize these diverse structures with the goals of gaining mechanistic 

insights into these responses and testing hypotheses related to macromolecular structure-
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function relationships. In pursuit of this goal, cryo-electron microscopy (cryo-EM) has 

proven to be a powerful tool for visualizing purified complexes with high resolution1,2. In 

cryo-EM, ~104 - 107 individual particles are imaged, each from a single unknown projection 

angle. Single particle analysis (SPA) is then used to simultaneously estimate the most 

likely projection angle for each particle image and the k ≥1 distinct 3-D volumes of the 

target complex, which, when projected to 2-D, are most likely to have produced the source 

dataset3. More recently, a number of tools have leveraged SPA datasets to deeply explore 

structural heterogeneity within these complexes4–8, dramatically expanding the range of 

insights and testable biological hypotheses that can be derived from cryo-EM9.

Cryo-electron tomography (cryo-ET) is a related imaging modality wherein a sample 

is repeatedly imaged from several known projection angles, enabling the reconstruction 

of a 3-D tomogram10. As such, cryo-ET disentangles particles that overlap along a 

projection axis and enables the nanometer-scale 3-D visualization of highly complex 

samples, including subcellular volumes. Thus, cryo-ET affords the opportunity to inspect 

macromolecular structures in their native cellular context11–14, in contrast with cryo-EM’s 

typical requirement that particles be isolated from cells and purified.

Sub-tomogram averaging (STA), a particle averaging approach analogous to SPA, is 

often employed in cryo-ET data processing. In STA, individual 3-D volumes, each a 

sub-tomogram corresponding to a unique particle, are extracted from the back-projected 

tilt series and are iteratively aligned to produce an average particle volume with increased 

signal-to-noise ratio (SNR) and resolution15–25. Recent developments in STA processing 

have dramatically improved the attainable resolution through more detailed and robust 

modeling of physical and optical parameters even for samples in situ26–29. Critically, 

STA can therefore offer insights into native protein complexes, and generate new 

hypotheses for molecular mechanisms by identifying unknown associated factors or novel 

complex ultrastructure. For example, STA has very recently been employed to extensively 

characterize numerous structural states of the ribosome life cycle in situ12–14,30–32.

Similar to SPA, several tools have been developed to characterize heterogeneity among 

individual particles relative to the global average, either during or after STA19,29,33–35. 

Although these approaches have proven fruitful in answering specific biological questions 

such as nucleosome flexibility33,34, and ribosome heterogeneity12,29, each approach has 

specific constraints that limit their generality. For example, sub-tomogram principal 

component analysis (PCA)29 assumes heterogeneity can be modeled as a linear combination 

of voxel intensity; normal mode analysis34 requires a priori knowledge of an atomic model 

or density map to compute normal modes; and optical flow33 is inherently limited to 

conformational changes of the target particle in which the total voxel intensity across each 

sub-tomogram remains approximately constant. An unbiased and expressive tool to analyze 

heterogeneity is therefore highly desirable, particularly for in situ discovery of unexpected 

cofactors whose identity, binding site, and occupancy may be unknown.

Here, we introduce tomoDRGN (Deep Reconstructing Generative Networks), a deep 

learning framework designed to learn a continuously generative model of per-particle 

conformational and compositional heterogeneity from cryo-ET datasets. TomoDRGN is 
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related to our well-characterized cryoDRGN software4,8, and therefore shares many overall 

design, processing, and analysis philosophies. As input, tomoDRGN uses 2-D particle 

projection images and corresponding metadata from upstream STA tools (Fig. 1a), a data 

type used in a number of recently developed approaches12,27–29,36,37. It then learns to 

simultaneously embed each particle within a continuous low dimensional latent space and to 

reconstruct the corresponding unique 3-D volume (Fig. 1b). We have additionally developed 

and integrated software tools to visualize and interpret these outputs, and to prepare 

tomoDRGN outputs for subsequent analyses with external processing software, including 

contextualizing the tomoDRGN generated volumes within the in situ cellular tomography 

data.

RESULTS

Network design for heterogeneous cryo-ET reconstructions

TomoDRGN was designed to efficiently train a neural network capable of: 1) embedding 

a collection of particles, which are each represented by multiple images collected at 

different stage tilt angles, to a learned, continuous, low-dimensional latent space informed 

by structural heterogeneity; and 2) generating a 3-D volume for each particle using these 

embeddings. By design, cryoDRGN is unsuited for this task as it maps individual images to 

unique latent embeddings, which is expected for cryo-EM single particle datasets. Thus, 

cryoDRGN is not constrained to map differentially tilted images of the same particle 

to consistent regions of latent space, leading to uninterpretable learned latent spaces and 

generated volumes (see Discussion).

To handle tilt-series data, we employed a variational autoencoder (VAE) framework38, 

and constructed a purpose-built two-part encoder network feeding into a coordinate-based 

decoder network39,40 (Fig. 1b). For each particle, the encoder network first uses encoder 

A (per tilt image) as a “feature extractor” to generate a unique intermediate embedding for 

each tilt image in a manner directly analogous to cryoDRGN’s encoder network. Encoder B 

then integrates these intermediate embeddings into a single latent embedding for the particle. 

The decoder network is supplied with this integrated latent embedding and a featurized 

voxel coordinate to reconstruct the signal at that coordinate. As in cryoDRGN, these 

operations are performed in reciprocal space. With this design, we expected that repeatedly 

evaluating the decoder network at multiple coordinates would allow for a rasterized 

reconstruction of the set of tilt images originally supplied to the encoder. Following a 

standard VAE38, we designed the network to be trained by minimizing a reconstruction loss 

between input and reconstructed images, and a latent loss quantified by the KL-divergence 

of the latent embedding from a standard normal distribution, with a hyperparameter β 
controlling the relative contributions of these two loss terms41.

Once trained, we expected a tomoDRGN network to enable detailed and systematic 

interrogation of structural heterogeneity within the input dataset. For example, similar to 

cryoDRGN, we expected that tomoDRGN’s learned latent space could be visualized either 

directly along any sets of latent dimensions or using a dimensionality reduction technique 

such as UMAP42, where we have empirically found that distinct clusters often correspond 

to compositionally heterogeneous states, and diffuse, unfeatured distributions correspond 
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to continuous structural variation8. Latent embeddings, sampled individually or following 

a well-populated path in latent space, could then be passed to the decoder to generate 

corresponding 3-D volumes for direct visualization. We predicted additional analysis could 

then be performed in 3-D voxel space using standard cryoDRGN tools9. We also constructed 

interactive tools to visualize and analyze heterogeneity in the spatial context of the original 

tomograms. Finally, we further developed methods to isolate particle subsets of interest for 

subsequent refinement with traditional STA software (Fig. 1c) as an iterative approach to 

maximize the value of a tomographic dataset.

Sub-tomogram-specific image processing approaches

Having conceived the general tomoDRGN framework, we next considered additional image 

processing procedures that we hypothesized might improve model quality and computational 

performance. First, we noted that STA software tools commonly implement weighting 

schemes to model the signal-to-noise (SNR) of each image as a function of the image tilt 

angle, which impacts the electron pathlength through the sample and cumulative electron 

dose, which causes accumulated radiation damage27,43,44. Thus, we followed standard 

formulations for tilt weighting as the cosine of the stage tilt and dose weighting using fixed 

exposure curves, and we incorporated such weights into the reconstruction error calculated 

in tomoDRGN’s decoder network (Extended Data Fig. 1a,b). We expected such an approach 

would effectively downweigh the reconstruction loss of highly tilted and radiation damaged 

images, particularly at high frequencies.

Second, tomoDRGN’s coordinate-based decoder is trained by evaluating a set of spatial 

frequencies per tilt image that, by default, is identical for all tilt images and thus independent 

of cumulative dose imparted at each tilt. However, prior work has shown that the SNR at 

a given spatial frequency can be maximized at an optimal electron dose45 and that during 

cryo-EM movie alignment, filtering spatial frequencies in each frame by their optimal 

dose can improve the aligned micrograph quality43,46. We therefore implemented a scheme 

applying optimal dose filtering to Fourier coordinates evaluated by the decoder during model 

training (Extended Data Fig. 1a,b). We expected that such filtering would restrict the set of 

spatial frequencies evaluated during decoder training without sacrificing 3-D reconstruction 

accuracy, thereby decreasing the computational burden of model training, particularly for 

high resolution datasets at large box sizes.

Finally, real-world datasets frequently contain particles missing some tilt images, often 

due to upstream micrograph filtering (Extended Data Fig. 2a). To flexibly handle such 

nonuniform input data, we implemented an approach that surveys the dataset for the fewest 

tilt images associated with a single particle (n), then randomly samples n tilt images from 

each particle during model training and evaluation (Extended Data Fig. 2b, see Methods). 

Because this approach subsets and permutes tilt images at random, encoder B must learn a 

permutation-invariant function mapping from encoder A’s output (per tilt image) to the final 

latent space (per particle), and we hypothesized that this permutation-invariant learning goal 

might provide added regularization that could decrease overfitting by our model.
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TomoDRGN recovers simulated structural heterogeneity

To judge the efficacy of these architectural choices, we simulated47 cryo-ET particle 

stacks corresponding to four assembly states (B-E) of the bacterial ribosome large subunit 

(LSU)48,49 (Fig. 2a). We initially tested the ability of the isolated decoder network to 

perform a homogeneous reconstruction of the class E particles wherein no encoder was 

trained, and no latent space was learned. We observed rapid convergence of the decoder 

network, with it reproducing the ground-truth density maps within 10 epochs of training 

(Fig. 2b).

To assess tomoDRGN’s ability to faithfully embed and reconstruct structurally 

heterogeneous 3D volumes, we next trained the full VAE network using particle stacks 

containing a mixture of all four LSU structural classes. After training for 24 epochs, 

we observed four distinct clusters of latent embeddings by PCA and UMAP (Fig. 2c). 

Furthermore, the decoder network generated volumes from the center of each latent cluster 

that were consistent with the ground truth volumes (Fig. 2d). Finally, we quantified the 

fidelity of the embeddings to their corresponding ground truth volume classes on a per-

particle basis. We observed a nearly one-to-one mapping between tomoDRGN particle 

embeddings and the correct ground truth class (Fig. 2e), indicating that the tomoDRGN 

network effectively learned discrete structural heterogeneity without supervision.

We next tested whether tomoDRGN’s continuous latent representation allowed it to 

reconstruct continuous conformational changes. Specifically, we applied the particle 

simulation approach used for the LSU assembly dataset to a series of atomic models 

describing conformational changes of yeast mitochondrial ATP synthase undergoing 

continuous ATP-hydrolysis driven rotary and bending motions (Fig. 2f)50. After training 

a tomoDRGN model on this dataset, analysis of 500 tomoDRGN-generated volumes by real-

space voxel-based PCA9 revealed a smooth and continuous trajectory (Fig. 2g). Sampling 

volumes along this trajectory recapitulated the complex combination of conformational 

changes present in the ground truth dataset (Fig. 2h, Supplementary Video 1).

Architectural choices improve tomoDRGN performance

Having tested tomoDRGN’s ability to learn compositional and conformational 

heterogeneity, we next assessed the benefits of our aforementioned reconstruction loss 

weighting, lattice coordinate filtering, and random tilt sampling approaches. In applying 

the weighting and filtering schemes on the homogeneous reconstruction of the LSU class 

E ribosomes, we observed that either scheme in isolation or both schemes combined led 

to an improvement to the final resolution over using neither scheme, presumably due 

to each approach’s ability to minimize the impact of lower quality data. Additionally, 

whereas all schemes decreased the wall clock runtime required to obtain the best resolution 

reconstruction, the lattice coordinate filtering scheme led to more substantial reductions 

in both wall clock runtime and GPU memory utilization (Extended Data Fig. 1c–e, 

Supplementary Table 1), likely due to its wholesale exclusion of calculations on lower 

quality data.
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To assess the efficacy of the random sampling scheme, we compared heterogeneous 

networks trained on the 4-class LSU dataset with and without random tilt sampling. We 

observed higher average volume correlation coefficients (CC) for tomoDRGN volumes 

against ground truth volumes when using random sampling. Random sampling also provided 

our hypothesized improved robustness to model overfitting compared to sequential tilt 

sampling as evidenced by the more stable and elevated average CCs during further model 

training (Extended Data Fig. 2c). Finally, using the random sampling scheme, we observed 

an interpretable and well-featured latent space, even when using as few as 11 of the 41 

available tilt images for each particle (Extended Data Fig. 2d–e). We additionally measured 

the accuracy and consistency of volumes generated from each such latent embedding to 

the corresponding ground truth volume, per particle per epoch, again observing robust 

performance with the random sampling scheme (Extended Data Fig. 2f). Notably, each of 

these metrics exhibited a dramatic drop in quality when only using a single tilt sampled 

per particle, consistent with the poor observed performance of cryoDRGN’s unconstrained 

approach of mapping one image to one latent embedding being unsuitable for tilt series data 

(see Discussion).

Combined, these strategies allowed efficient and flexible analysis of diverse input 

datasets, and we have benchmarked tomoDRGN performance for a range of network 

architectures (Supplementary Tables 2–4). We observed that tomoDRGN performance is 

robust to encoder network architecture hyperparameters, and that larger decoder networks 

support learning of higher resolution features as the expense of slower model training 

(Supplementary Figure 1,2). From these experiments, we noted that evidence of mild 

overfitting remained even with tomoDRGN’s random tilt sampling, and thus we encourage 

users to guard against such overfitting by checking for model convergence 8 at regular 

intervals using the provided analyze_convergence tool.

Identifying hidden structural states in experimental datasets

We next asked how tomoDRGN would behave with experimental tomographic datasets, 

including those of particles expected to be structurally homogeneous, such as apoferritin 

(EMPIAR-10491)27. Reprocessing this dataset using standard STA approaches in C1 (see 

Methods) resulted in a high-resolution consensus structure and the metadata required to train 

a tomoDRGN model (Fig. 3a). After training such a model, we were surprised to observe 

a featured latent space (Fig. 3b) that bore three primary structural classes: well-formed 

apoferritin particles (~65%); uninterpretable maps, which likely corresponded to errant 

particle picks (~33%); and a minor population of apparently iron-loaded ferritin, which 

comprised ~2% of the total particles (Fig. 3c). Isolating the apoferritin and holoferritin 

particles with tomoDRGN and re-refining each set with C1 symmetry in M reproduced the 

structural features identified with tomoDRGN (Fig. 3d). Moreover, the apoferritin structure 

refined using the tomoDRGN-filtered particle stack exhibited improved resolution by both 

FSC and inspection of local density quality compared with our original particle stack’s C1 

refinement (Fig. 3e).

Another class of particles frequently analyzed by STA are those that assemble into 

massive structures using a large, semi-regular lattice. To assess tomoDRGN performance 
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on such samples, we reprocessed the well-characterized immature HIV capsid dataset 

EMPIAR-10164 with a final symmetry relaxation step51, recapitulating clearly resolved 

CA-NTD and CA-CTD layers (Fig. 3f). Training a tomoDRGN model on this C1 dataset 

revealed a largely unfeatured latent space (Fig. 3g), with primary structural classes varying 

in their organization and extent of observed density of the NC layer underneath the CA 

layers (Fig. 3h,i). Application of MAVEn8,9 using a mask encompassing the presumed 

location of the NC domain revealed a continuum of differentially occupied NC layers, 

consistent with extensive flexibility of this domain (Extended Data Fig. 3). At this resolution 

we could not clearly attribute the density seen in the NC layer to NC protein, nucleic acid 

used during sample reconstitution, or a combination thereof – a challenge that others have 

noted52. However, by reconstructing volumes corresponding to all particles with the trained 

tomoDRGN model and arranging them in the spatial context of the source tomogram, we 

observed groups of Gag hexamers with increased NC-layer density co-clustering within the 

VLPs (Fig. 3j). We postulate that this VLP-level patterning of NC-layer organization may 

reflect regions where the nucleic acid cargo is avidly and cooperatively bound by a local 

neighborhood of NC domains.

Uncovering structurally heterogeneous ribosomes in situ

As a final test, we applied tomoDRGN to the dataset EMPIAR-1049927, using it to 

analyze heterogeneity among chloramphenicol-treated ribosomes imaged in the bacterium 

Mycoplasma pneumonaie. Following published STA methods27, we reproduced a Nyquist-

limited ~3.5 Å resolution reconstruction of the 70S ribosome (Fig. 4a–b). We subsequently 

extracted corresponding ribosome images from the aligned tilt micrographs and used this 

particle stack to train a homogeneous tomoDRGN model. The tomoDRGN-reconstructed 

volume recapitulated high-resolution features observed in the STA map including density for 

bulky side chains and for the bound chloramphenicol molecule (Fig. 4c–e), highlighting the 

tomoDRGN decoder network’s ability to accurately represent high-resolution structures in a 

dataset acquired in situ.

Encouraged by this result, we trained a heterogeneous tomoDRGN model on a down-

sampled version of the particle stack and observed several distinct clusters in the resulting 

latent space (Fig. 5a, left). Generating volumes from these populated regions of latent 

space revealed that the majority of latent encodings corresponded to 70S ribosomes, as 

expected, while one subset corresponded to 50S ribosomal subunits, and another subset 

corresponded to apparent non-ribosomal particles (Fig. 5a, right). The non-ribosomal 

particles were further characterized by localizing them within each tomogram and providing 

them to RELION for ab initio reconstruction. Doing so revealed that these particles 

predominantly were false positive particle picks (Extended Data Fig. 4), highlighting 

tomoDRGN’s efficacy in sorting particles by structural heterogeneity even in situ. We 

additionally explored complementary filtering approaches that directly used the trained 

tomoDRGN model to generate unique volumes corresponding to every particle’s latent 

embedding. We then computed either each volume’s similarity to the 70S STA map (Fig. 

5b) or performed principal component analysis (PCA) on the set of resulting volumes 

(Fig. 5c). These approaches produced results consistent with the clusters identified in latent 

space, highlighting the robustness of our initial latent-space-based filtering. As we expect 
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the performance of these latent-space- and volume-based filtering approaches to vary on a 

per-dataset basis, users are encouraged to compare the efficacy of each approach on their 

own datasets.

Guided by the latent embeddings, we next filtered out the non-ribosomal particles and used 

this “clean” subset to train a new heterogeneous tomoDRGN model. The resulting latent 

space and generated volumes revealed an array of structurally heterogeneous ribosomes 

(Fig. 5d). Prior analyses of this dataset have quantified translation cycle heterogeneity12, 

with most (~75%) particles bearing tRNAs in the A- and P-sites (state 4), and a minority 

of particles with EF-Tu bound to the A-site with the E-site either occupied by tRNA 

(~10%; state 2e) or unoccupied (~10%; state 3). We observe broadly similar decoding and 

peptidyl transfer populations, with the majority (93%) of particles adopting state 4, and 

smaller populations in states 2e (0.5%) and state 3 (6%). Moreover, we observe additional 

conformational and compositional heterogeneity throughout the ribosome (Supplementary 

Video 2). For example, we observe conformational changes of 16S rRNA helix 17 consistent 

with SSU rotation for a set of particles lacking EF-Tu in the A-site. In other volumes, 

we observed pronounced motions of the L1 stalk. We also observed volumes with clear 

density for r-proteins L7/L12 in the expected 1:4 ratio of L10CTD:L7NTD/L12NTD dimer of 

dimers, which was notable as this structural element is often unresolved in cryo-EM density 

maps53,54, likely due to this stalk’s dynamic nature and L7/L12’s ability to exchange off of 

the particle during purification55. Observing this structure highlighted tomoDRGN’s ability 

to identify low abundance classes and emphasized the promise of purification-free in situ 
structural analyses afforded by cryo-ET.

We next applied MAVEn8,9, which has previously been used to systematically interrogate 

the structural heterogeneity of volume ensembles guided by atomic models. Here, we 

observe a broadly uniform distribution of occupancies for all queried structural elements 

(i.e., rRNA helices and r-proteins), with a notable exception of the 50S particle block, which 

lacks occupancy for any SSU structural elements, but is largely unfeatured in LSU structural 

elements (Fig. 5e), which led us to conclude that compositionally heterogeneous assembly 

intermediates are rare in this sample.

Exploring intermolecular heterogeneity in situ

A grand promise of in situ cryo-ET is its potential to structurally characterize interactions 

between individual macromolecular complexes and their local environment27,56. We 

hypothesized that tomoDRGN might perform well in this regard as its VAE architecture 

has a significant capacity to learn heterogeneity from the provided images, independent of 

the images being tightly or loosely cropped to the particles of interest. Indeed, our initial 

analysis revealed volume classes containing apparent intermolecular density truncated by 

the extracted box borders (Fig. 5d). To test tomoDRGN’s ability to analyze inter-complex 

structural heterogeneity, we extracted each ribosomal particle at a larger physical box 

size, effectively surveying the molecular neighborhood of each ribosome in the imaged 

cell. Training a new “intermolecular” tomoDRGN model with these images revealed a 

similarly featured latent space with correspondingly diverse volumes (Fig. 6a). Many of the 

structures appeared to be disomes and trisomes, as previously reported27, with measures of 
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interparticle distance and angular distribution to each ribosome’s nearest neighbor consistent 

with this interpretation (Fig. 6b). Detailed inspection of these particles revealed instances of 

disomes bearing resolved mRNA density bridging the particles (Extended Data Figure 5, see 

Methods). Notably, in a subset of such cases, the ribosomes adopted a relative orientation 

stereotypical of stalled/collided particles, and each such particle bore additional density on 

the bridging mRNA at a location recently reported to be targeted by an RNase associated 

with the stalled ribosome rescue pathway57.

When analyzing particles using the intermolecular tomoDRGN model, we additionally 

observed a ribosome structure previously unreported in this dataset with additional density 

corresponding to a lipid bilayer (Fig. 6a). We mapped this set of apparently membrane-

associated ribosomes to their original tomograms and observed that they exclusively 

corresponded to particles at the cell’s surface (Fig. 6d). To identify residual heterogeneity 

within this group, we trained a new tomoDRGN model on this particle subset and observed 

a relatively unfeatured latent space, with the majority (~80%, as quantified by MAVEn) 

of sampled volumes bearing a flexible extracellular density protruding from the membrane 

(Fig. 6e). Notably, we observed significant motion between the ribosome and the adjacent 

membrane, indicating that the ribosome was not held in rigid alignment with the membrane 

and holotranslocon during translocation (Supplementary Video 3). Traditional STA on this 

extracellular-positive subpopulation of ribosomes further resolved the extracellular density, 

as well as smaller arches of density connecting the ribosome to the membrane (Fig. 6f, 

Extended Data Fig. 6c). Rigid body docking using atomic models of likely transmembrane 

protein complexes into this density supported the presence of SecDF, a subcomplex of the 

Sec holotranslocon with a relatively large extracellular globular domain encoded by M. 
pneumoniae (Fig. 6f). This result highlighted the efficacy of tomoDRGN’s iterative particle 

curation and refinement approach in unveiling new structures buried in highly heterogeneous 

in situ datasets.

DISCUSSION

In this work, we introduce tomoDRGN, which, to our knowledge, is the first neural 

network framework capable of simultaneously modeling compositional and conformational 

heterogeneity from cryo-ET data on a per-particle basis. TomoDRGN achieves this using 

a bespoke deep-learning architecture and numerous accelerations designed to exploit 

redundancies inherent to cryo-ET data collection. We note that several analyses explored in 

this manuscript were originally tested with cryoDRGN4. However, cryoDRGN ultimately 

did not match tomoDRGN’s performance on cryo-ET data as it incorrectly classified 

simulated data, predominantly learned non-biological structural heterogeneity, and produced 

highly variable latent embeddings and volumes for different tilt images of the same particle 

(Extended Data Fig. 7–9), ultimately motivating development of tomoDRGN. We note 

that an alternative approach of mapping single sub-tomogram volumes to single latent 

coordinates would theoretically function within the cryoDRGN framework but would: 1) be 

less computationally tractable due to cubic scaling of the number of voxel coordinates to 

be evaluated per particle; and 2) may be predisposed towards learning heterogeneity driven 

by missing wedge artifacts common to sub-tomogram volumes. Finally, during revision of 

this manuscript, a related approach that uses a subset of the low-tilt images within the 
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cryoDRGN framework was proposed58. We expect that this method will perform similarly to 

tomoDRGN when analyzing ribosomes, which, because of their high abundance and lack of 

preferred orientation, do not require high-tilt angle information to generate isotropic maps.

TomoDRGN’s data inputs, as projection images with associated pose and CTF parameters, 

pose two potential limitations. First, inaccuracies in pose estimation during upstream 

STA processing could limit tomoDRGN reconstruction and classification accuracy. We 

explored this effect on our EMPIAR-10499 unfiltered ribosomes by treating the poses 

derived through STA as “ground truth” and progressively perturbing each particle’s 

rotation and translation to greater extents. In homogeneous reconstructions, we observed 

that tomoDRGN’s decoder-only network produced nearly equivalent reconstructions 

up to around 0.8° rotation and 0.8Å shift perturbation, with greater perturbations 

producing progressively worse reconstructions (Extended Data Fig. 10a–b). Heterogeneous 

tomoDRGN models captured meaningful structural heterogeneity even up to 1.6° and 1.6Å 

perturbation, particularly through principal component analysis of tomoDRGN-generated 

volume ensembles (Extended Data Fig. 10c–e). The second limitation of tomoDRGN’s 

approach derives from the possibility for other “background” signals that superimpose 

with a particle’s projection at particular stage-tilt angles, potentially misdirecting the latent 

encoding for this particle. We expect such superimposition is common, particularly for 

in situ samples. However, tomoDRGN’s random tilt subsampling per particle decreases 

the likelihood that multiple images bearing the same confounding signal will be sampled 

and encoded in the same pass. Additionally, tomoDRGN’s pooling of intermediate latent 

encodings in Encoder B adds further robustness against a minor fraction of such images. 

Indeed, we observed that volumes of a particular class co-localize in the structured latent 

space and produce similar volumes, even for in situ data (Fig. 5a–c), and we note that such 

robustness that has been similarly observed in EMAN-2’s use of 2D tilt images for STA 

refinement28.

An additional consideration for prospective users is the types of particles to which 

tomoDRGN is best suited. As with most SPA and STA tools, we expect tomoDRGN will 

perfom best with large, abundant particles. The analyses of experimental data presented here 

have typically used between 15,000 – 25,000 particles of mass ranging from ~200 kDa to 

2.5 MDa. In a notable exception (Fig. 6e) however, we demonstrated that as few as 482 

ribosomes were sufficient to train de novo a tomoDRGN model capable of distinguishing the 

presence or absence of SecDF. While most SPA and STA tools can employ symmetry-based 

averaging to further increase the effective particle count, tomoDRGN’s decoder module is 

best suited to C1-symmetric pose distributions, and we therefore recommend symmetry 

relaxation or expansion of symmetric complexes prior to tomoDRGN analysis. In all 

demonstrated analyses, the input particles were aligned by STA without imposed symmetry 

to resolutions of ~4 Å; and while such resolutions will aid users gaining the greatest insights 

from tomoDRGN, we also often use tomoDRGN significantly earlier in data processing to 

aid upstream particle filtering and guide general particle classification.

Other tools to explore conformational heterogeneity from a cryo-ET dataset have been 

recently introduced17,29,33,34. However, they each rely on some degree of imposed prior 

structural knowledge, either in the form of “mass conservation” to describe continuous 
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changes from a consensus structure, which is often derived from a provided atomic 

model33,34; assumptions of linear relationships between structures29; or the assertion 

that a small number of discrete structures exist17. In contrast, tomoDRGN’s approach 

provides a greater degree of generality that we have found enables a largely unsupervised 

analysis of datasets with highly complex combinations of compositional and continuous 

conformational heterogeneity. Given the extent of structural heterogeneity observed with 

cryoDRGN in single particle datasets using purified samples59,60, we expect tomoDRGN 

to uncover similar structural variation within a rapidly expanding set of samples imaged in 
situ with cryo-ET. For tomoDRGN, as with all of these heterogeneity analysis tools, we 

emphasize that observed structural variation should be validated, including by reconstruction 

of the particles bearing the structural feature of interest by an alternative approach (e.g. 
weighted back-projection), by comparison with known biology, and ideally, by orthogonal 

experimental approaches.

As is true with other STA processing pipelines, we expect that using tomoDRGN to 

reanalyze particle stacks at different spatial scales (i.e., different real space box sizes) will 

prove useful in correlating intramolecular structural changes with structural variability areas 

adjacent to the particle (Extended Data Fig. 5). Of particular note, leveraging tomoDRGN’s 

expressivity to generate a unique 3-D volume corresponding to each particle’s latent 

embedding enables users to populate low SNR cellular tomograms with individualized 

density maps at approximately nanometer resolution and explore the resultant spatial 

distributions of heterogeneous structures. Here, we used this approach to resolve meso-

scale patterning of NC-layer organization among Gag hexamers (Fig. 3j), and to directly 

identify disomes in situ (Extended Data Fig. 5a–b). By combining multi-scale analysis 

and tomoDRGN’s per-particle volume generation, we were able to further identify distinct 

structural classes of these disomes, including direct visualization of mRNA threading within 

and between individualized monosome structures (Extended Data Fig. 5c–f, Supplementary 

Video 4).

Finally, the analyses enabled by tomoDRGN are inherently iterable. Our initial tomoDRGN 

analysis of EMPIAR-10499 revealed a population of non-ribosomal particles that we had 

failed to filter with traditional classification-based approaches. Excluding such particles 

and retraining at multiple spatial scales resolved intra- and inter-molecular structural 

heterogeneity, and retraining exclusively on a subset of membrane-associated ribosomes 

identified extracellular density that likely corresponded to the SecDF subcomplex. Given 

that tomoDRGN has the potential to identify many such distinct classes, we encourage 

users to embrace this branching and iterative approach. Some recently introduced software 

packages27,61 explicitly support such “molecular sociology” where co-refinement of 

multiple distinct structures derived from a common data source globally enhances the 

quality of individual maps. We anticipate tomoDRGN will form a virtuous cycle when 

interfacing with such software.
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METHODS

TomoDRGN design and software implementation

General architecture—TomoDRGN is forked from cryoDRGN. Thus we summarize the 

core aspects of the method here, and direct readers to related cryoDRGN publications for 

further details4,8,39,40. Briefly, tomoDRGN is a variational autoencoder (VAE) with encoder 

and decoder networks comprised of multi-layer perceptrons (MLPs). TomoDRGN’s encoder 

learns a function (E) to map a set of j tilt images (size D × D pixels) of particle i to a 

low dimensional latent encoding zi of dimension z; that is, E: ℝj*D*D ℝz. The encoder 

MLP comprises two sub-networks that process j tilt images for each particle as follows. 

First, the 2-D Hartley transform of each tilt image is passed separately through encoder A to 

produce a set of j intermediate encodings. These j intermediate encodings are then pooled 

and passed together through encoder B to output the particle’s final latent embedding zi. The 

pooling step concatenates intermediate encodings along the tilt image axis by default, but 

also supports operations such as max and mean, which are inherently permutation-invariant. 

All experiments presented here concatenate the intermediate encodings.

TomoDRGN’s decoder follows from that of cryoDRGN4, and uses a Gaussian featurization 

scheme for positional encoding in Fourier space 62 as follows. Spatial coordinates are 

normalized to span [−0.5, 0.5] in each dimension, and a (fixed) positional encoder 

transforms each spatial coordinate to a basis set of D sinusoids with frequencies sampled 

from a scaled standard normal feat_sigma × N 0,1  for each spatial coordinate axis, where 

D is the box size of an input image, and feat_sigma is set to 0.5. These positionally encoded 

coordinates, concatenated with the z-D latent coordinate, are then passed to the decoder; 

that is, in totality, D: ℝ3 + z ℝ. Unless otherwise specified, models were trained for 50 

epochs with batch size 1 (particle), using the AdamW optimizer with learning rate of 0.0002, 

and weight decay of 0.

Training system—Input images are modeled as 2-D projections of 3-D volumes, 

convolved by the contrast transfer function (CTF), with externally-provided rotation, 

translation, and CTF parameters. Heterogeneity among volumes is modeled via a continuous 

latent space sampled by a latent variable z per particle. The latent encoding for a given 

image X is taken as the maximum a posteriori of a Gaussian distribution parameterized by 

outputs from the encoder network, μz X and Χz X, whereas the prior on the latent distribution 

is a standard normal distribution N 0, I . Thus, the variational encoder qξ z X  produces a 

variational approximation of the true posterior p z X . The coordinate-based decoder models 

structures in reciprocal space: given a spatial frequency k ∈ ℝ3 and a latent variable z, the 

decoder predicts the corresponding voxel intensity as pθ V k, z .

Applying the Fourier Slice Theorem63, 3-D Fourier coordinates corresponding to 2-D 

projection image Xi are derived by rotating a 2-D lattice by the orientation of the volume 

V i during imaging. Given a fixed latent coordinate sampled from qξ zi Xi  and the posed 

coordinate lattice, the reciprocal space image is reconstructed pixel-by-pixel via the decoder 

pθ V k, zi . The reconstructed image is then translated in-plane and multiplied by the CTF. 
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The negative log-likelihood of the image is then computed as the mean squared error 

between the input and reconstructed image. The optimization function is the sum of the 

image reconstruction error and the KL divergence (KLD) of the latent encoding:

ℒ X; ξ, Θ = Eqξ z X log p X z − βKL(qξ(z |X) p z )

In this equation, the regularizing KLD term is weighted by β, which is set to 1
|z | *t*D2 , where 

D is the box size, t is the number of tilts, and |z| is the dimensionality of the latent space.

Lattice masking and reconstruction weighting—Critical dose is calculated for 

each spatial frequency using an empirical exposure-dependent amplitude attenuation curve 

derived for cryo-EM data 43. The optimal dose is approximated to 2.51284 × critical dose
as in the original study43,45. Spatial frequencies (coordinates) of a tilt image exceeding 

the corresponding optimal doses are excluded from decoder network evaluation and loss 

calculation by a lattice mask during network training. Following error calculation of the 

input image against the reconstructed and CTF-weighted voxels, the squared differences 

are weighted (1) per-frequency by the exposure dependent amplitude attenuation curve (a 

function of tilt image index and spatial frequency), and (2) globally by the cosine of the 

stage tilt angle in radians (a function of tilt image index). This weighted reconstruction error 

is backpropagated accordingly.

Random tilt sampling—During dataset initialization, the number of tilt images per 

particle is parsed via the rlnGroupName star file column using the syntax in Warp/M 

of tomogramID_particleID. The minimal number of tilt images present for any particle 

(n) is then stored as the number of images to be sampled from each particle during network 

training and evaluation (this value also sets the input dimensionality of encoder B when 

using concatenation pooling). The value n is reported by tomoDRGN during training 

initialization, and we recommend users to exclude tilt series where this value is below 

11. By default, sampling is performed randomly without replacement per-particle, and the 

subset and ordering of sampled tilts is updated each time a particle is retrieved during 

training or evaluation.

Simulated dataset generation

Cryo-ET data simulation was performed using scripts in the cryoSRPNT (cryo-EM 

Simulation of Realistic Particles via Noise Terms) GitHub repository. Source data for 

the bacterial ribosome LSU dataset was obtained as density maps of four assembly 

states of the bacterial 50S ribosome (classes B - E) (EMD-8440, EMD-8441, EMD-8445, 

and EMD-8450, respectively)48. For the yeast ATP synthase dataset, atomic models 

(7TK6, 7TK7, 7TK8, 7TK9, 7TKA, 7TKB, 7TKC, 7TKD) were obtained from the PDB. 

ChimeraX’s morph functionality was used to interpolate between each state, resulting in 400 

atomic models smoothly sampling the conformational changes underlying the experimental 

model ensemble. Each atomic model was then converted to a volume using ChimeraX’s 

molmap functionality at 3Å/px sampling and resolution of 6Å.

Powell and Davis Page 13

Nat Methods. Author manuscript; available in PMC 2024 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The project3d.py script was used to create noiseless projections of each volume as 

follows. For the LSU dataset, 5,000 random particle poses were sampled over SO(3) for 

each volume; for the ATP synthase dataset, this number was 50 poses per volume. Thus, 

each dataset totals 20,000 uniquely posed particles. Each posed particle was then rotated 

following a dose-symmetric tilt series scheme from 0° to +/−60° with 3° steps in groups 

of 2 over 41 tilts and each tilted volume was projected along the z-axis to create noiseless 

images.

The acn.py script was used to corrupt the noiseless projections using a standard cryo-

EM image formation model47 augmented by tilt-series specific subroutines as follows. 

First, noiseless projections were Fourier-transformed, dose-weighted following an empirical 

exposure dependent amplitude attenuation curve at 3 e−/Å2/tilt to simulate SNR decrease 

due to radiation damage43, and inverse Fourier-transformed. Structural noise was added 

with an SNR of 1.4, and particles were then weighted by cosine(tilt_angle) to simulate 

SNR decrease due to increased sample thickness. Projections were then convolved with 

the 2-D CTF with defocus values sampled from a mixture of Gaussian-distributed defoci 

with means between −1.5 μm to −3.5 μm in 0.5 μm steps and a standard deviation of 0.3 

μm. Other CTF parameters included no astigmatism, 300 kV accelerating voltage, 2.7 mm 

spherical aberration, 0.1 amplitude contrast ratio, and 0° phase shift. Finally, shot noise was 

added with a SNR of 0.1, for a final SNR of 0.05, a level consistent with other simulation 

approaches used in the field4,20,22,64,65. For the LSU dataset, particle stacks of each class 

were Fourier cropped to box sizes of 256px (3Å/px; bin1), 128px (bin2), and 64px (bin4). 

For the ATP synthase dataset, only the original 114px (3Å/px) dataset was generated.

TomoDRGN network training and analysis of simulated LSU dataset

TomoDRGN homogeneous network training was performed on the 5,000 simulated class 

E particles. TomoDRGN heterogeneous network training was performed on all 20,000 

simulated particles from classes B-E. Unless otherwise specified, figures illustrate results 

on the bin2 datasets, with network architectures summarized as nodes_per_layer x layers as 

follows: 128×3 (encoder A), 128×3 (encoder B), and 256×3 (decoder). The dimensionality 

of the A-B intermediate encoding was 32 and that of the final latent encoding was 128. Each 

model was trained using dose and tilt loss weighting, dose frequency masking, and random 

tilt sampling, unless specified otherwise. Classification was performed directly on the latent 

embeddings with k=4 k-means clustering as implemented in scikit-learn. The dataset’s latent 

value nearest each k-means cluster center was used to generate a 3-D volume representative 

of that cluster.

TomoDRGN network training and analysis of simulated ATP synthase dataset

TomoDRGN heterogeneous network training was performed on all 20,000 simulated ATP 

synthase particles. The network architecture, summarized as nodes_per_layer x layers, 
was as follows: 256×3 (encoder A), 256×3 (encoder B), and 256×3 (decoder). The 

dimensionality of the intermediate encoding was 128 and that of the final latent encoding 

was 128. The model was trained using dose and tilt loss weighting, dose frequency masking, 

and random tilt sampling for 50 epochs. Following model training, 500 latent embeddings 
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were sampled via k=500 k-means classification; volumes were generated at each sampled 

embedding using the trained tomoDRGN model and subjected to unmasked real-space PCA.

Sub-tomogram averaging of EMPIAR-10491 apoferritin

Raw tilt movie data was downloaded from EMPIAR-10491. Movies were aligned and 

initial CTF estimation was performed in Warp66 as previously reported27 modified by 

binning movies to 1.668 Å/px in Warp. Automated patch-based tilt series alignment was 

performed using Aretomo v1.3.467. Alignment parameters were then used to generate 

tomograms at 10 Å/px in Warp. Template matching was performed in Warp using a 40 

Å lowpass filtered apoferritin volume generated from manually picked particles, keeping 

particles with a minimum separation of 20 Å. The top 700 of particles by figure-of-merit 

per tomogram were kept (25,900 particles). Sub-tomograms were extracted in Warp at 

1.668 Å/px. Ab initio model generation and 3-D refinement were performed in RELION 

3.1.317 with octahedral symmetry applied, resulting in a reconstruction of ~3.9 Å resolution. 

Particles were deduplicated with a cutoff distance of 50Å (removing 519 particles). RELION 

3-D classification was performed with pose alignment in C1 or O symmetry with varying 

numbers of classes, but no non-apoferritin classes were detected for removal. All particles 

were imported into M to improve tomogram-level parameters while taking advantage of 

octahedral symmetry during iterative refinement of particle poses, tilt geometry, image warp, 

volume warp, and defocus, resulting in a reconstruction of resolution ~3.4Å. Sub-tomograms 

were re-extracted in M at 1.668Å/px for further RELION 3-D refinement in C1, which 

resulted in a reconstruction of resolution 4.6 Å. These particles were imported to M in 

C1 and subjected to the same iterative M refinements to produce a final 3.6Å resolution 

map. Particles were then exported as image series sub-tomograms from M at 1.668Å/px and 

box size 132px for tomoDRGN training. Particles were also exported as volume series sub-

tomograms using M at 132px 1.668Å/px for generation of requisite metadata for mapping 

particles to tomogram-contextualized locations and particle re-extraction and filtering in M. 

Note that for this dataset, this metadata was used only for particle re-extraction and filtering.

TomoDRGN network training on EMPIAR-10491 apoferritin

TomoDRGN heterogeneous network training was performed on all 25,381 apoferritin 

particles. The network architecture was as follows: 256×3 (encoder A), 256×3 (encoder 

B), and 256×3 (decoder). The dimensionality of the intermediate encoding was 128 and 

that of the final latent encoding was 128. The model was trained using dose and tilt loss 

weighting, dose frequency masking, and random tilt sampling for 15 epochs. Following 

model training, 100 latent embeddings were sampled via k=100 k-means classification; 

volumes were generated at each sampled embedding using the trained tomoDRGN model 

and visually classified into apoferritin, holoferritin, or junk particles. A randomly selected 

representative of each class is shown in Figure 3c. The M volume-series subtomogram star 

file was filtered according to the tomoDRGN classification indices for new multi-species 

population creation and further iterative C1 refinement in M.

Sub-tomogram averaging of EMPIAR-10164 HIV Gag capsid CA-layer

Processing broadly followed the walkthrough guide provided at teamtomo.org. Raw tilt 

movie data for the standard subset of 5 tilt series used in benchmarking cryo-ET software 
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was downloaded from EMPIAR-10164. Movies were aligned and initial CTF estimation 

was performed in Warp66. Automated fiducial-based tilt series alignment was performed 

using dautoalign4warp68 within the Dynamo package running in a Matlab environment19. 

Tomograms were reconstructed in Warp at 10Å/px. Dynamo was used to oversample 

manually annotated spherical lattices corresponding to each VLP, and subsequent spherical 

lattice geometry filtering was applied to filter particles. An initial model was generated and 

refined in Dynamo, and duplicate particles from oversampling were removed (keeping n 

= 18,325 particles). Sub-tomograms were extracted in Warp at 5Å/px for 3-D refinement 

performed in RELION 3.117 with C6 symmetry applied. Sub-tomogram extraction and 

RELION refinement was repeated at 1.6 Å/px with C6 symmetry (~4.2Å resolution 

achieved). All particles were imported into M to improve tomogram-level parameters while 

taking advantage of C6 symmetry during iterative refinement of particle poses, tilt geometry, 

image warp, volume warp, defocus, Zernike orders 2–5, and tilt movies (~3.3Å resolution 

achieved). Sub-tomograms were re-extracted in M at 1.6 Å/px for further RELION 3-D 

refinement in C1 via symmetry relaxation (~4.8Å resolution achieved). The final 18,325 

particles were imported to M and subjected to the same iterative M refinements to produce a 

3.9 Å map. Particles were then exported as image series sub-tomograms from M at 1.6Å/px 

and box size 128 px for tomoDRGN training. Particles were also exported as volume series 

sub-tomograms using M at 64 px 3.2 Å/px for generation of requisite metadata for mapping 

particles to tomogram-contextualized locations and particle re-extraction and filtering in M.

TomoDRGN network training on EMPIAR-10164 HIV Gag capsid CA-layer

TomoDRGN heterogeneous network training was performed on all 18,325 Gag hexamers. 

The network architecture was as follows: 256×3 (encoder A), 256×3 (encoder B), and 256×3 

(decoder). The dimensionality of the intermediate encoding was 128 and that of the final 

latent encoding was 128. The model was trained using dose and tilt loss weighting, dose 

frequency masking, and random tilt sampling for 25 epochs. Following model training, 100 

latent embeddings were sampled via k=100 k-means classification; volumes were generated 

at each sampled embedding using the trained tomoDRGN model and visually classified 

into Gag with only CA-layer resolved, the same with moderate NC-layer density, the same 

with larger NC-layer density, or junk particles. A randomly selected representative of each 

class is shown in Figure 3h. Weighted back-projection and lowpass-filtering of the particles 

image-series subtomograms was performed in tomoDRGN using particle classifications 

derived from the tomoDRGN k=100 classification labels.

Sub-tomogram averaging of EMPIAR-10499 ribosomes

Raw tilt movie data was downloaded from EMPIAR-10499. Movies were aligned and 

initial CTF estimation was performed in Warp 66 as previously reported27. Automated 

fiducial-based tilt series alignment was performed using dautoalign4warp68 within the 

Dynamo package running in a Matlab environment19. Alignment parameters were then 

used to generate tomograms at 10 Å/px in Warp. Template matching was performed in 

Warp using a 40 Å lowpass filtered ribosome volume generated from manually picked 

particles, keeping particles with a minimum separation of 80 Å (974,804 particles). The 

top 3% of particles by figure-of-merit across all tomograms were kept (29,245 particles). 

Sub-tomograms were extracted in Warp at 10 Å/px. Ab initio model generation and 3-D 
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refinement were performed in RELION 3.117 resulting in a density map with Nyquist-

limited resolution. Sub-tomograms were re-extracted in Warp at 4 Å/px for further RELION 

3-D refinement and 3-D classification with k=4 classes to remove false positive particle 

picks. The remaining 22,291 ribosomal particles were refined to a resolution of ~8.1 

Å. Between each round of refinement and classification, particles were deduplicated in 

RELION with a cutoff distance of 80Å (removing a total of 360 particles throughout 

processing). The final 22,291 particles were imported to M and processed to produce a ~3.5 

Å resolution map as reported previously27. Particles were then exported as image series 

sub-tomograms from M at several pixel and box sizes for tomoDRGN training, including 

three “single ribosome diameter” scales: 96 px at 3.71 Å/px, 210 px at 1.71 Å/px, 352 px 

at 1.71 Å/px; and one “multiple ribosome diameter” scale: 200 px at 3.71 Å/px. Particles 

were also exported as volume series sub-tomograms using M at 64 px 6 Å/px and 192 px 4 

Å/px for validation of tomoDRGN heterogeneity analysis with traditional STA tools and for 

generation of requisite metadata for mapping particles to tomogram-contextualized locations 

in the tomoDRGN analysis Jupyter notebook.

TomoDRGN network training on EMPIAR-10499 ribosomes

TomoDRGN homogeneous network training was performed on the 22,291 image series 

particles extracted at each of the “single ribosome diameter” image series sub-tomograms 

described above, or on select subsets at 96 px at 3.71 Å/px for homogeneously 

reconstructing subsets of the heterogeneous population. Unless specified otherwise, the 

network architecture was 512×3 (decoder). Each model was trained using dose and tilt loss 

weighting, dose frequency masking, and random tilt sampling.

TomoDRGN heterogeneous network training was performed on the same stack of 22,291 

image series particles at box 96 px and 3.71 Å/px. Unless specified otherwise, the network 

architecture was 256×3 (encoder A), 256×3 (encoder B), and 256×3 (decoder) with the 

dimensionality of the intermediate encoding set to 128, and that of the final latent encoding 

set to 128. Each model was trained using dose and tilt loss weighting, dose frequency 

masking, and random tilt sampling. Classification was performed directly on the latent 

embeddings with either k=20 (used for general visualization) or k=100 (used for detailed 

visualization and particle filtering) k-means clustering as above. The dataset’s latent value 

nearest each k-means cluster center was used to generate a 3-D volume representative of 

that cluster. Following exclusion of 1,310 non-ribosomal particles by separation of such 

volumes from k-100 classification, the remaining 20,981 particles were used to train new 

tomoDRGN models at box sizes of 96 and 200 px with 3.71 Å/px sampling. Membrane 

associated ribosomes (482) identified by k-100 classification of the 200 px trained dataset 

were further isolated to train a new tomoDRGN model with the parameters noted as above.

Visualization and validation

Python scripts—A number of Python scripts were generated to quantify various 

properties of tomoDRGN outputs. Classification accuracy of tomoDRGN latent encodings 

learned for simulated datasets was evaluated by generating a confusion matrix (Fig. 2e). 

Classification reproducibility was evaluated for 100 randomly initialized classifications by 

calculating the Adjusted Rand Index (ARI)69 (Extended Data Fig. 7f). The ARI measures 
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a label-permutation-invariant similarity between two sets of clusterings and scales from 0 

(random labeling) to 1 (identical labeling). Here, we used ARI to measure the similarity 

between the tomoDRGN or cryoDRGN latent clusters and the ground truth class labels.

Volumes generated by tomoDRGN were analyzed by either real space map-map correlation 

coefficient (CC)70, or map-map Fourier shell correlation (FSC) metrics. Map-map FSC 

was used to assess the accuracy of a tomoDRGN homogeneous network reconstruction 

to a reference volume, whereas map-map CC was used to validate consistency of volume 

ensembles produced by tomoDRGN heterogeneous networks, either to themselves or to a 

reference volume. Calculations were performed using Python scripts available within the 

tomoDRGN software. Before calculating map-map FSC curves, a soft mask was calculated 

and applied in Real space. Masks were defined by binarizing the map at ½ of the 99th voxel 

intensity percentile, dilating the mask by 3 px, and softening the mask using a falling cosine 

edge applied over 10 px.

Heterogeneity of a set of EMPIAR-10499 pre-filtered ribosome volumes generated by 

tomoDRGN was quantified by generating all volumes from the final epoch of training’s 

latent values and either (1) calculating the map-map CC to the STA 70S map for each 

tomoDRGN volume (Fig. 5b), or (2) performing principal component analysis on the array 

of all volume’s voxels (shape nvolumes × D3) followed by UMAP dimensionality reduction of 

the first 128 principal components (Fig. 5c).

Finally, Python scripts were used to identify each particle’s nearest neighbor in each 

tomogram, calculate the distance to the nearest neighbor, and calculate the angle to the 

nearest neighbor after rotating to the STA consensus reference frame (Fig. 6c).

Volume subset validation for EMPIAR-10499 ribosomes—Subsets of the 

EMPIAR-10499 ribosomes were identified by tomoDRGN as non-ribosomal (n=1,310), 50S 

(n=852), 70S (n=20,129), or membrane-associated (n=482). Non-ribosomal particles were 

reprocessed in RELION 3.1 using ab initio volume generation with k=5 volume classes and 

all other parameters at their defaults. The 50S, 70S, and membrane-associated ribosome 

populations were reprocessed in RELION 3.1 using 3-D refinement against a corresponding 

real-space cropped 70S volume lowpass filtered to 60 Å. The same three particle subsets 

were also used to train tomoDRGN homogeneous networks as an additional validation, with 

identical training parameters to the full particle stack training detailed above.

Visualization of tomoDRGN volumes in situ—The subtomo2chimerax script (https://

zenodo.org/record/6820119) was adapted to handle tomoDRGN’s unique sub-tomogram 

volumes per particle and is implemented in tomoDRGN. This script places each particle’s 

volume at its source location and orientation in the tomogram context using ChimeraX 

for visualization71,72. All volumes corresponding to EMPIAR-10164 tomogram 43 were 

generated by tomoDRGN at box size 32px and 6.4Å/px using latent coordinates from 

the tomoDRGN model in Fig. 3g, and placed in tomogram 43 with coordinate and angle 

values extracted from the STA refinement in M. Similarly, all volumes corresponding to 

EMPIAR-10499 tomogram 00256 were generated by tomoDRGN at various box and pixel 

sizes using corresponding latent coordinates from tomoDRGN models in Fig. 5d and Fig. 
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6a, and placed in tomogram 00256 with coordinate and angle values extracted from the STA 

refinement in M.

Atomic model-guided analyses of EMPIAR-10499 ribosomes

To aid interpretation of tomoDRGN density maps, atomic models of the 70S ribosome 

(7PHA, 7PHB, and 4V89 which highlighted the L7/L12 dimers) were docked into 

density maps as rigid bodies using ChimeraX. The rRNA of 7PHB was segmented into 

distinct chains corresponding to rRNA helices73 following the MAVEn protocol8 for model-

based analysis of volume ensembles (https://github.com/lkinman/MAVEn). Translation 

states populations were identified by generating maps from the 10-state translation cycle 

previously identified in this dataset (PDB: 7PAH, 7PAI, 7PAJ, 7PAK, 7PAL, 7PAM, 

7PAN, 7PAO, 7PAQ, 7PAR) at 8 Å resolution, aligning with the consensus 10499 70S 

STA reconstruction, and calculating the best-scoring state by map-map CC for each of 

the 20,981 ribosomal volumes generated by tomoDRGN. The predicted atomic model for 

M.pneumoniae SecDF was downloaded from AlphaFold (ID: A0A0H3DPH3) and docked 

into the membrane-associated ribosome STA map in ChimeraX as a rigid body. Other 

components of the canonical Sec holotranslocon and oligosaccharyltransferases were either 

absent in the M. pneumoniae genome or lacked the observed extracellular domain.

CryoDRGN network training on simulated LSU and EMPIAR-10499 ribosome datasets

CryoDRGN v0.3.4 was used to train models for both the simulated ribosome dataset 

(n=20,000) and the unfiltered EMPIAR-10499 dataset (n=22,291), using corresponding 

simulated or STA-derived poses and CTF parameters. Because cryoDRGN treats each 

input image independently, each dataset was reshaped to collapse the tilt axis dimension, 

resulting in particle stacks of size n=820,000 and n=913,931, respectively. Networks were 

trained with architecture 128×3 or 128×6 (encoder), latent dimensionality 8 or 128, and 

256×3 (decoder), as annotated. All models were trained with hyperparameters intended 

to maximize similarity to the respective tomoDRGN analysis: batch size 40, gaussian 

positional featurization, 50 epochs of training, automatic mixed precision enabled, and all 

other parameters adopting default values. Latent space classification and volume sampling 

were performed as described for tomoDRGN above.

Pose perturbations of EMPIAR-10499 ribosomes

Our final RELION 3-D refinement for the tomoDRGN-unfiltered stack of 22,291 ribosomes 

reported angular accuracy of 0.3° and translational accuracy of 0.5Å in the final iterations; 

thus, we titrated perturbations around values of similar magnitude. Particle poses (rotation 

and translation) for these particles were extracted from the 3.5 Å resolution M refinement 

described above and treated as ground truth. Each particle’s rotation was further rotated over 

an axis randomly sampled from the unit sphere by a magnitude (in degrees) sampled from 

a Gaussian distribution parameterized by identical mean and standard deviations of 0.1, 0.2, 

0.4, 0.8, 1.6, 3.2, or 6.4. Each particle’s projection images translation were further translated 

independently in X and Y by a shift sampled uniformly such that the average perturbation 

would be 0.1Å, 0.2Å, 0.4Å, 0.8Å, 1.6Å, 3.2Å, or 6.4Å. This approach produced a total 

of 7 datasets with increasing levels of rotation and translation perturbation. Each dataset 

was used to train a tomoDRGN homogeneous network (decoder architecture of 512×3) and 
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heterogeneous network (architectures for encoder A, encoder B, and decoder of 256×3, with 

encoder A intermediate dimensionality and latent dimensionality of 128). Each model was 

trained using dose and tilt loss weighting, dose frequency masking, and random tilt sampling 

for 50 epochs.

Performance benchmarking

All tomoDRGN and cryoDRGN models were trained on a cluster with nodes each using 

with 2x Intel Xeon Gold 6242R CPU (3.10 GHz, 512 GB RAM) and 2x Nvidia GeForce 

RTX 3090. Reported training times may in some cases be overestimates as up to two 

jobs were allowed to train or evaluate simultaneously on the same node. TomoDRGN 

VRAM requirements are tabulated in Supplementary Tables 1–4. TomoDRGN training and 

analysis requires sufficient disk storage to hold extracted particle stacks (around 50 GB 

for a 20,000 particle dataset with 41 tilts per particle extracted with a 128px box). We 

recommend workstations running tomoDRGN have ~1.5x the particle stack’s size on disk in 

available RAM for most performant execution, though this can be circumvented if needed 

with the --lazy flag. Finally, as total time spent performing tomoDRGN analysis will vary 

tremendously based on the extent of training, tomoDRGN model analysis, and iterative 

processing, the wall-clock times tabulated in Supplementary Tables 1–4 are intended only to 

guide data processing choices.

Powell and Davis Page 20

Nat Methods. Author manuscript; available in PMC 2024 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data

Extended Data Fig. 1. Efficient model training on a weighted subset of pixels improves 
reconstruction quality and compute performance.
(a) Graphical overview of the dose filtering scheme (applied upstream of the decoder) and 

dose and tilt weighting scheme (applied during reconstruction error calculation) for a single 

representative tilt image. Filtering: the fixed optimal exposure curve is used to determine 

which spatial frequencies will be considered as a function of dose; the decoder processes 

only Fourier lattice coordinates within this mask (green lattice circle). Weighting: the 
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squared error of the reconstructed Fourier slice is weighted per-frequency by the exposure-

dependent amplitude attenuation curve and per-slice by the cosine of the corresponding 

stage tilt angle, before backpropagation of the mean squared error (red arrows).

(b) Relative weight of each tilt image assigned to a particle’s reconstruction error during 

model training as a function of spatial frequencies (x-axis), and tilt and dose, which are 

colored yellow to blue from low-to-high dose and tilt angle, assuming a dose symmetric 

tilt scheme (Hagen, Wan et al. 2017). Note that dose-filtering is applied upstream of the 

illustrated reconstruction weights.

(c) Map-map FSC of simulated class E large ribosomal subunit volumes (Davis, Tan et al. 

2016) compared to tomoDRGN homogeneous network reconstructions in the presence or 

absence of the weighting or masking schemes at varying box and pixel sizes.

(d) Spatial frequencies corresponding to FSC=0.5 map-map correlation with the ground 

truth volume plotted against wall time for model training.

(e) Final tomoDRGN reconstructed volumes (left and center) and ground truth volumes 

(right) in the presence or absence of the weighting or masking schemes at box and pixel 

sizes assessed in panels (c) and (d).
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Extended Data Fig. 2. Random selection of tilts per epoch allows flexible and robust model 
training for datasets with non-uniform numbers of tilt-images per particle.
(a) Graphical summary of a dataset with non-uniform numbers of tilt images per particle. 

Here, the minimum number of tilt images for any particle is 3.

(b) Corresponding tomoDRGN network architecture for random sampling and ordering of 3 

tilt images per particle.

(c) Mean per-class volumetric correlation coefficient for identical tomoDRGN models 

trained on 41 sequentially sampled tilts (top) or 41 randomly sampled tilts (bottom). At 
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5 epoch intervals, 25 random volumes were generated from each class for correlation 

coefficient calculation to ground truth ribosome assembly intermediate volumes (classes 

B-E). Error bars denote standard error of the mean CC.

(d) Nine tomoDRGN models with identical architectures were trained with the indicated 

number of tilts sampled per particle (total available tilts = 41). PCA (left) and UMAP 

(right) dimensionality reduction of each final epoch’s latent embeddings. Once trained, up 

to 10 randomly sampled and permuted tilt images for one representative particle from each 

volume class were embedded using the corresponding pretrained tomoDRGN model and are 

superimposed as colored points. Note increased dispersion of colored points as number of 

tilts sampled during training decreased.

(e) For each ribosomal large subunit class (B-E), 25 particles were randomly selected and 

up to 10 subsets of their tilt images were randomly sampled and permuted as in (d). In the 

heatmap, row indices refer to models trained in (d) using different numbers of sampled tilts 

(1–41), and columns denote epochs of training with that model. For each particle, each tilt 

subset was evaluated with the corresponding tomoDRGN model and the ratio of standard 

deviations of each particle’s 10 latent embeddings to all particles’ latent embeddings was 

calculated. The mean ratio across all particles, which measures the dispersion of encoder 

embeddings, is plotted per ribosomal LSU class. Here, lower dispersion indicates better 

performance.

(f) Particles and tilt subsets were selected as in (e). At each indicated epoch of training, 

the corresponding tomoDRGN model was used to generate volumes for each particle’s 

tilt subsets. For each such volume, the correlation coefficient was calculated between that 

volume and the corresponding ground truth volume. The mean across all particles at each 

epoch for each model is shown as a heatmap per ribosomal LSU class. Here, higher CC 

indicates improved performance.
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Extended Data Fig. 3. TomoDRGN and MAVEn identify structural variations within HIV Gag 
lattice.
(a) Mask used for MAVEn-based occupancy analysis of NC layer density (gray, translucent). 

PDB: 5L93 is shown for reference, with CA-NTD colored salmon, CA-CTD colored green, 

and CA-SP1 helix colored purple.

(b) Histogram and kernel density estimate of NC layer occupancy across 500 volumes 

sampled from the trained tomoDRGN model, excluding junk particles (see Fig 3g).

(c) Representative volumes sampling along the NC occupancy histogram, colored as 

indicated in (b). Volumes are rendered at constant isosurface and same pose as in (a).
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Extended Data Fig. 4. TomoDRGN identifies non-ribosomal particles picked from 
EMPIAR-10499 tomograms.
(a) Latent UMAP and corresponding sampled volumes from tomoDRGN heterogeneous 

network training from Fig. 5a. Eight representative non-ribosomal particles identified 

through manual inspection of k=100 k-means clustering of latent space are rendered at a 

constant isosurface and pose.

(b) Two tomograms are shown in slice view using Cube (https://github.com/dtegunov/cube) 

with locations of particles labeled as non-ribosomal annotated within each tomogram.
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(c) RELION3-based multiclass (k=5) ab initio sub-tomogram volume generation using 

particles annotated as non-ribosomal via tomoDRGN (n=1,310).

Extended Data Fig. 5. TomoDRGN visualizes structurally heterogeneous disomes.
(a) An EMPIAR-10499 tomogram reconstructed with tomoDRGN intermolecular volumes. 

Volumes were generated for each ribosome using the trained intermolecular tomoDRGN 

model, colored as in Fig. 6a, and positioned correspondingly in the source tomogram. 

Transparent ribosomes correspond to free 50S and 70S ribosomes as annotated in Fig. 6a.

(b) The same tomogram as in panel (a) reconstructed with tomoDRGN intramolecular 

volumes. Volumes were generated for each ribosome using the trained intramolecular 

tomoDRGN model (Fig 5d). Pairs of volumes that were colored as disomes or trisomes 
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and that exhibited mutually overlapping main and adjacent monosomes when mapped back 

to the tomogram in panel (a) were combined in ChimeraX (n=21 disomes). Disomes are 

colored by manual classification into three classes with representative volumes indicated 

with asterisks and shown in panels (c-e).

(c) A representative disome exhibiting continuous mRNA density between the two 

monosomes, including unattributed globular density along the mRNA (n=7 disomes). 

Density of each monosome fit by the indicated atomic model, excluding tRNA, mRNA, 

and elongation factors, has been removed using ChimeraX’s zone functionality (Inset).

(d) A representative disome exhibiting continuous mRNA density between the two 

monosomes (n=9 disomes). Inset as in panel (c).

(e) A representative ribosome pair with no apparent structural contact between the two 

monosomes (n=5 disomes). Inset as in panel (c).

Extended Data Fig. 6. Comparison of tomoDRGN-generated volumes to traditional sub-
tomogram averaged volumes.
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Comparison of volumes generated by a full tomoDRGN network (row 1), an isolated 

decoder neural network (row 2), or traditional sub-tomogram averaging (row 3). A full 

tomoDRGN network was trained on the heterogeneous ribosomal particle stack (row 

1, n=20,981, see Figs. 5d and 6a) and representative volumes are depicted. Separate 

tomoDRGN homogeneous decoder networks were trained on one of three homogeneous 

substacks corresponding to (a) 70S particles (n=20,129); (b) 50S particles (n=852); or (c) 
SecDF-positive ribosomes (n=380). Traditional STA was also performed on each of these 

three particles stacks.
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Extended Data Fig. 7. CryoDRGN fails to consistently encode structural heterogeneity using a 
simulated tilt series dataset.
(a) Schematic of two cryoDRGN network architectures that were tested, and the 

tomoDRGN architecture used in Fig. 2c–e. Each model was trained using the same 

simulated dataset of ribosome large subunit assembly classes B-E (Davis, Tan et al. 2016) 

consisting of 41 tilt images for each of 5,000 particles for each of the four assembly states 

and thus the dataset was treated by cryoDRGN as n=820,000 images (see Methods).
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(b) UMAP of final epoch latent embeddings of each particle image, with kernel density 

estimates independently estimated and plotted for each of the four ground truth assembly 

states.

(c) UMAP of final epoch latent embedding with k=4 k-means latent classification of the 

resulting latent space. KDEs were independently estimated and plotted for each of the four 

k-means classes. The predicted labels are annotated by both the k-means class index (0–3) 

and corresponding ground truth class label (B-E) of the central particle within each k-means 

class.

(d) Confusion matrix of ground truth class labels versus k=4 k-means latent classification.

(e) Volumes sampled at the k=4 k-means cluster centers illustrated in (c). Volumes are 

annotated by the k-means class index and ground truth class label and colored by the ground 

truth class label.

(f) Violin plot of consistency of k=4 k-means clustering of each model by Adjusted Rand 

Index (Hubert and Arabie 1985) (n = 100 randomly seeded initializations, higher values 

correspond to greater fidelity to ground truth classification).
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Extended Data Fig. 8. CryoDRGN learns errant structural heterogeneity in an exemplar 
tomographic dataset.
Two cryoDRGN models (a, b) were trained on the unfiltered particle stack of Mycoplasma 
pneumoniae ribosomes from Fig. 5a (n = 22,291 particles, treated as n = 913,931 images). 

The latent space is shown as a KDE plot following UMAP dimensionality reduction, with 

k=20 k-means class center particles annotated (left) and corresponding volumes visualized 

(right). Note that many putative 70S particles lack density in the particle core. A reference 
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70S volume sampled from tomoDRGN’s model in Fig. 5a is shown in the same pose for 

comparison.

Extended Data Fig. 9. CryoDRGN’s learned latent space embeddings exhibit undesirable 
correlations with tilt image index.
(a) Two cryoDRGN models were tested on the unfiltered particle stack of Mycoplasma 
pneumoniae ribosomes from Fig. 5a. The latent space is shown as a KDE plot following 

UMAP dimensionality reduction. The latent embeddings were binned by the tilt image 

index, and the median value across each bin is annotated.
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(b) KDEs from panel A replotted after binning by tilt image index quartiles.

(c) KDEs from panel A with annotated positions corresponding to three representative 

particles evaluated using their 5th, 15th, 25th, or 35th tilt images.

(d) Volumes generated from cryoDRGN using the latent embeddings highlighted in panel C.

Extended Data Fig. 10. Assessment of tomoDRGN sensitivity to pose accuracy.
(a) The unfiltered stack of EMPIAR-10499 ribosomes in situ from Fig. 5a was used to train 

a series of tomoDRGN decoder-only models with increasing levels of random perturbations 
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from STA-derived, “ground truth” rotation and translation poses (see Methods). The 

resulting map-map FSC curves against the STA ribosomal reconstruction are shown.

(b) Final tomoDRGN decoder-only reconstructed volumes corresponding to the FSC curves 

shown in (a). Volumes are lowpass filtered to the resolution where their map-map FSC to the 

STA ribosomal reconstruction crossed 0.5.

(c, d, e) UMAP of first 128 principal components of volume ensembles consisting of 

volumes generated for every particle, using tomoDRGN models trained on EMPIAR-10499 

unfiltered ribosome stacks with indicated levels of pose perturbation. Particles annotated as 

70S, 50S, and NR are colored as in Fig. 5c, with representative volumes of each class shown 

below. Note that NR particles are expected to be structurally diverse.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Extracted particle sub-tomograms from reprocessing of EMPIAR-10499 have been 

deposited as EMPIAR-11843. Requisite EMDB volumes and PDB models to generate 

synthetic data using cryoSRPNT as described in the methods are deposited at https://

zenodo.org/doi/10.5281/zenodo.10076628. The trained models, latent embeddings, and 

particle classifications used to analyze all datasets presented have been deposited at https://

zenodo.org/doi/10.5281/zenodo.10076628 for simulated datasets and https://zenodo.org/doi/

10.5281/zenodo.10093310 for experimental datasets. Maps corresponding to C1 holoferritin 

and C1 apoferritin from EMPIAR-10491 generated in M have been deposited as 

EMD-43285 and EMD-43286. The map of secDF-associated 70S ribosome from 

EMPIAR-10499 generated in RELION has been deposited as EMD-43287.

REFERENCES

1. Bai XC, McMullan G & Scheres SH How cryo-EM is revolutionizing structural biology. Trends 
Biochem Sci 40, 49–57 (2015). [PubMed: 25544475] 

2. Murata K & Wolf M Cryo-electron microscopy for structural analysis of dynamic biological 
macromolecules. Biochim Biophys Acta Gen Subj 1862, 324–334 (2018). [PubMed: 28756276] 

3. Cheng Y, Grigorieff N, Penczek PA & Walz T A primer to single-particle cryo-electron microscopy. 
Cell 161, 438–449 (2015). [PubMed: 25910204] 

4. Zhong ED, Bepler T, Berger B & Davis JH CryoDRGN: reconstruction of heterogeneous cryo-EM 
structures using neural networks. Nat Methods 18, 176–185 (2021). [PubMed: 33542510] 

5. Punjani A & Fleet DJ 3D variability analysis: Resolving continuous flexibility and discrete 
heterogeneity from single particle cryo-EM. J Struct Biol 213, 107702 (2021). [PubMed: 33582281] 

6. Chen M & Ludtke SJ Deep learning-based mixed-dimensional Gaussian mixture model for 
characterizing variability in cryo-EM. Nat Methods 18, 930–936 (2021). [PubMed: 34326541] 

Powell and Davis Page 35

Nat Methods. Author manuscript; available in PMC 2024 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://zenodo.org/doi/10.5281/zenodo.10076628
https://zenodo.org/doi/10.5281/zenodo.10076628
https://zenodo.org/doi/10.5281/zenodo.10076628
https://zenodo.org/doi/10.5281/zenodo.10076628
https://zenodo.org/doi/10.5281/zenodo.10093310
https://zenodo.org/doi/10.5281/zenodo.10093310


7. Dashti A et al. Retrieving functional pathways of biomolecules from single-particle snapshots. Nat 
Commun 11, 4734 (2020). [PubMed: 32948759] 

8. Kinman LF, Powell BM, Zhong ED, Berger B & Davis JH Uncovering structural ensembles 
from single-particle cryo-EM data using cryoDRGN. Nat Protoc 18, 319–339 (2023). [PubMed: 
36376590] 

9. Sun J, Kinman LF, Jahagirdar D, Ortega J & Davis JH KsgA facilitates ribosomal small subunit 
maturation by proofreading a key structural lesion. Nat Struct Mol Biol (2023).

10. Asano S, Engel BD & Baumeister W In Situ Cryo-Electron Tomography: A Post-Reductionist 
Approach to Structural Biology. J Mol Biol 428, 332–343 (2016). [PubMed: 26456135] 

11. Lovatt M, Leistner C & Frank RAW Bridging length scales from molecules to the whole organism 
by cryoCLEM and cryoET. Faraday Discuss (2022).

12. Xue L et al. Visualizing translation dynamics at atomic detail inside a bacterial cell. Nature 610, 
205–211 (2022). [PubMed: 36171285] 

13. Gemmer M et al. Visualization of translation and protein biogenesis at the ER membrane. Nature 
614, 160–167 (2023). [PubMed: 36697828] 

14. Hoffmann PC et al. Structures of the eukaryotic ribosome and its translational states in situ. Nat 
Commun 13, 7435 (2022). [PubMed: 36460643] 

15. Zhang P Advances in cryo-electron tomography and subtomogram averaging and classification. 
Curr Opin Struct Biol 58, 249–258 (2019). [PubMed: 31280905] 

16. Castano-Diez D & Zanetti G In situ structure determination by subtomogram averaging. Curr Opin 
Struct Biol 58, 68–75 (2019). [PubMed: 31233977] 

17. Bharat TA & Scheres SH Resolving macromolecular structures from electron cryo-tomography 
data using subtomogram averaging in RELION. Nat Protoc 11, 2054–65 (2016). [PubMed: 
27685097] 

18. Pyle E & Zanetti G Current data processing strategies for cryo-electron tomography and 
subtomogram averaging. Biochem J 478, 1827–1845 (2021). [PubMed: 34003255] 

19. Castano-Diez D, Kudryashev M, Arheit M & Stahlberg H Dynamo: a flexible, user-friendly 
development tool for subtomogram averaging of cryo-EM data in high-performance computing 
environments. J Struct Biol 178, 139–51 (2012). [PubMed: 22245546] 

20. Hrabe T et al. PyTom: a python-based toolbox for localization of macromolecules in cryo-electron 
tomograms and subtomogram analysis. J Struct Biol 178, 177–88 (2012). [PubMed: 22193517] 

21. Nickell S et al. TOM software toolbox: acquisition and analysis for electron tomography. J Struct 
Biol 149, 227–34 (2005). [PubMed: 15721576] 

22. Scheres SHW, Melero R, Valle M & Carazo JM Averaging of electron subtomograms and random 
conical tilt reconstructions through likelihood optimization. Structure 17, 1563–1572 (2009). 
[PubMed: 20004160] 

23. Winkler H et al. Tomographic subvolume alignment and subvolume classification applied to 
myosin V and SIV envelope spikes. J Struct Biol 165, 64–77 (2009). [PubMed: 19032983] 

24. Bartesaghi A et al. Classification and 3D averaging with missing wedge correction in biological 
electron tomography. J Struct Biol 162, 436–50 (2008). [PubMed: 18440828] 

25. Walz J et al. Electron Tomography of Single Ice-Embedded Macromolecules: Three-Dimensional 
Alignment and Classification. J Struct Biol 120, 387–95 (1997). [PubMed: 9441941] 

26. Zivanov J et al. A Bayesian approach to single-particle electron cryo-tomography in RELION-4.0. 
Elife 11(2022).

27. Tegunov D, Xue L, Dienemann C, Cramer P & Mahamid J Multi-particle cryo-EM refinement 
with M visualizes ribosome-antibiotic complex at 3.5 A in cells. Nat Methods 18, 186–193 (2021). 
[PubMed: 33542511] 

28. Chen M et al. A complete data processing workflow for cryo-ET and subtomogram averaging. Nat 
Methods 16, 1161–1168 (2019). [PubMed: 31611690] 

29. Himes BA & Zhang P emClarity: software for high-resolution cryo-electron tomography and 
subtomogram averaging. Nat Methods 15, 955–961 (2018). [PubMed: 30349041] 

30. Jiang W et al. A transformation clustering algorithm and its application in polyribosomes structural 
profiling. Nucleic Acids Res 50, 9001–9011 (2022). [PubMed: 35811088] 

Powell and Davis Page 36

Nat Methods. Author manuscript; available in PMC 2024 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



31. Cheng J, Wu C, Li J, Yang Q & Zhang X Visualizing translating dynamics in situ at high spatial 
and temporal resolution in eukaryotic cells. bioRxiv, 2023.07.12.548775 (2023).

32. Fedry J et al. Visualization of translation reorganization upon persistent collision stress in 
mammalian cells. bioRxiv, 2023.03.23.533914 (2023).

33. Harastani M, Eltsov M, Leforestier A & Jonic S TomoFlow: Analysis of Continuous 
Conformational Variability of Macromolecules in Cryogenic Subtomograms based on 3D Dense 
Optical Flow. J Mol Biol 434, 167381 (2022). [PubMed: 34848215] 

34. Harastani M, Eltsov M, Leforestier A & Jonic S HEMNMA-3D: Cryo Electron Tomography 
Method Based on Normal Mode Analysis to Study Continuous Conformational Variability of 
Macromolecular Complexes. Front Mol Biosci 8, 663121 (2021). [PubMed: 34095222] 

35. Stolken M et al. Maximum likelihood based classification of electron tomographic data. J Struct 
Biol 173, 77–85 (2011). [PubMed: 20719249] 

36. Bartesaghi A, Lecumberry F, Sapiro G & Subramaniam S Protein secondary structure 
determination by constrained single-particle cryo-electron tomography. Structure 20, 2003–13 
(2012). [PubMed: 23217682] 

37. Balyschew N et al. Streamlined Structure Determination by Cryo-Electron Tomography and 
Subtomogram Averaging using TomoBEAR. bioRxiv, 2023.01.10.523437 (2023).

38. Kingma DP & Welling M Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 
(2013).

39. Zhong ED, Bepler T, Davis JH & Berger B Reconstructing continuous distributions of 3D protein 
structure from cryo-EM images. arXiv preprint arXiv:1909.05215 (2019).

40. Bepler T, Zhong E, Kelley K, Brignole E & Berger B Explicitly disentangling image content from 
translation and rotation with spatial-VAE. Advances in Neural Information Processing Systems 
32(2019).

41. Higgins I et al. beta-vae: Learning basic visual concepts with a constrained variational framework. 
in International conference on learning representations (2016).

42. Becht E et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat 
Biotechnol (2018).

43. Grant T & Grigorieff N Measuring the optimal exposure for single particle cryo-EM using a 2.6 A 
reconstruction of rotavirus VP6. Elife 4, e06980 (2015). [PubMed: 26023829] 

44. Bharat TAM, Russo CJ, Lowe J, Passmore LA & Scheres SHW Advances in Single-Particle 
Electron Cryomicroscopy Structure Determination applied to Sub-tomogram Averaging. Structure 
23, 1743–1753 (2015). [PubMed: 26256537] 

45. Hayward SB & Glaeser RM Radiation damage of purple membrane at low temperature. 
Ultramicroscopy 04, 201–10 (1979). [PubMed: 473421] 

46. Glaeser RM Prospects for extending the resolution limit of the electron microscope. J Microsc 117, 
77–91 (1979). [PubMed: 490637] 

47. Baxter WT, Grassucci RA, Gao H & Frank J Determination of signal-to-noise ratios and spectral 
SNRs in cryo-EM low-dose imaging of molecules. J Struct Biol 166, 126–32 (2009). [PubMed: 
19269332] 

48. Davis JH et al. Modular Assembly of the Bacterial Large Ribosomal Subunit. Cell 167, 1610–1622 
e15 (2016). [PubMed: 27912064] 

49. Davis JH & Williamson JR Structure and dynamics of bacterial ribosome biogenesis. Philos Trans 
R Soc Lond B Biol Sci 372(2017).

50. Guo H & Rubinstein JL Structure of ATP synthase under strain during catalysis. Nat Commun 13, 
2232 (2022). [PubMed: 35468906] 

51. Schur FK et al. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and 
maturation. Science 353, 506–8 (2016). [PubMed: 27417497] 

52. Mendonca L et al. CryoET structures of immature HIV Gag reveal six-helix bundle. Commun Biol 
4, 481 (2021). [PubMed: 33863979] 

53. Stojkovic V et al. Assessment of the nucleotide modifications in the high-resolution cryo-electron 
microscopy structure of the Escherichia coli 50S subunit. Nucleic Acids Res 48, 2723–2732 
(2020). [PubMed: 31989172] 

Powell and Davis Page 37

Nat Methods. Author manuscript; available in PMC 2024 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



54. Fromm SA et al. The translating bacterial ribosome at 1.55 A resolution generated by cryo-EM 
imaging services. Nat Commun 14, 1095 (2023). [PubMed: 36841832] 

55. Chen SS, Sperling E, Silverman JM, Davis JH & Williamson JR Measuring the dynamics of E. 
coli ribosome biogenesis using pulse-labeling and quantitative mass spectrometry. Mol Biosyst 8, 
3325–34 (2012). [PubMed: 23090316] 

56. Turk M & Baumeister W The promise and the challenges of cryo-electron tomography. FEBS Lett 
594, 3243–3261 (2020). [PubMed: 33020915] 

57. Saito K et al. Ribosome collisions induce mRNA cleavage and ribosome rescue in bacteria. Nature 
603, 503–508 (2022). [PubMed: 35264790] 

58. Rangan R et al. Deep reconstructing generative networks for visualizing dynamic biomolecules 
inside cells. bioRxiv, 2023.08.18.553799 (2023).

59. Vasyliuk D et al. Conformational landscape of the yeast SAGA complex as revealed by cryo-EM. 
Sci Rep 12, 12306 (2022). [PubMed: 35853968] 

60. Sekne Z, Ghanim GE, van Roon AM & Nguyen THD Structural basis of human telomerase 
recruitment by TPP1-POT1. Science 375, 1173–1176 (2022). [PubMed: 35201900] 

61. Rice G, Wagner T, Stabrin M & Raunser S TomoTwin: Generalized 3D Localization 
of Macromolecules in Cryo-electron Tomograms with Structural Data Mining. bioRxiv, 
2022.06.24.497279 (2022).

62. Tancik M et al. Fourier features let networks learn high frequency functions in low dimensional 
domains. Advances in Neural Information Processing Systems 33, 7537–7547 (2020).

63. Bracewell RN Strip integration in radio astronomy. Australian Journal of Physics 9, 198–217 
(1956).

64. Moebel E et al. Deep learning improves macromolecule identification in 3D cellular cryo-electron 
tomograms. Nat Methods 18, 1386–1394 (2021). [PubMed: 34675434] 

65. Luo Z, Ni F, Wang Q & Ma J OPUS-DSD: deep structural disentanglement for cryo-EM single-
particle analysis. Nat Methods (2023).

66. Tegunov D & Cramer P Real-time cryo-electron microscopy data preprocessing with Warp. Nat 
Methods 16, 1146–1152 (2019). [PubMed: 31591575] 

67. Zheng S et al. AreTomo: An integrated software package for automated marker-free, motion-
corrected cryo-electron tomographic alignment and reconstruction. J Struct Biol X 6, 100068 
(2022). [PubMed: 35601683] 

68. Burt A, Gaifas L, Dendooven T & Gutsche I A flexible framework for multi-particle refinement in 
cryo-electron tomography. PLoS Biol 19, e3001319 (2021). [PubMed: 34437530] 

69. Hubert L & Arabie P Comparing partitions. Journal of Classification 2, 193–218 (1985).

70. Afonine PV et al. New tools for the analysis and validation of cryo-EM maps and atomic models. 
Acta Crystallogr D Struct Biol 74, 814–840 (2018). [PubMed: 30198894] 

71. Pettersen EF et al. UCSF ChimeraX: Structure visualization for researchers, educators, and 
developers. Protein Sci 30, 70–82 (2021). [PubMed: 32881101] 

72. Goddard TD et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. 
Protein Sci 27, 14–25 (2018). [PubMed: 28710774] 

73. Petrov AS et al. Secondary structures of rRNAs from all three domains of life. PLoS One 9, 
e88222 (2014). [PubMed: 24505437] 

Powell and Davis Page 38

Nat Methods. Author manuscript; available in PMC 2024 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: A neural network architecture to analyze structurally heterogeneous particles imaged 
by cryo-ET.
(a) A typical sample and data processing workflow to produce tomoDRGN inputs. The 

sample (e.g., a bacterial cell) is applied to a grid, plunge frozen, and optionally thinned. A 

series of TEM images of a target region are collected at different stage tilts. A tomographic 

volume is reconstructed using weighted back-projection of all tilt images. Instances of 

the target particle are identified (blue boxes) and extracted as 3-D voxel arrays. Iterative 

sub-tomogram averaging (STA) is used to reconstruct a consensus density map. Per-particle 

2-D tilt images are then re-extracted from the source tilt series images and parameters (e.g. 
pose, defocus, etc.) estimated from STA are associated with the images.

(b) The tomoDRGN network architecture and training design. Each particle’s set of tilt 

images are independently passed through Encoder A, then jointly passed through Encoder B, 

thereby mapping all tilt images of a particle to one embedding (z) in a low dimensionality 

latent space. The decoder network (Dec) uses the latent embedding and a featurized voxel 

coordinate to decode a corresponding set of images pixel-by-pixel. Note that the decoder 

can learn a homogeneous structure by excluding the encoder module (green). The network is 

trained using a loss function (grey arrows) that depends on the input images, reconstructed 

images, and z (red arrows).
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(c) Graphical signposts for volumes generated or analyzed by different reconstruction tools. 

These signposts are used throughout this manuscript when volumes are displayed to clarify 

how they were generated.
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Figure 2: TomoDRGN recovers compositional and conformational heterogeneity in simulated 
datasets.
(a) Illustration of the method used to simulate tilt series particle stacks corresponding to four 

assembly states (B-E) of the bacterial large ribosomal subunit48.

(b) Left, a tomoDRGN homogeneous network reconstruction of the simulated class E 

dataset after 50 epochs of training using simulated images with a Nyquist resolution limit 

of 7.1 Å. Right, Fourier Shell Correlation between the tomoDRGN reconstruction and the 

ground truth volume at each of 50 epochs of training (purple to yellow).

(c) First two principal components (left) and UMAP embeddings (right) of tomoDRGN 

latent space when trained on the simulated four class dataset, colored by k=4 k-means 

classification of latent space.

(d) Ground truth ribosomal volumes (top) and corresponding tomoDRGN-reconstructed 

volumes (bottom) sampled from the median latent encoding of each of the k=4 k-means 

classes in (c).

(e) Confusion matrix of k-means clustering class labels from (c) against ground truth class 

labels.

Powell and Davis Page 41

Nat Methods. Author manuscript; available in PMC 2024 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(f) Superposition of yeast mitochondrial ATP synthase structures undergoing conformational 

changes during ATP hydrolysis50. Maps are colored purple to yellow along the simulated 

reaction coordinate.

(g) Voxel-based principal component analysis (vPCA)9 of 500 tomoDRGN-generated 

volumes sampled from a tomoDRGN model trained on the simulated ATP synthase dataset 

from panel (f). Points corresponding to each of the 500 tomoDRGN-generated volumes are 

colored according to their position along the simulated ground-truth reaction coordinate (see 

color scale). A subset of 30 such maps are sampled along the trajectory and outlined with a 

pink-to-purple color gradient, and these maps are presented in Supplementary Movie 1.

(h) Superposition of 6 tomoDRGN-generated volumes sampled down the continuous 

coordinate visualized in panel (g) and colored accordingly.
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Figure 3: TomoDRGN finds residual heterogeneity within primarily-homogeneous purified 
particles.
(a) Consensus STA apoferritin structure refined with C1 symmetry (EMPIAR-10491, n = 

25,381 particles).

(b) UMAP dimensionality reduction of tomoDRGN latent encodings from training on 

apoferritin dataset.

(c) Three volumes generated from tomoDRGN latent encodings sampled as indicated in (b) 

and rendered in their entirety (left) or clipped in plane (right).
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(d) Consensus STA reconstructions of apoferritin (n = 16,576 particles; top) and iron-loaded 

ferritin (n = 542 particles; bottom) from multi-species refinement in M with C1 symmetry 

using tomoDRGN’s particle classifications, rendered at constant isosurface as in (c).

(e) Gold standard FSC curves between half-maps from the final round of M refinement with 

C1 symmetry for unfiltered apoferritin particles (blue) and filtered apoferritin (yellow) and 

iron-loaded ferritin particles (green) (left). Example of local density quality before (blue) 

and after (yellow) tomoDRGN particle filtering of apoferritin particles (right).

(f) Consensus STA HIV gag structure refined with C1 symmetry (EMPIAR-10164, 

n=18,325 particles).

(g) UMAP dimensionality reduction of tomoDRGN latent encodings from training on HIV 

Gag dataset.

(h) Four illustrative volumes generated from tomoDRGN latent encodings sampled as 

indicated in (g). Note increasing density corresponding to the lower NC layer in the yellow 

and cyan maps relative to that in gray.

(i) Weighted back-projection reconstructions of isolated structural classes using 

tomoDRGN’s particle classifications (from left to right, n = 11,449 particles, 3,546 particles, 

1,444 particles, and 1,674 particle), rendered at constant isosurface.

(j) An EMPIAR-10164 tomogram reconstructed with tomoDRGN. Volumes were 

generated for each Gag hexamer using tomoDRGN, colored as in (h, i), and positioned 

correspondingly in the source tomogram. Inset highlights two representative VLPs.
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Figure 4: TomoDRGN resolves high resolution features from sub-tomograms collected in situ.
(a) M. pneumonaie ribosomal volume obtained from traditional STA processing (n=22,291 

particles imaged in situ).

(b) Gold standard FSC curve between half-maps for the volume shown in (a). The second 

y-axis depicts a histogram of local resolution throughout the map.

(c) TomoDRGN homogeneous reconstruction of the particles used for the reconstruction in 

(a), lowpass filtered to 3.5Å.

(d) Map-to-map FSC of three tomoDRGN homogeneous reconstructions of the particle 

stack in (a) at indicated box and pixel sizes against corresponding STA volumes. Circles 

denote the Nyquist limit for each particle stack.

(e) Local density maps, lowpass filtered at 3.5Å, resulting from tomoDRGN homogeneous 

reconstruction in (c).
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Figure 5: TomoDRGN uncovers structural heterogeneity in ribosomes imaged in situ
(a) UMAP of tomoDRGN latent embeddings (n=22,291 particles) shown as gray kernel 

density estimate (KDE), overlaid with scatter plot depicting latent embedding locations 

of large-ribosomal-subunit-only (yellow) or non-ribosomal particles (blue) identified via 

k=100 k-means classification of latent space and manual inspection of the 100 related 

volumes. Representative volumes generated from latent embeddings annotated as 70S, 50S, 

or non-ribosomal (NR) also depicted.
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(b) Volumes (box=96 px) were generated from every particle’s latent embedding, and 

volumetric cross-correlation (CC) between the 70S STA map and these volumes was 

calculated. Histograms of CC are shown for volumes assigned as 70S (top), 50S (middle) 

and non-ribosomal (bottom) particles as in (a).

(c) Volumes from panel (b) were subjected to principal component analysis. UMAP 

dimensionality reduction of the first 128 principal components is plotted as a KDE 

with scatterplot corresponding to assignments of 70S, 50S, or non-ribosomal from (a) 

superimposed.

(d) UMAP of tomoDRGN latent embeddings (n=20,981; non-ribosomal particles excluded). 

Colored volumes sampled from correspondingly colored points on UMAP plot are shown 

with red asterisks and insets highlighting regions of notable structural variability. A 

transparent grey volume corresponding to a tomoDRGN reconstruction of a 70S•EF-Tu 

volume is provided for visual reference.

(e) MAVEn analysis9 of 500 volumes sampled from the tomoDRGN model in panel (d) 

plotted as a clustered heatmap with columns corresponding to proteins and rRNA structural 

elements (Ward-linkage, Euclidean-distance), and rows corresponding to the 500 sampled 

volumes (Ward-linkage, Correlation-distance). Distinct volume classes corresponding to 50S 

and 70S particles as identified by a row-wise threshold on this clustermap are also shown.
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Figure 6: TomoDRGN captures intermolecular heterogeneity in situ
(a) UMAP of tomoDRGN latent embeddings (n=20,981 particles re-extracted with box 

size ~3x particle radius). Colored volumes sampled from correspondingly colored points in 

UMAP are shown.

(b) Violin plot of the distance from each particle in the indicated classes from panel (a) to its 

nearest neighbor ribosome. The right bound of the x-axis corresponds to the box diameter, 

and the red interval on the x-axis corresponds to typical inter-ribosome distances in a 

prokaryotic polysome. Mollweide projection histograms for each class highlighted in panel 

(a), showing directions to each ribosome’s nearest neighbor ribosome, following rotation to 

the consensus pose.
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(c) Distribution of primary structural classes per tomogram. Column width is proportional to 

each tomogram’s particle count. Within a column, the height of each color is proportional to 

the population of that structural class within that tomogram. Classes are colored as in (a).

(d) Screenshot from tomoDRGN’s interactive tomogram viewer showing all ribosomes for 

a single tomogram (blue cones) with ribosomes corresponding to membrane-associated 

classes further annotated as red spheres.

(e) UMAP of tomoDRGN latent embeddings (n=482) of membrane-associated ribosomes. 

Colored volumes are sampled from correspondingly colored points in latent space. Relative 

occupancy of globular extracellular density (n=482) is plotted as a histogram with a red 

line noting manually assigned threshold defining particles bearing the extracellular density 

(n=380).

(f) STA reconstruction of membrane-associated ribosomes bearing extracellular density 

identified by tomoDRGN with docked atomic model of Mycoplasma pneumoniae SecDF 

predicted using Alphafold (AF: A0A0H3DPH3).
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