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Lattice-basedmean-fieldmodels of ionic liquids neglect charge discreteness and
ion correlations. To address these limitations, we propose separating the short-
range and long-range parts of the electrostatic interaction by truncating the
Coulomb potential below a fixed distance that is equal to or slightly larger than
that between neighboring ions. Interactions and correlations between adjacent
ions can then be modeled explicitly, whereas longer-ranged electrostatic
interactions are captured on the mean-field level. We implement this
approximation into the framework of modeling a compact, solvent-free ionic
liquid by, first, considering terms up to the fourth order of the operator that
represents the truncated Coulomb potential and, second, by accounting for
electrostatic correlations between pairs of neighboring ions on the level of the
quasi-chemical approach. A set of boundary conditions for the resulting self-
consistent fourth-order differential equation follows from functional
minimization of the free energy. The differential capacitance of an ionic liquid
in contact with a planar electrode is calculated analytically up to quadratic order
in the electrode’s surface charge density by solving the linearized model and
applying a perturbation approach valid beyond the linear regime. We
demonstrate that charge discreteness enhances the differential capacitance,
whereas electrostatic correlations between ion–ion pairs drive the transition
from a bell-shaped to a camel-shaped profile of differential capacitance. Our
approach offers a systematic way to further improve the treatment of charge
discreteness, account for short-range electrostatic and non-electrostatic
interactions, and include higher-order ion–ion correlations.
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1 Introduction

Ionic liquids consist of mixtures of cations and anions, usually of asymmetric size, that
can remain in a liquid phase at temperatures typically below 100°C (Hayes et al., 2015). After
initially being described as “water-free salts” (Walden, 1914), ionic liquids continue to gain
attention due to their unique properties, including low volatility, high thermal stability, and
excellent solvating capabilities (Sowmiah et al., 2009; Eyckens and Henderson, 2019). Given
the diversity of molecular structures that form ionic liquids (Hayes et al., 2015) and their
potential applications in energy conversion and storage (Armand et al., 2009;Wishart, 2009;
Torimoto et al., 2010; Watanabe et al., 2017), it is not surprising that optimizing
function–structure relationships is both complex and highly rewarding (Silva et al.,
2020; Wang et al., 2020; Khlyupin et al., 2023; Nesterova et al., 2025). The challenges
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extend even to the level of understanding underlying
thermodynamic and dynamic properties of ionic liquids
(Weingärtner, 2008; Silva et al., 2020; Nordness and Brennecke,
2020). Compared to the ions in ordinary electrolytes, those of ionic
liquids are densely packed and thus subject to ion–ion correlations
due to electrostatic and non-electrostatic interactions (Del Pópolo
and Voth, 2004).

Classical mean-field modeling (Kornyshev, 2007; May, 2019;
Goodwin et al., 2023), which is a powerful conceptual tool to
characterize ions in a solvent at sufficient dilution, fails for ionic
liquids. Consequently, significant efforts have been undertaken in the
past to incorporate ion correlations due to electrostatic and non-
electrostatic interactions into the modeling of ionic liquids (Kondrat
et al., 2023). Examples include the use of field theory (Démery et al.,
2012; Nakamura, 2015; Budkov, 2020; Chao andWang, 2020), density
functional theory (Wu et al., 2011; Henderson et al., 2011; Ma et al.,
2014), a microscopic cluster expansion model (Avni et al., 2020),
molecular dynamics (Wang et al., 2007; Fedorov and Kornyshev, 2008;
Coles et al., 2020; Zeman et al., 2021; Ye and Wang, 2022) and Monte
Carlo (Kondrat et al., 2011; Bhuiyan et al., 2012) simulations, as well as
phenomenological extensions of mean-field approaches (Frydel, 2016;
Goodwin et al., 2017; Downing et al., 2018a). To allow for oscillations
in ionic concentration profiles, Bazant, Storey, and Kornyshev (BSK)
proposed a phenomenological Landau–Ginzburg-like model that leads
to a fourth-order modified Poisson–Boltzmann equation with a
correlation length that accounts for short-range ion–ion interactions
(Bazant et al., 2011). The BSK approach has been used widely
(Yochelis, 2014; Shalabi et al., 2019; Varner and Wang, 2022;
Nesterova et al., 2025) and linked to microscopic approaches
(Blossey et al., 2017; Avni et al., 2020). Yet, understanding of the
physical basis of higher-order Poisson–Boltzmann approaches and
their relation to even the most basic molecular properties such as
charge discreteness, ion polarizability, non-electrostatic interactions,
and electrostatic ion–ion correlations remains incomplete.

The present work aims at incorporating both charge discreteness
and electrostatic correlations between ion pairs into a lattice-based
model of an ionic liquid that is in contact with a single planar
electrode. To account for charge discreteness, we separate the short-
range and long-range parts of the electrostatic interaction by
truncating the Coulomb potential below a distance r0 to the
neighboring ions. The operator that results from this truncation
involves an infinite number of higher-order derivatives, yet it
becomes equivalent to the BSK model in the limit of small r0.
We focus on this limit, which results in an approximate
incorporation of electrostatic interactions on the level of
continuum electrostatics except for nearest neighbors. In
contrast, electrostatic interactions among nearest neighbor ions
are modeled explicitly, thereby accounting for their discrete
nature. To account for electrostatic correlations among
neighboring ions, we adopt the quasi-chemical approximation
(QCA) approach (Sher et al., 1987; Davis, 1996) when expressing
the configurational entropy of the lattice gas. In principle, QCA can
account for a correlation among any number of ions, but in the
present work, we only include two-body correlations among nearest
neighbor ions. Hence, we propose a method that accounts for both
charge discreteness and electrostatic correlations between ion pairs
in the modeling of ionic liquids. We recognize that the present work
assumes r0 is sufficiently small and neglects ion correlations that

involve more than two ions. Yet, we also point out that, in principle,
this approach can be extended to account for larger r0 and higher-
order correlations. In addition to presenting the method and
deriving the self-consistency relationship (a fourth-order
differential equation) plus its boundary conditions, we calculate
analytic results for the differential capacitance up to quadratic order
in the surface charge density of the electrode and numerical results
for larger surface charge densities. Our results are compared with
limiting cases, such as the absence of electrostatic correlations
between ion pairs and the negligence of ion discreteness. We find
that charge discreteness enhances the magnitude of the electrostatic
potential, and thus also the differential capacitance, whereas
electrostatic correlations between ion pairs induce a transition
from a bell-shaped to a camel-shaped profile of the differential
capacitance.

2 Theory

Consider a compact, solvent-free ionic liquid containing
monovalently charged cations and anions of the same size. We
represent the ionic liquid by a lattice of coordination number z,
volume ] per lattice site, and lattice spacing b ~ ]1/3, with each site
being occupied by either a cation or an anion. ϕ1 � ϕ1(r) and ϕ2 �
ϕ2(r) denote the local mole fraction of cations (index “1”) and anions
(index “2”), respectively, at position r. The absence of solvent is
expressed by the condition ϕ1 + ϕ2 � 1 at every position r. In the
present work, we aim at separating contributions to the electrostatic
energy of the ionic liquid that originate from the short-range and long-
range parts of the Coulomb potential. To introduce this method, we
write for the electrostatic energy due to the long-range part.

U � 1
2]2
∫d3r∫d3r′ η r( ) u |r − r′|( ) η r′( ), (1)

where we have defined the difference η � ϕ1 − ϕ2 in mole fractions
between the cations and anions. Note that eη/] specifies the local
volume charge density, where e denotes the elementary charge, and
that η is positive in regions with an excess of cations over anions.
Equation 1 accounts for all pairwise interactions among the ions
within the ionic liquid: u(r) for cation–cation and anion–anion
pairs, and −u(r) for cation–anion and anion–cation pairs, given that
the two ions are separated by a distance r � |r − r′|. We introduce a
dimensionless potential Ψ � Ψ(r) through:

Ψ r( ) � 1
]
∫ d3r′ η r′( ) u |r − r′|( ), (2)

where, here and in the following, we express energies in units of kBT,
where kB is the Boltzmann constant and T is the absolute
temperature. In order to recast Equation 2 into a local equation
for the potentialΨ, we introduce a yet unknown differential operator
A such that Au(r) � −δ(r), where δ(r) is the Dirac delta function.
This indeed implies the local equation:

AΨ � −η
]
, (3)

and corresponding electrostatic energy

U � −1
2
∫d3r ΨAΨ. (4)
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Only after specifying a concrete interaction potential u(r), we can
determine the corresponding differential operator A. This is
addressed in the following section.

2.1 Truncated Coulomb potential

To capture the long-range part of the electrostatic interaction,
we choose a truncated Coulomb potential

u r( ) � lB
2r

r

r0
+ 1 − r

r0
− 1

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣( ), (5)

where lB is the Bjerrum length and r0 is the truncation length.
Truncated Coulomb potentials have been employed in the past to
cut off the long-range part with the goal to facilitate efficient
computer simulations (Linse and Andersen, 1986; Baker et al.,
1999). In contrast, we propose to cut off the short-range part of
the Coulomb interaction, as shown in Figure 1: the black solid line in
both diagrams of Figure 1 shows the truncated potential u(r)
according to Equation 5. The operator A can be identified
conveniently in Fourier space, where the Fourier transformation

~u k( ) � 4π
k
∫∞
0

dr r sin kr( )u r( ) � 4πlB
sin kr0( )
k3r0

,

together with ~A~u(k) � −1, gives rise to

A � ∇2

4πlB

r0∇

sinh r0∇( )
� ∇2

4πlB
∑∞
i�0

2 − 4i( )B2i

2i( )! r0∇( )2i

� ∇2

4πlB
1 − 1

6
r0∇( )2 + 7

360
r0∇( )4 ∓ /[ ]. (6)

In Equation 6, ∇ and Bi denote the nabla differential operator and
the ith Bernoulli number, respectively. Recall that the set of
Bernoulli numbers can be defined via a series expansion of the
generating function x/(ex − 1) � ∑∞

i�0Bixi/i!. If the truncated
Coulomb potential is approximated by the j-th order operator,

Aj � ∇2

4πlB
∑j
i�0

2 − 4i( )B2i

2i( )! r0∇( )2i, (7)

then the corresponding potential is given by the following equation:

uj r( ) � 2
π

lB
r
∫∞
0

dk
sin kr( )

k

1∑j
i�0

2−4i( )B2i
2i( )! −k2r20( )i. (8)

The function uj(r) in Equation 8 is the j-th order approximation of
the truncated Coulomb potential. For j � 0, Equation 8 gives rise to
the Coulomb potential u0(r) � lB/r. In the limit j → ∞, the
truncated Coulomb potential uj→∞(r) � u(r), as specified in
Equation 5, is recovered. As has been pointed out by Lee et al.
(2015), the first-order approximation of the truncated Coulomb
potential is as follows:

u1 r( ) � lB
r

1 − e−
�
6

√
r
r0( ). (9)

The right diagram in Figure 1 shows the truncated Coulomb potential
u(r) together with the increasingly more accurate approximations
u1(r), u2(r), u3(r), and u4(r). In the present work, we will focus on
the first-order approximation u1(r) only, leading to a fourth-order
Poisson equation A1Ψ � −η/] that utilizes the differential operator
A1 � ∇2[1 − (r0∇)2/6]/(4πlB) similar to the BSKmodel (Bazant et al.,
2011). However, Equations 7, 8 provide amethod for the incorporation
of higher-order approximations in a straightforward manner.

We point out that the BSK model (Bazant et al., 2011) is an
effective mean-field approach based on the pair potential u1(r). The

FIGURE 1
Left diagram: plot of the truncated Coulomb potential u(r) as a function of the radial distance r according to Equation 5. The truncation distance is r0,
and the Bjerrum length is lB . Right diagram: truncated Coulomb potential u(r) (thick solid line) together with the increasingly more accurate
approximations u1(r) (first order, shown in red color), u2(r) (second order, orange), u3(r) (third order, green), and u4(r) (fourth order, blue), as defined in
Equation 8. The dotted line marks the Coulomb potential lB/r.
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emergence of u1(r) from the bare Coulomb potential can be the
result of charge discreteness, which we consider in the present work,
or of short-range correlations. Our present work considers
electrostatic correlations beyond the short-range correlations of
the BSK model. Electrostatic correlations between ion pairs are
not accounted for by the BSK model.

2.2 Free energy minimization

Before formulating andminimizing a free energy that accounts for
charge discreteness and electrostatic correlations between ion pairs,
we start with three comments: first, choosing the truncation radius r0
to be equal or slightly larger than the lattice spacing b enables us to
explicitly include the electrostatic interactions between neighboring
ions: ω11 � ω22 � ω � lB/b between cation–cation and anion–anion
pairs and ω12 � ω21 � −ω � −lB/b between cation–anion and
anion–cation pairs. This introduces the definition ω � lB/b and the
notation ωij that we use in Equation 10. Second, we account for
electrostatic correlations between ions located at neighboring lattice
sites through QCA (Davis, 1996). Correlations involving more than
two ions can, in principle, be incorporated into QCA (Bossa et al.,
2015), but they are ignored in the present work. To account for
correlated ion pairs, we consider the local fraction ϕij � ϕij(r) of i-j
pairs, where the indices i and j adopt the value 1 for a cation and 2 for
an anion. Third, we introduce the chemical potentials μ1 and μ2 of the
cations and anions, respectively, and choose them to ensure
coexistence with a bulk phase of the ionic liquid, where
ϕ1 � ϕ2 � 1/2. We also recall the definition of the lattice
coordination number z. With that, we express the free energy of a
lattice-based ionic liquid as follows (Downing et al., 2018b):

F � 1
]
∫ d3r − ]

2
ΨAΨ + 1 − z( ) ϕ1 lnϕ1 + ϕ2 ln ϕ2( )⎡⎣

+ z

2
∑2
ij�1

ϕij lnϕij + ωijϕij( ) − μ1ϕ1 − μ2ϕ2
⎤⎥⎥⎦.
(10)

The four contributions to this free energy account for the electrostatic
energy due to the long-range part of the Coulomb potential, the mixing
entropy of ion pairs according to QCA, the electrostatic energy
associated with neighboring ion pairs, and a Legendre
transformation that fixes the chemical potentials of the cations and
anions in the ionic liquid. The ϕij in Equation 10 must fulfill the three
conservation relations ϕ1 � ϕ11 + ϕ12, ϕ2 � ϕ21 + ϕ22, and ϕ12 � ϕ21.
This leaves one degree of freedom for the local distribution of ion pairs,
which we define conveniently as �ϕ � ϕ12 + ϕ21. The difference in mole
fractions η � ϕ1 − ϕ2 constitutes another degree of freedom. We thus
have the following equation:

ϕ1 �
1 + η

2
, ϕ2 �

1 − η

2
,

ϕ11 � ϕ1 −
�ϕ

2
, ϕ22 � ϕ2 −

�ϕ

2
, ϕ12 � ϕ21 �

�ϕ

2
. (11)

Note that both �ϕ � �ϕ(r) and η � η(r) depend on the position r
inside the ionic liquid. Calculation of the first variation in the free
energy F � F(η, �ϕ) leads to

δF � 1
]
∫ d3r δη Ψ + 1 − z

2
ln
1 + η

1 − η
+ z

4
ln
1 + η − �ϕ

1 − η − �ϕ
− 1
2

μ1 − μ2( )[ ]{
+ δ�ϕ

z

4
ln

�ϕ
2

1 + η − �ϕ( ) 1 − η − �ϕ( ) − zω[ ]}. (12)

We have not included boundary terms in Equation 12 because they
will be discussed separately below. By symmetry, the chemical
potentials μ1 � μ2 are equal. Thermal equilibrium demands
δF � 0, thus leading to the following two equations:

e4ω � �ϕ
2

1 − �ϕ( )2 − η2
,

0 � 2Ψ + 1 − z( )ln 1 + η

1 − η
+ z

2
ln
1 + η − �ϕ

1 − η − �ϕ
,

(13)

which must be fulfilled at each position r. Equation 13 defines the
two relations η � η(Ψ) and �ϕ � �ϕ(Ψ), with ω and z as additional
parameters. Spatial compositional variations arise from the solutions
of Equation 3. However, to simplify calculations, we replace the
operator A by its first-order approximation A1, as defined in
Equation 7. This renders the level of modeling the long-range
part of the electrostatic interactions similar to the BSK model
(Bazant et al., 2011) yet with different boundary conditions as
discussed below. Equation 3 then reads as follows:

l2∇2 1 − r20
6
∇2( )Ψ � −η Ψ( ), (14)

where we have defined the length l � �������
]/(4πlB)
√

. For example, lB �
1 nm and ] � 1 nm3 imply l � 0.3 nm. We will use l as unit length
throughout this work. Equation 14 is a self-consistency
relationship that takes the form of a fourth-order differential
equation with the function η(Ψ) defined through a set of two
algebraic equations. As pointed out above, electrostatic
interactions are represented by the potential u1(r) in Equation
9. Unlike interpretations in terms of short-range ion correlations
(Storey and Bazant, 2012; Moon et al., 2015; Blossey et al., 2017;
Shalabi et al., 2019; de Souza and Bazant, 2020), we associate the
use of u1(r) with an approximation of the truncated Coulomb
potential u(r) in Equation 5, which originates in our goal to
model charge discreteness rather than correlations. A
complementary interpretation of u1(r) would be in terms of
excluded volume interactions between adjacent ions, and such
an interpretation has been proposed recently (Gupta
et al., 2020a).

The function η � η(Ψ) that is needed to solve Equation 14
satisfies Equation 13 and is displayed together with �ϕ(Ψ) in
Figure 2 for different parameters z and ω . The solution of
Equation 13 for ω � 0 is η � −tanh(Ψ), irrespective of z, and is
shown as a black line in the left diagram of Figure 2. Curves of the
same color refer to z � 2 (red), z � 4 (blue), and z � 6 (green) and
are calculated for different values of ω, as indicated in the legend.
Note that for z � 2 (the red lines in Figure 2), Equation 13 yields
the following simple analytic result:

η Ψ( ) � − sinhΨ�����������
e4ω + sinh2Ψ
√ , �ϕ Ψ( ) �

e2ω −
���������������
1 + e4ω − 1( )η Ψ( )2
√
2 sinh 2ω( ) ,

(15)
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which corresponds to the solution of the one-dimensional Ising
model (Davis, 1996) in an external field Ψ.

2.3 Boundary conditions

From this point forward, we consider a single charged planar
electrode that carries a uniform surface charge density σ and is in
contact with the ionic liquid. We locate the origin of a Cartesian
coordinate system at the electrode surface, with its x-axis pointing
normal into the ionic liquid. The electrostatic potential Ψ � Ψ(x)
then depends only on the distance x to the electrode, and Equation
14 reads as follows:

l2Ψ″ x( ) − l2
r20
6
Ψ″″ x( ) � −η Ψ x( )( ), (16)

where a prime denotes the derivative with respect to the position x.
We derive solutions of this fourth-order non-linear differential
equation for x≥ 0 subject to the boundary conditions Ψ(x → ∞) �
Ψ′(x → ∞) � 0 as well as

Ψ′ 0( ) � 0, Ψ‴ 0( ) � 6s
l r20

, (17)

where s � ]σ/(le) � 4πlBlσ/e is a scaled (dimensionless) surface
charge density. Different sets of boundary conditions at the
electrode surface x � 0 have been proposed in the past for
fourth-order differential equations of the type in Equation 16:
Ψ′(0) � −s/l and Ψ‴(0) � 0 in the original BSK model (Bazant
et al., 2011) and Ψ′(0) � −s/l and Ψ″(0) � 0 based on variational
free energy minimization (Gupta et al., 2020b). In addition, Ψ′(0) �
−s/l and (r0/

�
6

√ ) × Ψ‴(0) � Ψ″(0) have been proposed based on
the continuity of the Maxwell stress tensor at the charged

electrode (de Souza and Bazant, 2020) and on interpreting
u1(r) in Equation 9 as a specific combination of Coulomb and
Yukawa potentials (Bossa and May, 2020). We take the point of
view that the truncated Coulomb potential applies to all charges
in the system, including those within the ionic liquid and those at
the electrode surface. In this case, the energy (per unit area A) of
the system associated with the long-range part of the electrostatic
interactions is as follows:

U

A
� l2

2]
∫∞
0

dx Ψ′2 + r20
6
Ψ″2( )

� − l2

2]

⎧⎪⎨⎪⎩Ψ 0( ) Ψ′ 0( ) − r20
6
Ψ‴ 0( )( )

+ r20
6
Ψ′ 0( )Ψ″ 0( ) + ∫∞

0

dx Ψ Ψ″ − r20
6
Ψ″″( )⎫⎪⎬⎪⎭. (18)

Its first variation is as follows:

δU

A
� −l

2

]

⎧⎪⎨⎪⎩Ψ 0( ) δΨ′ 0( ) − r20
6
δΨ‴ 0( )( ) + r20

6
Ψ′ 0( )δΨ″ 0( )

+∫∞
0

dx Ψ δΨ″ − r20
6
δΨ″″( )⎫⎪⎬⎪⎭. (19)

The integral in Equation 19 is (1/]) ∫∞
0
dx Ψ δη, which, when

combined with the variation in the non-electrostatic
contributions to the free energy, will vanish, as demonstrated
in Equation 12. Poisson’s equation for the truncated Coulomb
potential, l2/][Ψ″ − (r20/6)Ψ″″] � −η/], relates the potential to the
local volume charge density eη/]. Integrating that equation across
the surface of the electrode yields l[Ψ′(0) − (r20/6)Ψ‴(0)] � −s.

FIGURE 2
Relationships η � η(Ψ) (left diagram) and �ϕ(Ψ) (right diagram) according to Equation 13. Curves of the same color refer to z � 2 (red), z � 4 (blue), and
z � 6 (green) and are calculated for ω � 1/2 (solid colored lines), ω � 1 (broken lines), and ω � 1.5 (dotted lines). Forω � 0, Equation 13 predicts η � −tanh(Ψ)
irrespective of z (the black curve on the left diagram). All curves colored red (z � 2) follow the explicit expressions in Equation 15. The thick transparent
lines in the left diagram represent third-order approximations of η(Ψ), as specified in Equations 29, 30. They will be utilized in Sections 3.1, 3.2 to
calculate the differential capacitance for the linearized model and beyond that using a perturbation approach.
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Because the scaled surface charge density s is fixed, the ensuing
relation δΨ′(0) − (r20/6) × δΨ‴(0) � 0 causes the first surface
term in Equation 19 to vanish. Vanishing of the second
surface term demands Ψ′(0) � 0. Because of Ψ′(0) � 0, the
term (r20/6) × Ψ′(0)Ψ″(0) in the third line of Equation 18
vanishes. The remaining two terms, the electrostatic energy
due to the surface charges on the electrode and the
electrostatic energy due the ions in the ionic liquid, then
render Equation 18 identical to Equation 4. Hence, the
boundary conditions at the electrode, Ψ′(0) � 0 and
Ψ‴(0) � 6s/(lr20), lead to the consistent vanishing of δF with F
defined in Equation 10, including all surface terms.

The following three comments complete our discussion of the
boundary conditions. First, for x< 0, the potential is constant,
Ψ(x) � Ψ(0). Hence, because the region x< 0 does not contribute
to U, the integration in Equation 18 may start from x � 0 instead of
also including negative values of x. Second, short-range electrostatic
interactions of the ionic liquid with the electrode surface contribute
another surface term −η(0)sl/b to U/A in Equation 18. Because the
variation of this term vanishes, it does not add to the boundary
conditions. Third, our approach recovers the boundary condition
Ψ′(0) � −s/l, used previously to solve the second-order self-
consistency differential equation l2Ψ″(x) � −η(Ψ(x)) that results
from our model for r0 � 0 (Downing et al., 2018b).

The solutionΨ(x) of Equation 16 reveals how the surface potential
Ψ0 � Ψ(x � 0) depends on the scaled surface charge density s,
allowing us to compute the differential capacitance as follows:

Cdiff � ϵϵ0
l

ds

dΨ0
� ϵϵ0

l
�Cdiff.

Calculation of the scaled differential capacitance �Cdiff � ds/dΨ0 is a
major focus of the present work.

3 Results and discussion

Before computing general results for �Cdiff(s) numerically, we
analytically derive quadratic expressions of the form �Cdiff �
�C
lin
diff + s2 × Ω/2 through linearizing our model followed by a

perturbation approach to access the nonlinear regime. The
determination of the two constants �C

lin
diff and Ω as functions of

r0, ω, and z provides insights about the role of charge discreteness
and electrostatic correlations between ion pairs.

3.1 Linearized theory

For small potentials, Ψ≪ 1, only the linear part of the
relationship η(Ψ) is significant. We use Equation 13 to perform
a series expansion of η(Ψ) up to the linear order. The result,
η � −Ψ/[1 + (z/2) × (e2ω − 1)], can conveniently be expressed as
η � −(3/2) × (l/rc)2 × Ψ, where we have defined the length:

rc � l

���������������
3
2

1 + z

2
e2ω − 1( )[ ]√

. (20)

This length will be shown to play a role in separating different regimes
of the solutionΨ(x) for the linear problem.We thus solve the equation

Ψ″ x( ) − r20
6
Ψ″″ x( ) � 3

2r2c
Ψ x( ),

subject to Ψ′(0) � 0, Ψ‴(0) � (6/r20) × (s/l), Ψ(x → ∞) �
Ψ′(x → ∞) � 0. The solution of the linear problem, denoted in
the following by Ψlin(x), can generally be expressed as the sum of
two contributions:

Ψlin x( ) � s a1e
−λ1 x

r0 + a2e
−λ2 x

r0[ ], (21)
with

λ1�
3

√ �

�������������
1 +

��������
1 − r0

rc
( )2

√√√√√
,
λ2�
3

√ �

�������������
1 −

��������
1 − r0

rc
( )2

√√√√√
. (22)

The two constants a1 and a2 follow from the boundary conditions in
Equation 17,

a1 � − r0�
3

√
l

1�������
1 − r0

rc
( )2√ ������������

1 +
�������
1 − r0

rc
( )2√√ ,

a2 � r0�
3

√
l

1�������
1 − r0

rc
( )2√ ������������

1 −
�������
1 − r0

rc
( )2√√ .

(23)

In the following, we discuss how the structure of the solution
changes as r0 is varied. For r0 � 0, the corresponding potential,

Ψlin x( ) �
��
2
3

√
rc
l
s e−

�
3
2

√
x
rc( ), (24)

is characterized by a single decay length. For 0< r0 < rc, there is a
double-exponential decay with the two decay lengths r0/λ1 and
r0/λ2. At r0 � rc, the decay length r0/λ2 diverges, and the potential
becomes as follows:

Ψlin x( ) � s
rc
l

1�
3

√ + x

rc
( ) e−

�
3

√
x
rc( ). (25)

Finally, for r0 > rc, the quantities λ1 � λ3 + iλ4 and λ2 � λ3 − iλ4, as
well as a1 � a3 − ia4 and a2 � a3 + ia4, adopt complex conjugate
values with

λ3 �
���������
3
2

r0
rc
+ 1( )√

, λ4 �
���������
3
2

r0
rc
− 1( )√

and

a3 � rc�
6

√
l

1�����
r0
rc
+ 1

√ , a4 � rc�
6

√
l

1�����
r0
rc
− 1

√ .

The potential

Ψlin x( ) � 2s e−
λ3x
r0
( ) a3 cos

λ4x

r0
( ) + a4 sin

λ4x

r0
( )[ ] (26)

then exhibits exponentially decaying oscillations. Figure 3 shows
Ψlin(x)/s for ω � 1 (upper three curves) and ω � 0 (lower three
curves) and three different ratios of r0/rc, namely r0 � 0 (black),
r0 � rc (red), and r0 � 2rc (blue). Figure 3 suggests the tendency of ω
to increase the magnitude and decay length of the potential. The
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truncation length r0 only moderately modifies this tendency.
Irrespective of the ratio r0/rc, the same linear relationship,

Ψlin
0 � s

��
2
3

√
rc
l

1�����
1 + r0

rc

√ , (27)

between surface potential Ψlin
0 � Ψlin(x � 0) and scaled surface

charge density s results. Hence, Equation 27 is valid within the
linearized model for any choice of z, ω, and r0. This leads to a
prediction for the differential capacitance �Cdiff(s � 0) � �C

lin
diff in

the limit of an uncharged electrode, where both s � 0 and Ψ0 � 0,

�C
lin
diff � ds

dΨlin
0

�
�����
1 + r0

rc

√������������
1 + z

2 e2ω − 1( )
√ . (28)

Recall that rc depends on z and ω through Equation 20. Clearly,
increasing ω lowers �C

lin
diff, whereas larger r0 increases �C

lin
diff.

3.2 Non-linear model: a
perturbation approach

The linearized model is based on the relationship η ~ Ψ. In this
section, we employ a perturbation approach to analytically model the
nonlinear region, where the potential deviates only slightly from Ψlin.
To this end, we expand the relationship η(Ψ) up to the third order,

−η � 3
2

l

rc
( )2

Ψ + b3Ψ3. (29)

From Equation 13, we find the third-order coefficient as follows:

b3 �
z
2 e2ω + 2( ) e2ω − 1( )2 − 2

6 1 + z
2 e2ω − 1( )[ ]4 . (30)

The left diagram in Figure 2 displays the third-order
approximation, as specified in Equations 29, 30 (color-
matching thick transparent lines). Hence, we aim to solve the
nonlinear differential equation

Ψ″ x( ) − r20
6
Ψ″″ x( ) � 3

2r2c
Ψ x( ) + b3

l2
Ψ3 x( ), (31)

subject to Ψ′(0) � 0, Ψ‴(0) � (6/r20) × (s/l), and Ψ(x → ∞) �
Ψ′(x → ∞) � 0. We express the potential Ψ(x) � Ψlin(x) +
b3Ψper(x) as the sum of the solution for the linear problem
(Ψlin) and a small perturbation (b3Ψper). Substituting Ψ(x)
into Equation 31 leads to the linear, inhomogeneous
differential equation

Ψper″ x( ) − r20
6
Ψ″″per x( ) � 3

2r2c
Ψper x( ) + 1

l2
Ψ3

lin x( ) (32)

for the perturbation contribution of the potential Ψper(x), where
Ψlin(x) is given by Equation 21. The solution Ψper(x) �
Ψinh(x) + Ψhom(x) of Equation 32 can be expressed as the sum
of a specific solution for the inhomogeneous equation
(index “inh”):

Ψinh x( ) � s3
r0
l

( )2 a31e
−3λ1 x

r0

3λ1( )2 − 1
6
3λ1( )4 − 3

2
r0
rc
( )2 +

3a21a2e
− 2λ1+λ2( ) xr0

2λ1 + λ2( )2 − 1
6
2λ1 + λ2( )4 − 3

2
r0
rc
( )2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
+ 3a1a22e

− λ1+2λ2( ) xr0

λ1 + 2λ2( )2 − 1
6
λ1 + 2λ2( )4 − 3

2
r0
rc
( )2 +

a32e
−3λ2 x

r0

3λ2( )2 − 1
6
3λ2( )4 − 3

2
r0
rc
( )2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
where λ1, λ2, a1, and a2 are defined in Equations 22, 23, and a
solution for the homogeneous equation (index “hom”):

Ψhom x( ) � s3 c1e
−λ1 x

r0 + c2e
−λ2 x

r0[ ]. (33)

The two constants c1 and c2 in Equation 33 can be determined such
that besides Ψper(x → ∞) � Ψper′ (x → ∞) � 0, Equation 32 also
satisfies the boundary conditions Ψper′ (0) � 0 and Ψper‴ (0) � 0.
This results in an expression for the surface contribution of the
perturbation potential Ψper(0) � s3 B with

B � −1
4

1 + z

2
e2ω − 1( )[ ]52 × 1 + 25

6
r0
rc
+ 41

12
r0
rc
( )2

1 + r0
rc

( )52 1 + 5
3
r0
rc

( ). (34)

The total surface potential Ψ0 � Ψlin(0) + b3Ψper(0) � s/�Clin
diff +

s3Bb3 can be used to calculate the scaled differential capacitance,

�Cdiff � 1
dΨ0
ds

� �C
lin
diff − 3Bb3 �C

lin
diff( )2s2 � �C

lin
diff +

Ω
2
s2, (35)

analytically up to quadratic order in s. Using the expressions for
�C
lin
diff, b3, and B in Equations 28, 30, 34, respectively, to calculate the

quadratic-order coefficient Ω � −6Bb3(�Clin
diff)2 yields the following:

FIGURE 3
Ψlin(x)/s for ω � 1 (upper three curves) and ω � 0 (lower three
curves, magnified in the inset), with r0 � 0 (black), r0 � rc (red), and
r0 � 2rc (blue). All curves are calculated for z � 6. The black curves
(r0 � 0) are single exponentials according to Equation 24 with a
decay length l for ω � 0 and 4.5 × l for ω � 1. The red curves (r0 � rc)
are specified by Equation 25. The blue curves, which follow Equation
26, exhibit exponentially decaying oscillations.
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Ω �
z
2 e2ω + 2( ) e2ω − 1( )2 − 2

4 1 + z
2 e2ω − 1( )[ ]52 ×

1 + 25
6

r0
rc
+ 41

12
r0
rc
( )2

1 + r0
rc

( )32 1 + 5
3
r0
rc

( ). (36)

The quadratic expression for �Cdiff(s) in Equation 35 with the
analytic results for �C

lin
diff and Ω given in Equations 28, 36 is the

central outcome of this work, accounting (albeit on an
approximate level) for both charge discreteness and electrostatic
correlations.

3.3 Limiting cases

3.3.1 Continuum mean-field model, r0 � 0
and ω � 0

For r0 � 0 and ω � 0, Equation 16 reduces to the well-known
classical mean-field equation l2Ψ″(x) � tanhΨ that emerges from
the lattice-based Poisson–Boltzmann framework of a solvent-free
ionic liquid (Borukhov et al., 1997; Kornyshev, 2007). Neither
charge discreteness nor ion correlations are accounted for.
Subject to the boundary conditions Ψ′(0) � −s/l and
Ψ(x → ∞) � 0, we obtain a surface potential Ψ0 � arcosh(es2/2)
for x≥ 0 and Ψ0 � −arcosh(es2/2) for x≤ 0, and thus, a scaled
differential capacitance �Cdiff � (dΨ0/ds)−1 �

������
1 − e−s2

√
/|s|. For

small |s|, this can be represented by �Cdiff � �C
lin
diff + s2Ω/2 with

�C
lin
diff � 1 and Ω � −1/2. All models discussed in the present work

recover this limit if both r0 � 0 and ω � 0.

3.3.2 Vanishing truncation length, r0 � 0
For r0 � 0, the expressions for �C

lin
diff and Ω in Equations 28, 36

simplify to the following:

�C
lin
diff � 1������������

1 + z
2 e2ω − 1( )

√ , Ω � 1
4
×

z
2 e2ω + 2( ) e2ω − 1( )2 − 2

1 + z
2 e2ω − 1( )[ ]5/2 .

This is identical to the results derived previously by Downing et al.
(2018b), where an approach analogous to the present one yet
without truncating the Coulomb potential was proposed. Not
truncating the Coulomb potential while still adding nearest-
neighbor electrostatic interactions separately into the model
implies a double counting of nearest neighbor ion–ion
interactions. The truncation of the Coulomb potential introduced
in the present work eliminates this inconsistency.

As pointed out by Downing et al. (2018b), Ω changes sign upon
increasing ω, indicating a transition from bell shape to camel shape
of the differential capacitance �Cdiff. This transition is caused by
electrostatic correlations between ion pairs, as shown below by
comparing the predictions for �Cdiff in the presence and absence
of electrostatic correlations.

3.3.3 Vanishing central charge, ω � 0
The choice ω � 0 eliminates the explicit account of electrostatic

interactions between nearest neighbors. Without these interactions,
ion correlations between neighboring ions are no longer present. The
solution of Equation 13 is �ϕ � 2ϕ1ϕ2, and the corresponding relation
η � −tanhΨ implies mean-field electrostatics subject to a truncated
Coulomb potential. The resulting fourth-order differential equation
l2Ψ″(x) − l2r20Ψ″″(x)/6 � tanhΨ(x) is equivalent to the modified

Poisson–Boltzmann equation of the solvent-free BSK model (Bazant
et al., 2011) yet with different boundary conditions. For ω � 0, we
obtain the following from Equations 28, 36:

�C
lin
diff �

���������
1 +

��
2
3

√
r0
l

√
, Ω � −1

2
×

1 + 25
6

�
2
3

√
r0
l + 41

12

�
2
3

√
r0
l( )2

1 +
�
2
3

√
r0
l( )3

2

1 + 5
3

�
2
3

√
r0
l( ). (37)

The negative sign of Ω signifies a bell shape of the differential
capacitance �Cdiff(s). Hence, for ω � 0, �Cdiff(s) cannot exhibit a
camel shape.

3.3.4 The influence of electrostatic correlations
between ion pairs

The usage of the QCA approximation accounts for
electrostatic correlations between neighboring ion pairs,
whereas three-body and higher-order correlations are
neglected. To investigate the role of electrostatic ion pair
correlations, we compare QCA to a mean-field model, which
is based on a random mixing approximation (RMA) (Davis,
1996). RMA ignores ion pair correlations by modeling the
entropy contribution of the free energy through an ideal
lattice gas. This is accomplished by imposing �ϕ � 2ϕ1ϕ2,
which, when used in Equation 11, leads to the free energy

F � 1
]
∫ d3r −]

2
ΨAΨ + ϕ1 lnϕ1 + ϕ2 lnϕ2 + ω ϕ1 − ϕ2( )2 − μ1ϕ1 − μ2ϕ2[ ].

Electrostatic interactions between neighboring ions are thus
described on the level of the familiar Bragg–Williams model
(Davis, 1996), whereas the long-range components are accounted
for by the truncated Coulomb potential. As above, we use ϕ1 �
(1 + η)/2 and ϕ2 � (1 − η)/2 and note that μ1 � μ2. Vanishing first
variation of the free energy

δF � 1
]
∫ d3rδη Ψ − arctanh η( ) − 2ωη[ ]

then implies the relation

Ψ � −arctanh η( ) − 2ωη. (38)
This implicitly defines the function η(Ψ) to be used in the fourth-
order self-consistency differential equation, Equation 14, namely,
l2Ψ″(x) − l2r20Ψ″″(x)/6 � −η(Ψ(x)). Up to the third order in Ψ,
this function is given by η � −Ψ/(1 + 2ω) + Ψ3/[3(1 + 2ω)4]. As
above, we solve the linearized model and perform a perturbation
approach, yielding again an analytic expression for the scaled
differential capacitance �Cdiff � �C

lin
diff + s2Ω/2 up to quadratic

order in the scaled surface charge density s. We find that

�C
lin
diff �

�����
1 + r0

�rc

√������
1 + 2ω

√ , Ω � − 1

2 1 + 2ω( )5/2
1 + 25

6
r0
�rc
+ 41

12
r0
�rc
( )2

1 + r0
�rc

( )3/2 1 + 5
3
r0
�rc

( ), (39)

where we have defined �rc � l
����������
3(1 + 2ω)/2√

. Equation 39 accounts
for the discrete nature of the ionic charges, but neglects electrostatic
correlations between ion pairs. As for Equation 37, the negative sign
of Ω implies a bell shape of �Cdiff(s). Hence, in the absence of
electrostatic correlations between ion pairs, our model does not
predict a transition to a camel shape of �Cdiff(s).

Frontiers in Chemistry frontiersin.org08

Bossa and May 10.3389/fchem.2024.1502840

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1502840


3.4 Numerical results

In this section, we present numerical results for �Cdiff(s), with
various parameter choices for ω, r0, and z, and then contrast the
predictions of the model in the presence and absence of electrostatic
ion–ion correlations. Solutions of Equation 14 employ the function
η(Ψ) according to Equation 13 in the presence of electrostatic ion
correlations (modeled according to QCA) and according to
Equation 38 in the absence of electrostatic ion correlations
(modeled according to RMA).

Figure 4 summarizes the predictions of our model according to
Equation 16 with η(Ψ) specified in Equation 13 and the boundary
conditions in Equation 17. Recall that this model incorporates both the
truncated Coulomb potential and QCA, thus accounting,
approximatively, for both charge discreteness and electrostatic
correlations. The scaled differential capacitance �Cdiff is displayed as
a function of the scaled surface charge density swith z � 2 (upper three
diagrams) and z � 6 (lower three diagrams), as well as r0 � 0 (left,
colored purple), r0 � l (middle, colored red), and r0 � 3l (right, colored
green). Each graph contains 11 curves, varying from ω � 0 (the light
colored curve on the top of each diagram) to ω � 1 (the black curve on
the bottom of each diagram) in steps of 0.1.

We point out that in the vicinity of s � 0, where �Cdiff(s) �
�C
lin
diff + s2Ω/2 can be represented by a quadratic function, each

curve reproduces our analytic expression, as specified in Equations
28, 36. Hence, Figure 4 reinforces the validity of our analytic results
and provides an extension of �Cdiff(s) beyond the quadratic regime.
As already predicted analytically, we observe the transition from a
bell-shaped to a camel-shaped profile of the differential capacitance
as the strength of the electrostatic interaction ω � lB/b is increased.
The transition occurs at a value of ω that satisfies the equation
2 − 3e2ω + e6ω � 4/z. For z � 2 and z � 6, this amounts to ω �
1/4 × ln 3 ≈ 0.275 and ω � 0.182, respectively, independently of
r0. The truncation length r0 does affect the value of �Cdiff(s � 0)
where the bell-to-camel shape transition occurs, but the value of ω
where the transition happens is independent of r0. The role of r0 is to
amplify the magnitudes of �Cdiff. This is most clearly evidenced by
the explicit relationship for the dependence of �C

lin
diff on r0 in

Equation 28.
Figure 4 displays the dependence of �Cdiff(s) for the two

parameters r0/l and ω (given z is fixed). Yet, if we identify the
truncation radius r0 ~ b with the lattice spacing, there should be a
relationship between r0/l and ω. Recall the definitions ω � lB/b and
l2 � ]/(4πlB). The lattice spacing b ≈ ]1/3 represents the size of the
ions in the ionic liquid, typically on the order of a nanometer. If we
identify the truncation radius r0 � b with the lattice spacing, we
obtain r0/l ≈

���
4π

√
×
��
ω

√
. Hence, the choice ω � 1 (implying lB � b)

corresponds to r0/l ≈ 3, which is displayed by the black curve in the

FIGURE 4
Scaled differential capacitance �Cdiff as a function of the scaled surface charge density s based on solving Equations 13, 16, 17. Each diagram shows
11 curves forω � 0 (uppermost curve) to ω � 1 (black curve on the bottom), with ω changing in steps of 0.1. Diagrams refer to z � 2 (upper three diagrams) and
z � 6 (lower three diagrams), as well as r0 � 0 (left column, colored purple), r0 � l (middle column, colored red), and r0 � 3l (right column, colored green).
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right column of Figure 4. Further increasing the Bjerrum length
(implying ω> 1) yields larger values for r0/l. These cases are not
shown in Figure 4 but are easily accessible through our analytic
expression for �Cdiff(s) � �C

lin
diff + s2Ω/2.

Figure 5 shows a comparison of our model with and without
accounting for electrostatic correlations between ion pairs. The
lower three diagrams in Figure 5 reproduce the lower three
diagrams of Figure 4, calculated for z � 6 and using QCA where
ion pair correlations are accounted for. The upper three diagrams
show analogous results, yet in the absence of ion pair correlations,
employing RMA, as introduced in Section 3.3.4.We have verified the
agreement of the numerical results for RMA (upper three diagrams)
in the region of small |s| with the analytic expression �Cdiff(s) �
�C
lin
diff + s2Ω/2 specified in Equation 39. As already pointed out, RMA

does not predict a transition from a bell-shaped to a camel-shaped
profile of the differential capacitance as the strength of the electrostatic
interaction ω � lB/b is increased. Hence, we conclude that electrostatic
correlations rather than charge discreteness or excluded volume
interactions cause camel-shape profiles of �Cdiff(s). Starting from
the classical mean-field approach, �Cdiff � ������

1 − e−s2
√

/|s|, displayed by
the uppermost purple line on the left two diagrams in Figure 5, and
introducing charge discreteness without accounting for electrostatic
correlations corresponds to transitioning to the black curve on the

right top diagram of Figure 5: the curve widens but without
qualitatively changing its shape.

Because the presence of the bell-to-camel shape transition is
independent of r0, the reason of its existence for a compact, solvent-
free ionic liquid reflects the role of electrostatic ion–ion correlations.
Correlated clusters of ions increase the decay length of the potential
Ψlin(x), as shown in Figure 3. Hence, if the system of electrode and
diffuse layer of counterions is represented by an effective parallel-
plate capacitor, the distance between the capacitor plates is larger in
the presence of electrostatic ion–ion correlations. The
correspondingly smaller value of �C

lin
diff is consistent with the

existence of a transition from the bell-shaped to a camel-shaped
profile of �Cdiff when electrostatic ion–ion correlations are
accounted for.

4 Conclusion

The classical lattice-based mean-field theory for a densely
packed, solvent-free ionic liquid employs continuum electrostatics
and ignores ion–ion correlations, leading to a bell-shaped profile
according to �Cdiff � ������

1 − e−s2
√

/|s| for the scaled differential
capacitance as a function of the scaled charge density s. The

FIGURE 5
Scaled differential capacitance �Cdiff as a function of the scaled surface charge density s based on RMA (upper three diagrams) and QCA (lower three
diagrams). The lower three diagrams of Figures 4, 5 are identical. Each diagram shows 11 curves for ω � 0 (uppermost curve) to ω � 1 (black curve on the
bottom), with ω changing in steps of 0.1. Diagrams refer to r0 � 0 (left column, colored purple), r0 � l (middle column, colored red), and r0 � 3l (right
column, colored green). All curves are calculated for z � 6. All models are based on solving Equations 16, 17, yet with the relationship η(Ψ) emerging
from Equation 38 for the upper three diagrams and from Equation 13 for the lower three diagrams.
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present work is an attempt to analyze how �Cdiff changes if charge
discreteness and electrostatic correlations between ion pairs are
accounted for. To account for charge discreteness, we employ a
truncated Coulomb potential (shown in Figure 1) to model the long-
range part of the electrostatic interactions but exclude those of a
given ion with its nearest neighbors. These short-range interactions
are modeled explicitly as interactions between individual point
charges. Electrostatic correlations between pairs of neighboring
ions are accounted for using the quasi-chemical approximation
(QCA) approach. Downing et al. (2018b) included QCA similarly
to the present approach but without truncating the Coulomb
potential, which led to a double counting of electrostatic
interactions between nearest neighbor ions. The present work is
no longer subject to this inconsistency. We emphasize that our
approach is still subject to approximations: the truncation of the
Coulomb potential is modeled only on the level of fourth-order
electrostatics (A1 in Equation 7), and QCA ignores correlations of
higher order and between pairs of ions separated by distances larger
than one lattice spacing. Yet, these approximations can, in principle,
be overcome by considering sixth- or higher-order electrostatics (A2

or higher in Equation 7) and by incorporating larger clusters into
QCA (Bossa et al., 2015).

Our approximation of the full self-consistency relationship,
AΨ � −η(Ψ)/], by the fourth-order differential equation, A1Ψ �
−η(Ψ)/], renders our model structurally equivalent to the BSK
model (Bazant et al., 2011). An important aspect of our study
includes the boundary conditions associated with that equation
(Equation 17), which emerge as part of the functional
minimization of the free energy (Equations 12, 19) and differ from
previously proposed sets of boundary conditions (Bazant et al., 2011;
Gupta et al., 2020b; de Souza and Bazant, 2020; Bossa andMay, 2020).

A major result of our study is analytic expressions for the
coefficients �C

lin
diff and Ω in an expansion of �Cdiff(s) � �C

lin
diff +

s2Ω/2 up to quadratic order in s. We have obtained �C
lin
diff from

solving the linearized model and Ω from performing a perturbation
approach into the non-linear regime. The quadratic expression of
�Cdiff(s) reveals the existence of a transition from a bell-shaped to a
camel-shaped profile of the differential capacitance as a function of the
electrostatic interaction strengthω between neighboring ions. However,
such a transition exists only in the presence of electrostatic correlations,
not in their absence. Hence, we conclude that electrostatic correlations
between ion pairs are able to turn the bell-shaped profile predicted by
mean-field theory, �Cdiff � ������

1 − e−s2
√

/|s|, into a camel-shaped profile.
Ion discreteness, on the other hand, enhances the magnitude but does
not qualitatively alter the profile of �Cdiff(s). Our analytic predictions
agree with numerical calculations of the full profiles for �Cdiff(s),
i.e., beyond the quadratic regime, that we have presented in Figures 4, 5.
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