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Abstract 

Dimension reduction (DR or embedding) algorithms such as t-SNE and UMAP ha v e man y applications in big data visualization but remain slow 

for large datasets. Here, we further improve the UMAP-like algorithms by (i) combining several aspects of t-SNE and UMAP to create a new DR 

algorithm; (ii) replacing its rate-limiting step, the K-nearest neighbor graph (K-NNG), with a Hierarchical Navigable Small World (HNSW) graph; 
and (iii) extending the functionality to DNA / RNA sequence data by combining HNSW with locality sensitive hashing algorithms (e.g. MinHash) 
for distance estimations among sequences. We also provide additional features including computation of local intrinsic dimension and hubness, 
which can reflect str uct ures and properties of the underlying data that strongly affect the K-NNG accuracy, and thus the quality of the resulting 
embeddings. Our library, called annembed, is implemented, and fully parallelized in Rust and shows competitive accuracy compared to the 
popular UMAP-lik e algorithms. A dditionally, w e sho w case the usefulness and scalability of our library with three real-world examples: visualizing 
a large-scale microbial genomic database, visualizing single-cell RNA sequencing data and metagenomic contig (or population) binning. T heref ore, 
annembed can facilitate DR for several tasks for biological data analysis where distance computation is e xpensiv e or when there are millions to 
billions of data points to process. 
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imension reduction (DR or embedding) is an important
tatistical technique for big data visualization and pre-
rocessing. There are two categories of algorithms for dimen-
ion reduction: those that seek to preserve pairwise distance
or all data points such as principal component analysis (PCA)
nd multi-dimensional scaling (MDS), and those that seek to
nly preserve local distance over global distance such as t-
istributed Stochastic Neighbor Embedding (t-SNE) ( 1 ) and
niform Manifold Approximation and Projection (UMAP)

 2 ). The latter approach is also called non-linear dimension
eduction. Recently, non-linear dimension reduction has also
een applied to computational biology such as in single-cell
NA sequencing analysis ( 3 ,4 ) and genome binning from
etagenomes ( 5 ). UMAP was designed to preserve more the

lobal structure with superior run time performance com-
ared to t-SNE and has no computational restrictions on the
umber of embedding dimensions, despite recent work show-
ng that the type of initial embedding (a less accurate embed-
ing like diffusion map) determines whether or not UMAP can
reserve better global structure ( 6 ). 
For both UMAP and t-SNE, the very first step is to find the

losest neighbors for each point in the dataset. The approxi-
ate nearest neighbor algorithm used in UMAP and LargeVis,
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i.e. the NN-Descent and random projection tree, is typically
the rate-limiting step especially for high complexity data ( 2 ,7 ).
NN-Descent ( 8 ) and similar algorithms ( 9 ) are popular K-
nearest neighbor graph (K-NNG) algorithms based on the
neighborhood propagation concept for improving accuracy
when finding close neighbors. NN-Descent has been used as
the default in UMAP to construct K-NNG with an empirical
time complexity O (N 

1.14 ) (no asymptotic complexity analysis
available). This empirical time complexity relies heavily on the
properties and distributions of the input data ( 8 ). Recently, a
new concept, called local intrinsic dimension (LID) has been
proposed to describe the properties and distributions of the
data, which is a measure of the minimum number of vari-
ables needed to represent the data without significant loss of
information ( 10 ). It has been shown that NN-Descent recall
is very low for datasets with LID > 20 because the algorithm
produces a large amount of incorrect K-nearest neighbors in
such cases ( 8 ,11 ). Several fast algorithms for building K-NNG
have been proposed with time complexity O( d * n 

t ) (1 < t < 2,
normally 1.2–1.4) or O( d * N *log( N )) (where d is the number
of dimensions) that try to circumvent this and related limi-
tations ( 9 ,12 ). Another key aspect of LID or, more generally,
the curse of dimensionality, is the hubness concept. A large
LID dataset is easier to contain hubs and LID is correlated
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with hubness. Hubness is defined as the tendency of intrin-
sically high-dimensional data to contain hubs—points with
high in-degrees in the K-NNG or skewness of the distribution
of neighbors of points (or clusters, for simplicity). Applica-
tion of NN-Descent algorithm on datasets with large LID or
hubness is problematic (e.g., offers less accurate representa-
tions of the true neighbors) ( 11 ), despite some recent efforts
to alleviate this problem by using -for example- a much larger
K ( 13 ). Many real-world datasets such as microbial genome
collections and single-cell RNA sequencing datasets are dis-
tributed highly unevenly, and thus have high LID or contain
many hubs. 

Finding nearest neighbors based on the graph structure, for
example, K-NNG or small world graph, has been extensively
studied in the past several years ( 12 ,14 ), and it has been shown
that Hierarchical Navigable Small World (HNSW) graphs
show high performance and recall in various benchmark stud-
ies compared to K-NNG or tree-based nearest neighbor search
(NNS) search algorithms due to their hierarchy and small
world property ( 15 ,16 ). Some modified K-NNG algorithms,
such as K-NNG + graph diversification and diversified prox-
imity graph (DPG), were shown to have similar performance
compare to HNSW, even for high LID datasets ( 17 ). How-
ever, as the LID of the dataset increases further, the accuracy
of HNSW and other graph-based methods is compromised
if maintaining the same search speed, or the speed will de-
crease if maintaining the same accuracy / recall, at least for
Euclidean distance ( 18 ). Therefore, dimension reduction tools
should also consider the LID and hubness of the dataset to
be embedded for further evaluation of how reliable the NNS
step can be. For large datasets, for example, N > 10 

5 , N 

1.14

(empirical time complexity of K-graph) will be much more ex-
pensive than N *log( N ) (HNSW complexity), especially when
the distance computation is expensive since the total time will
represent the number of computations (time complexity) mul-
tiplied by the time for each computation. It has been shown
that HNSW, compared to other graph-based NNS approaches
such as NSG (navigating spread-out graph), can alleviate the
hubness issue by limiting the maximum degree for each point
( 19 ). t-SNE combines an attractive force between neighbor-
ing pairs of points with a repulsive force between all points
( 1 ), and mathematical analysis has shown that changing the
balance between the attractive and the repulsive forces in t-
SNE using the exaggeration parameter yields a spectrum of
embeddings characterized by a simple trade-off: stronger at-
traction can better represent continuous manifold structures,
while stronger repulsion can better represent discrete cluster
structures ( 20 ). UMAP, on the other hand, employs a negative
sampling optimization, which strongly lowers the effective re-
pulsion, leading to more clustered embeddings / structures ( 2 ).
However, if we initiate the nearest neighbors from HNSW
graphs (instead of initializing from a list of neighbors for each
node), it is possible to adopt a different edge and / or node sam-
pling strategy to have similar effects to the attractive and the
repulsive forces using the same loss function as in t-SNE or
UMAP. That is, to take into account edge weight distribution
and node neighbor density in a HNSW-like graph, which can
provide less skewed representation of the data. 

Both UMAP and t-SNE have been widely applied to single-
cell RNA sequencing studies since they are much faster
than PCA for larger number of single cells profiles. For
datasets of genomic sequences, alignment-based distance is
more appropriate. However, visualizing genomic information
or metagenomic binning / clustering (e.g., DNA or RNA se- 
quences clustered by species / genome) using UMAP has sev- 
eral challenges: (i) Genomic / sequence distance estimation is 
expensive via traditional methods such as Average Nucleotide 
Identity (ANI) and Average Amino Acid Identity (AAI) (for 
genomes) or alignment (alignment is possible for short se- 
quences but not whole genomes) ( 21 ). (ii) The large num- 
ber of genomes in public database (e.g., 10 million for the 
viral genome database) exacerbate the problem. K-mer hash- 
ing based on probabilistic data structures (e.g., MinHash) are 
much faster than traditional ANI / AAI to calculate genomic 
distance while maintaining ANI / AAI accuracy ( 22 ), and thus 
could help with challenge (ii) above. Specifically, Jaccard index 

estimated by MinHash algorithms can be transformed into 

ANI / AAI / identity via the Mash equation: ANI = 1 + 

1 
k ln 

2 ∗J 
1+ J 

( 22 ). However, these algorithms have not been combined with 

UMAP-like fast dimension reduction technique to further ac- 
celerate dimension reduction and visualize genomic datasets. 

Visualizing microbial genomic databases such as the GTDB 

(Genome Taxonomy DataBase) ( 23 ), IMG / VR (Integrated 

Microbial Genomes / Virus) ( 24 ) and MyCOcosm (fungal 
genome database) ( 25 ) in an efficient and quick manner can 

help microbiologists and taxonomists examining, for exam- 
ple, genome affiliation information relative to other genomes,
and provide easy-to-catch mislabeled information about over- 
all database composition, hierarchy and evolutionary space of 
the grouped organisms. In this study, by combining MinHash- 
like algorithms and HNSW, we created a new data structure 
to build genomic HNSW graph database ( 26 ). Subsequently,
we applied UMAP-like algorithms to the HNSW graph to pro- 
duce a non-linear dimension reduction algorithm to visualize 
microbial genome databases. Our benchmarking results show 

that the non-linear dimension reduction achieved by annem- 
bed can be very fast while maintaining high accuracy, espe- 
cially for datasets with billions or more data points, for which 

current tools were either too slow or failed. We also added the 
estimation of hubness and calculation of LID of the data to 

be embedded. Application of annembed to microbial genome 
database showed that it can visualize millions of genomes in 

several hours, much faster than UMAP. The idea of visualiza- 
tion genomic database based on MinHash and annembed can 

be applied to any other sequence database (e.g., nucleotide or 
amino acid sequences, 18S / ITS gene databases) provided that 
an appropriate distance metric is available. Accordingly, the 
annembed library is also applied in GSearch ( 26 ), a computer 
program that uses annembed as a dependency to perform 

HNSW graph building for millions of microbial genomes, in 

addition to standalone implementations. Annembed is written 

in Rust and it is fully parallelized for almost all steps. 

Materials and methods 

Overall, our implementation is a mixture of HNSW with pre- 
viously described embedding algorithms such as UMAP and 

t-SNE. First, the graph is initialized by the HNSW algorithm 

(Figure 1 A), which provides sub-sampling of the data to be 
embedded by considering only less densely occupied layers 
(i.e., the upper layers). This corresponds generally to a sub- 
sampling of 2–4% of the total data but the small fraction of 
data used is not problematic as the distance between the points 
left out by the subsampling and their nearest sampled neigh- 
bor are known in the complete HWSW graph. The HNSW 
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Figure 1. Overall description of annembed algorithm’s key steps and functionalities. ( A ) Build a HNSW graph from scratch by gradually adding points in 
the database in a recursive way with random initialization. When maximum number of allowed neighbors in the graph is reached (M) for each existing 
point, a representative will be chosen as new point in new layers (above) by collapsing the neighbors. Finding neighbors for a newly added point involves 
inserting the point into the graph by searching for its neighbors and updating the graph when the M is reached (i.e., newly added point could also be 
neighbors of other existing points). ( B ) UMAP-like embedding algorithm by combining t-SNE (edge sampling in left panel) and UMAP (cross entropy 
optimization). For edge sampling, β is set to 1 to result in exponential weights similar to Umap. S is to modulate ρ and is set to 0.5, while ρ is the spacial 
scale factor and is also set to 1. After normalization the weight will represent a probability distribution. For initial embedding, to define the weight of the 
edge, we initialize b as 1 and a x is a coefficient related to the scale coefficient in the original space around x computed as f ollo ws: f or each point x w e 
ha v e its k neighbors y i [ i = 1,2,3…k ], for each of its neighbors y i we get its first neighbor distance d i . We then average all these distances, that give an 
idea of distance around a point, a scale x , a x = e −

( x−y ) 
scal e x . ( C ) Hubness estimation by evaluating the skewness of neighbor distributions of observed 

neighbors of each node and the expected ones. ( D ) LID estimation via the maximum likelihood method. We use Euclidean distance (metric) for R by 
default, and this can be changed according to user specific case (e.g., Jaccard distance, a metric, can be used for genomes). 
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tructure thus enables an iterative, hierarchical initialization
f the embedding by considering an increasing number of lay-
rs (until layer 0). The preliminary graph built for the em-
edding uses an exponential function of distances to neigh-
or nodes (as in UMAP) but keeps a probability normaliza-
ion constraint with respect to neighbors (as in t-SNE) (Fig-
re 1 B). It is then possible to modulate the initial edge weight
y considering a power of the distance function to neigh-
ors or increase / decrease the impact of the local density of
oints around each node (similar to the repulsive force). We
initialized embedded space by a diffusion map ( 27 ), instead of
Laplacian Eigenmap as in UMAP, the former can be consid-
ered as a generalization of the latter, but the order of the top
eigenvector is reversed. To minimize divergence between em-
bedded pace and initial distribution probability, we also used
a cross-entropy optimization of this initial layout but consid-
ered the initial local density estimates of each point in the
embedded space when computing the Cauchy weight of an
embedded edge as in UMAP (Figure 1 B). The corresponding
‘perplexity’ distribution (the same as in t-SNE, a parameter
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to balance attention between local and global aspects of the
data as in t-SNE) is estimated on the fly. We provide a ten-
tative assessment of the continuity / quality of the embedding
by varying the perplexity to help selecting among varying re-
sults between runs for a given dataset. Quality of embedding
is defined as the correct neighbors of node in the embedded
space found when comparing with the original data. During
this process, LID and hubness were also estimated based on
the HNSW graph (Figure 1 C and D). 

Hierarchical navigable small world graph (HNSW) 

We use HNSW instead of K-graph to find nearest neighbors
for each data point in the dataset to be embedded. Specifi-
cally, HNSW incrementally builds a multi-layer structure con-
sisting of a hierarchical set of proximity graphs (layers) for
nested subsets of the stored elements, which maintains the
small world property (Figure 1 A). Then, through smart neigh-
bor selection heuristics, inserting and searching the query el-
ements in the multi-layer proximity graphs can be very fast
(due to small world property for each layer and hierarchi-
cal structure) while preserving high accuracy / recall. Insert-
ing new data into existing graph is essentially a search pro-
cess but all neighbor list in the graph will need to be up-
dated once the insertion is completed. We reimplemented the
hnswlib library in Rust and benchmark it against standard
datasets. Note that HNSW requires metric distance as in-
put for maintaining neighborhood diversity. Build the graph
takes O( N *log( N )) time. We then extract K-neighbors of each
point / node in the graph database for embedding as mentioned
above. Note that building HNSW is the same to search a new
element against graph database except that for building, all
elements in database need to be searched in a recursively way,
during which database graph needs to be updated after search
is done. 

Embedding and quality of the embedding 

Embedding is done by the following steps: (i) Initialized from
the HNSW graph, an exponential function of distances to
neighbor nodes for all nodes is calculated while keeping a
probability normalization constraint with respect to node’s
neighbors (Figure 1 B, left panel). (ii) Adjust the initial edge
weight by considering a power of the distance function to
neighbors (increase or decrease local density of points around
each node) for the embedded space (Figure 1 B, right panel).
(iii) Minimize divergence between embedded and initial dis-
tribution probability, then perform cross entropy optimization
of this initial layout but consider the initial local density esti-
mates of each point when computing the Cauchy weight of an
embedded edge (Figure 1 B). (iv) Estimate the corresponding
‘perplexity’ distribution. (v) Varying perplexity and evaluate
the quality of embeddings as described in the next paragraph.
Annembed uses the same loss function for divergence mini-
mization or cross entropy optimization as in UMAP but not
the actual implementation in UMAP-python package ( 28 ) (see
Supplementary Methods ). 

To quantify the quality of the embedding, annembed tries
to assess how well the neighborhood of points in original and
in embedded space may match, also called KNN accuracy.
Specifically, in each neighborhood of a point taken as center in
the initial space, annembed searches the point that has mini-
mal distance to the center of the corresponding neighborhood
in the embedded space. The quantiles on this distance are then
calculated, which provides a continuity / quality of the embed- 
ding, for example, if it is close to 1 then the embedding quality 
is better. 

Hubness 

NN-Descent (implemented in UMAP), as the key algorithm 

to build the K-graph, performs poorly for datasets with large 
hubness; that is, a skewed distribution of point neighbors is 
obtained by this algorithm when compared to an expectation 

(some points might have many more neighbors than others) 
( 8 ). Annembed estimates the skewness of point neighbors of 
the dataset by comparing the neighbors actually observed with 

the expected neighbors (e.g., average number of neighbors) 
as suggested previously ( 11 ) (Figure 1 C). At the very begin- 
ning, annembed initializes the hubness values of each dataset 
point to zero. Then, during algorithm execution (K-NN is ex- 
tracted from HNSW), annembed increases the hubness value 
of a given point by one if that point is added to the nearest 
neighbor list of some other point, and analogously, decreases 
the hubness value by one if the point is removed from some 
nearest neighbor list. 

Local intrinsic dimension 

To estimate the LID of a dataset to be embedded, we imple- 
mented the maximum likelihood estimation (MLE) ( 18 ) be- 
cause MLE has a significantly smaller standard deviation com- 
pared to other methods and converges faster to the mean as 
the number of samples increases ( 10 ). Note that, by default,
MLE needs > 20 neighbors around each point to have reli- 
able estimation. Specifically, the MLE method to estimate the 
LID is based on the constant density assumption in a small 
neighborhood and the Poisson process to model the random 

sampling in this neighborhood ( 29 ). The MLE method pro- 
vides a way to estimate LID for point x i in its k-neighborhood 

( k ≥ 20). That is, let R be the distance metric (e.g., Euclidean) 
and R ij ∈ R be the distance between point x i and x j under this 
metric, the MLE of the LID around point x i , with the distance 

metric of R , is computed as: 
∧ 
d k ( x i ; R ) = ( 1 

k −1 

k −1 ∑ 

j=1 
log R ik 

R ij 
) 
−1 

,

where the summation is over the k -nearest neighbors of point 

x . Note that 
∧ 
d k ( x ; R ) is point-specific, dependent on k and the 

distance metric R (Figure 1 D). LID therefore uniquely char- 
acterizes the sub-manifolds around x . We then average LID 

across all points in the database. 

MinHash-like algorithms to approximate ANI / AAI 
estimates of genomic similarity (or distance) 

Mash is fast and efficient in computing genomic distance 
via the MinHash algorithm and correlates well with the 
golden standard of genomic distance measurement, the 
ANI, after transformation based on the evolution model 
( ANI = 1 + 

1 
k log ( 2 ∗J 

1+J ) ) ( 22 ). However, MinHash does not 
consider the kmer abundance (or multiplicity) or the total 
kmer count of a given genome, which affect the estimation 

of real genomic distance of genomes ( 30 ,31 ). To consider 
multiplicity of k-mers, traditional hashing algorithms are not 
a good choice since they all assume unique set element (k- 
mer). New MinHash algorithms have been recently designed 

to solve the above-mentioned problem by utilizing weighted 

kmers ( 32–35 ). Still, those weighted MinHash algorithms 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
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o not solve the problem of different set size for genomes
f different length, resulting often in biased estimations of
eighted Jaccard index ( 30 ,31 ). Accordingly, new locality

ensitive hashing algorithms (P-MinHash) for weighted set
nd different set size were proposed to estimate weighted and
ormalized (to account for set size difference) Jaccard like

ndex J p ( 33 , 36 , 37 ). Among these algorithms, ProbMinHash
akes into account both weighted set (k-mer multiplicity) and
otal set size (total k-mer count), with further computational
ptimizations ( 33 ). More importantly, ProbMinHash pro-
ides a proper metric distance and can be used as input to
NSW. We also implemented a more accurate, but slightly

lower, MinHash-like algorithm called SuperMinHash (also
 locality sensitive hashing) for simple Jaccard index es-
imation ( 38 ). SetSketch, a MinHash-like algorithm but
epresenting a combination of MinHash and HyperLogLog,
s also implemented for its space efficiency (e.g., requires
ess memory and disk space to store the sketched genomic
nformation) ( 39 ). Another faster and also as accurate as
raditional MinHash (as in Mash) algorithm called One
ermutation MinHash with Optimal Densification (Densified
inhash) is also implemented ( 40 ). We have recently shown

hat ProbMinHash / SuperMinHash / SetSketch / Densified
inHash distances correlate well with ANI and AAI, for

NI values in the range of 80–100% and AAI values in the
ange of 55–95%, after transformation ( 26 ). To approximate
equence alignment identity (contiguous sequence like 16S
RNA gene sequence) via MinHash-like algorithms, the
rder MinHash ( 41 ) was implemented, which allows fast

nd accurate approximate computation of edit distance for
ene sequences (not whole genomes) based on k-mers set
istance but not alignment. Order MinHash is similar to that
f ProbMinHash except that the weight is the position of
he k-mer and that normalization by total k-mer count is not
ecessary. 

nnembed for metagenomic contig binning 

e replace t-SNE or PCA in manual binners (e.g.,
mgenome2) with annembed for visualizing contig kmer

omposition versus coverage of the contig. Order MinHash
as used to approximate the Edits distance among contigs but
ot Euclidean distance of k-mer composition as in the origi-
al mmgenome2 since the Edit distance is closer to alignment-
ased distance of contigs than Euclidean distance of k-mer
omposition ( 41 ). 

enchmark and analysis platforms 

ll analysis and tests were performed on a 24-thread Linux
unning RHEL v7.9, with an Intel(R) Xeon(R) Gold 6226
PU, except for testing scalability, where a 128-thread Linux

unning RHEL v7.9, with an AMD EPYC 7713 processor CPU
2 64-thread NUMA node) was used instead. 

esults 

peed and visualization accuracy for standard 

enchmark datasets 

e benchmarked annembed with the standard datasets,
NIST-fashion and MNIST-digits ( 1 ). Annembed performed

s good as UMAP (Figure 2 and Supplementary Figure S1 )
ith similar running time using 24 threads (Table 1 ). We

hen tested the NNS performance (i.e., NNS) with a large
ataset called HIGGS ( ∼11 million data points, 20 dimen-
sions, generated by the Large Hadron Collider) for UMAP
(NN-Descent for NNS or Annoy for NNS in another pack-
age, called UW O T) and annembed. NNS step took ∼18 min
for annembed for this dataset while it cannot finish for UMAP
(NN-Descent) within 1 h (Table 1 ). For the steps after NNS
(e.g., minimize the loss function and produce embeddings),
our implementation took ∼43 min using 24 threads while
UMAP and UW O T took > 8 h (not parallelized) (Table 1 ).
UW O T (ANNOY) NNS step is much faster than UMAP (NN-
Descent) because of the ANNOY library: NNS step in AN-
NOY took ∼22 min, similar to that of annembed. However, it
has been shown that as K increases (default K is 15 for both
UMAP and UW O T), for example, K = 200 or above, to main-
tain the same accuracy, for example, 95% or higher recall,
ANNOY is much slower than HNSW according to Aumüller
et al . ( 15 ). Both UMAP and annembed use cross-entropy op-
timization, which is the speed limiting step for UMAP-python
and UW O T implementations. However, annembed fully paral-
lelizes this step and allows multi-threaded cross entropy opti-
mization, which is ∼10 × times faster than UMAP for the same
step when embedding (Table 1 ). Despite being fast due to par-
allelization, memory consumption also increases. Therefore,
we next compared annembed with Trimap, a highly mem-
ory efficient algorithm for non-linear DR, for embedding the
HIGGS dataset. Annembed consumed a maximum memory of
58 GB with 24 threads while Trimap only consumed a max-
imum memory of 15 GB ( Supplementary Table S1 ) but had
similar running time with UMAP, and thus was much slower
than annembed. We also showed that annembed scaled well
with the number of threads for datasets with millions of data
points ( Supplementary Figure S3 ). The visualization of embed-
dings for the HIGGS dataset followed a similar pattern to that
observed with smaller datasets ( Supplementary Figure S8 A
and B), with UMAP’s visualization being more compact. 

We also compare annembed with UMAP using a stan-
dard single-cell RNA sequencing dataset called PBMCs (pe-
ripheral blood mononuclear cells) ( 3 ) and another single-
cell RNA dataset from Caenorhabditis elegans ( 42 ). An-
nembed was able to clearly separate each cell type of the
blood cells from each other and showed consistent visual-
ization with UMAP, despite its less compacted visualization
( Supplementary Figure S2 a and b). The C. elegans dataset also
showed consistent results, for example, each cell type and sam-
pling time point were identified consistently between annem-
bed and UMAP (Figure 3 A and B). Additionally, the user is
able to adjust the spatial scale parameter (via the –scale op-
tion) in annembed to allow more or less clustered visualization
of the embeddings. The default value was used for the above
comparison. 

Quality and other metrics of the embeddings 

We evaluated the quality of the embeddings by increasing per-
plexity (a parameter to balance attention between local and
global aspects of the data). As perplexity quantile increased
from 0.05 to 0.99, the quality of embeddings (matched neigh-
bors in embedded space out of 15 true neighbors in the origi-
nal space) increased from ∼4 to ∼6 for the FASHION dataset
until quantile equaled 0.5, but did not increase any further
after this point ( Supplementary Table S3 ). The quality of the
embeddings (matched neighbors in embedded space out of 25
true neighbors in the original space) for the GTDB genome
database (see section below) increased from 12 to 15 as quan-
tile increases from 0.05 to 0.5, but did not further after this

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data


6 NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 4 

Figure 2. Dimension reduction for t-SNE ( A ), UMAP ( B ) and annembed ( C ) for the MNIST-fashion dataset. Color indicates different labels (see key to the 
right, and text for further details). For t-SNE, UMAP and annembed, k = 15 (number of neighbors) was used. 

Table 1. Running time of UMAP and annembed for three benchmark datasets using 24 threads on Linux running RHEL v7.9, with an Intel(R) Xeon(R) 
Gold 6226 CPU. Running time is average values of three independent runs 

Dataset 
Number of 
data points Dimension K 

UMAP 
(NN-Descent) 
NNS a 

UMAP 
(annoy) 
NNS 

UMAP 
embedding b 

Annembed 
(HNSW) 
NNS 

Annembed 
(embedding) 

MNIST FASHION 70 000 748 15 2 min and 25 s 44 s 1 min and 1s 27.4s 14.2 s 
SIFT_1M 1 M 128 15 53 min and 

20 s 
14 min and 
35s 

53 min and 
22s 

9 min and 21s 16 min and 
13s 

HIGGS 11 M 20 15 > 8 h 1 h and 
45 min 

> 24 h 43 min 1 h and 56 
min 

a NN-descent algorithm is not parallelized, and it can only use 1 thread. 
b embedding step in both python version UMAP and R version UW O T are not parallelized. 

A B

Figure 3. UMAP ( A ) and annembed ( B ) visualization for C. elegans single-cell RNA sequencing dataset. Color indicates time (h) since experiment started 
while shape indicates cell type used. Major cell types are also labeled in the plot, anchored by the centroid of each cell type. High-resolution figures can 
be found in the Supplementary Materials . Note the high overall similarity in separating the single cell based on their type between the two methods. 

 

 

 

 

 

 

 

 

 

point ( Supplementary Table S3 ). Therefore, annembed can au-
tomatically determine the best perplexity to use for different
datasets to maximum the quality of embeddings based on this
strategy. 

LID estimated for the MNIST-digits (22.97) and MNIST-
fashion (17.5) datasets by annembed were very similar to
those reported previously (i.e., 19.6 and 15.3, respectively).
Hubness estimations by annembed of the two standard
datasets (i.e., 2.46 and 1.01, respectively) were also close
to the original study that proposed the hubness concept
( Supplementary Table S2 ). The hubness of HIGGS dataset is 
∼1000 since the number of data points is much larger than 

the MNIST-fashion dataset. 

Visualization of large-scale microbial genome 

database and identification of inconsistent 
taxonomic assignments 

We combined MinHash-like algorithms for genomic distance 
estimation (i.e., ANI) with HNSW to produce nearest neigh- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
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or information for a database of genomes, that is to build
he HNSW graph using MinHash estimated Jaccard index as
 proxy of ANI. For GTDB database (prokaryotic genome
atabase clustered at 95% ANI species threshold), tohnsw
subcommand in GSearch to build HNSW graph) took ∼43
in to build the graph and subsequently, the embedding step

ook 4 min. For NCBI / RefSeq prokaryotic genome database
 ∼318 K genomes), tohnsw step took ∼2.3 h while the embed-
ing step took 13.2 min. Tohnsw step to build HNSW graph
atabase for ∼3 million virus species took ∼16.4 h while the
mbedding step took ∼33 min on a 24-thread node. Notably,
or traditional dimension reduction methods such as PCA,

DS requires calculation of all versus all pairwise genomic
istances among all database genomes, which is impractical
or several real-world genome databases such as those men-
ioned above ( N 

2 comparisons; N = number of database
enomes) even with fast algorithms such as MinHash ( 22 ).
ubness estimation was 153.2 at the amino acid level em-

edding of the GTDB database and 181.2 for NCBI / RefSeq,
onsistent with the prediction that biological databases are
ighly clustered (MNIST-Fashion has a much smaller hubness
stimation, see Supplementary Tables S2 , with a similar to-
al number of data points), for which the performance of the
N-Descent algorithm degrades significantly. 
We also visualized the embedding result for GTDB, which

s a taxonomically well described (labeled) genome database
ased on the Relative Evolutionary Distance (RED) values and
he ANI concept. The majority of the genome hubs visual-
zed by annembed grouped according to their taxonomy affil-
ations, for example, genomes within the same phylum affilia-
ion grouped in the same cluster in the two dimension annem-
ed plot (Figure 4 ). However, we also observed that several
enomes such as members of the Firmicutes (red) and Desul-
obacterota (orange) phyla clustered within the Proteobacte-
ia (green) cluster, which indicates that the former genomes
might have been mislabeled taxonomically. To further confirm
this, we extracted the corresponding Firmicutes and Desul-
fobacterota genomes (three genomes as an example) and cal-
culate universal gene AAI (accurate for phylum level genomic
distance / identity) between them and their most similar pro-
teobacterial genome . We found that those genomes had better
universal gene AAI values to the most similar genome in Pro-
teobacteria than to the most similar genome in their originally
assigned phylum (57.3%, 49.5% and 54.9% versus 50.4%,
42.0% and 47.2%, respectively), consistent with mislabeling
of these genomes. 

We then also visualized detailed embedding results at a
lower taxonomic rank (e.g. class and order levels) and found
that annembed can also clearly differentiate between dif-
ferent classes and orders within the Proteobacteria phylum
( Supplementary Figure S4 ). Therefore, the annembed results
can be used to quickly assess the level of consistency in the
taxonomy information available in the public databases. Sim-
ilar results in terms of separating major clades or clusters
to those reported above for the NCBI / RefSeq prokaryotic
genome database ( Supplementary Figure S5 ) were obtained
for the viral and the fungal genome databases ( Supplementary 
Figures S6 and S7 ). 

Visualizing large-scale 16S marker gene databases 

for prokaryotes 

We combined Order MinHash with annembed, a LSH algo-
rithm to approximate edit distance or alignment identity, to
visualize the 16S ribosomal RNA (16S) gene database, i.e.,
SILVA and RDP (average sequence length of an individual
16S gene is ∼1500 bp). Order MinHash is a special case of
the weighted MinHash, where weight is the position of the
k-mer in a sequence. Running annembed with Order Min-
hash as the underlying sequence distance estimation for 1.6

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
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million 16S sequences available in the SILVA database took
< 5 min with 24 threads (NNS step took 33 min). No clear sep-
aration of the 16S sequences was observed at the phylum or
class levels ( Supplementary Figures S9 and S10 ). These results
might indicate that several sequences are taxonomically mis-
labeled in SILVA, which is consistent with the previous anal-
ysis that reported that 20% of the taxonomy annotations in
SILVA are incorrect based on examination of the guiding tree
( 43 ). We also ran the same analysis for the RDP v18 16S se-
quences for comparison. We observed a clear separation by
taxonomic annotation at phylum, class and even genus level
( Supplementary Figures S11 and S12 ). The RDP sequences
are taxonomically identified based on curated isolate and type
strain sequences or environmental sequences predicted by the
RDP Naive Bayesian Classifier ( 44 ), which is thought to be a
highly accurate classification system ( 45 ), consistent with the
results presented here. 

Metagenomic binning via embedding contig kmer 
composition to assist in curating metagenome 

assembled genomes 

t-SNE and UMAP have been applied to manually bin metage-
nomic contigs for obtaining metagenome assembled genomes
(MAGs) (e.g., graphs of contig k-mer coverage plotted versus
k-mer composition) because the dimension reduction based
on PCA requires all versus all distance computation, which is
computationally expensive for thousands of contigs. Here, we
replace the t-SNE and UMAP modules in the metagenomic
binning software mmgenome ( 46 ) with annembed (LSH for
Euclidean distance as contig distance estimation method). An-
nembed with LSH reduced the computation time to calcu-
late contig profile differences and dimension reduction by 3–5
times for a medium size metagenomic assembly (10 000 con-
tigs, average contig length ∼8000 bp) ( Supplementary Table 
S4 ). For even larger metagenomic assemblies (e.g., millions of
contigs), annembed will be even faster than t-SNE or UMAP.
Annembed provided similar results to UMAP when manu-
ally checking the resulting MAGs from these two approaches
( Supplementary Figure S13 ). However, we noticed that there
were several MAGs that annembed was not able to resolve
whether their corresponding contigs were from the same or
separated clusters (or MAGs), but UMAP was able to distin-
guish these contigs. We suspect that this is due to the loss func-
tion in UMAP that puts more weight on the repulsive force,
leading to more compact visualization despite the fact that
the actual distance or similarity of these contigs was not pre-
served in UMAP (see also below for more discussion on the
loss function). Therefore, the additional clusters observed by
UMAP may not necessarily represent reliable information for
curating MAGs. 

Discussion 

In this study, we improved the speed and capabilities of UMAP
and UMAP-like algorithms by applying a fast and efficient
graph-based neighbor search algorithm and providing addi-
tional parameter estimations for large scale non-linear dimen-
sion reduction tasks. We showed that in real world datasets
with millions of data points, our annembed library is at least
8–10 times faster while maintaining similar visualization ac-
curacy due to the application of both HNSW and the paral-
lelized embedding step. Annembed will be even faster as the
data set size grows because of the O( N *log( N )) complexity 
of the HNSW graph database build step. The LID and hub- 
ness estimation annembed provide offer more information 

about the structure and distribution of the data than com- 
mon UMAP implementations, especially for high dimensional 
data, and thus should help to perform better NNS. For exam- 
ple, when LID is very high, for example, several thousands,
users should avoid using the NN-Descent algorithm and use 
annembed instead. These two features were not included in 

neither the original NN-Descent nor the UMAP implementa- 
tion ( 2 ), but several recent studies have shown that they affect 
the accuracy in finding the true neighbor for each data point 
( 11 ,13 ) and the performance of NNS finding step ( 18 ), a lim-
iting step for UMAP-like or t-SNE-like algorithms. The MLE 

estimation of LID we implemented is widely applied ( 47 ,48 ) 
but also requires at least 20 neighbors to be accurate. This is 
not a problem for testing datasets, but it could be a substan- 
tial challenge for microbial genome datasets because there are 
not often enough closely enough related genomes to use in dis- 
tance estimations, especially when embedding genomes at the 
nucleotide level. The amino acid level could be used instead 

(e.g., AAI) in such cases to partially alleviate this problem, al- 
though there might still be several deep-branching genomes 
with < 20 relatives at this level. Alternatively, the newly pro- 
posed LID estimation algorithm that does not require at least 
20 neighbors ( 49 ) could be employed. 

The speed of NNS finding is especially important for real 
world applications like genome analysis because total running 
time is related to the number of comparisons for the entire 
database and the time required for a single pair comparison.
With a O( N *log( N )) complexity, HNSW is orders of magni- 
tude faster than NN-Descent for large datasets, and it is fully 
parallelizable in Rust, a difficult task for other languages like 
C / C++ due to clear data race when multiple threads work on 

the same graph data structure. Also, for large datasets, mem- 
ory requirement for NNS finding is a key limiting step for 
both NN-Descent and Annoy. Here, we implemented a mem- 
ory map in the hnswlib-rs library for running datasets with bil- 
lions of data points without large memory requirements. More 
importantly, we provide an option in the hnswlib-rs library to 

allow users to implement their own distance estimation. This 
provided an opportunity to combined MinHash-like proba- 
bilistic data structures with HNSW since set similarity, for ex- 
ample, Jaccard index, can be estimated in a sub-linear run- 
ning time using the mentioned probabilistic data structures.
We provide several MinHash-like implementations as part 
of the distance estimation step, aiming at accuracy or space- 
(disk-) efficiency purposes, depending on the computing re- 
sources available to the users. 

The application of annembed to visualization of genome 
database based on the idea mentioned above can be useful 
in checking, for example, the label accuracy of taxonomi- 
cally annotated databases. For instance, we found that many 
genomes labeled as phylum Desulfobacterota are actually Al- 
phaproteobacteria (a class of the Proteobacteria phylum) (Fig- 
ure 4 ). Further, very high hubness for genome datasets (GTDB 

or RefSeq) indicates either discontinuous evolutionary space 
( 51 ) or biased sequencing / sampling efforts towards existing 
genome sequences ( 52 ). Thus, application of annembed to 

these datasets can identify under-sampled lineages for fur- 
ther genomic characterization in the future. More broadly,
the abovementioned MinHash-like algorithms combined with 

HNSW for annembed can also work for text / document files 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae172#supplementary-data
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r websites, not only genomes, providing an opportunity to
un dimension reduction and visualization for various types
f datasets. 
It is also worth mentioning that in addition to the Jac-

ard index and Edit distance (string matching), Euclidean dis-
ance, Hamming distance and Angular distance can be all
omputed via hashing-like algorithms ( 53–56 ), making the
dea of combining them with HNSW even more attractive for
arious applications that required these other distance met-
ics (e.g., strings, vectors and text / document). We provide an
xample in which we used order MinHash to approximate
dit distance for DNA sequences of single genes and visu-
lize them via annembed. This application helps to identify
islabeled taxonomic information in widely used reference

equence databases such as the 16S rRNA gene databases.
owever, when distance of interest is not a metric distance,
NSW is limited in terms of accuracy, and UMAP based on
N-Descent will be a better option (NN-Descent works for
on-metric distance) until recent efforts to generalize HNSW
o non-metric distances become more robust ( 57 ). Nonethe-
ess, it should be mentioned that the problems of NN-Descent
iscussed above for non-metric distance is not clear because
ID and hubness are studied under the metric distance as-
umption ( 47 ). 

New metagenomic binning algorithms such as Rosella ( 58 ),
inArena ( 59 ) and mmgenomes ( 46 ) rely on UMAP or t-SNE

or visualization of contigs after obtaining the composition
f contigs (e.g., Euclidean distance based on k-mer composi-
ion of contigs) to avoid all versus all distance computation.
ubsequently, contigs are typically manually binned via hu-
an intuition or clustering algorithms. As the metagenomic

equencing capabilities are growing, it is possible to have mil-
ions of contigs assembled and subsequently binned. Annem-
ed can be 10 times faster or more in these cases than UMAP
r t-SNE. Further, the distance among contigs in the embedded
pace of UMAP or t-SNE is not the actual genomic distance in
he original Euclidean space consisting of k-mers, unlike an-
embed, because the global distance is not well preserved in
on-linear dimension reduction algorithms, which represents
nother advantage of annembed. 

It has to be noted, however, that the HNSW graph building
s still not so fast for large datasets due to O( N *(log( n ))) de-
pite being one of the fastest nearest neighbor graph building
lgorithms. Recently, a new algorithm combining LSH with
NSW or approximate proximity graph (APG) structure has

een proposed to further accelerate graph database building
tep from O( N *log( N )) to O( N * c ), where c is a constant in-
ependent of N . LSH-APG builds an APG via consecutively
nserting points based on their nearest neighbor relationship
ith an efficient and accurate LSH-based search strategy ( 60 ).
 high-quality entry point selection technique and an LSH-
ased pruning condition are developed to accelerate index
onstruction and query processing by reducing the number of
oints to be accessed during the search for each query. Annem-
ed could be further accelerated by adopting this idea when
uilding HNSW graph to improve on the O( N *log( N )) run
ime limit. 

Finally, the new UMAP-like algorithm SpaceMAP, which
onsiders a restricted k-nearest neighborhood (part of the
anifold, thus ignoring the hierarchical structure) by match-

ng the ‘capacity’ of high- and low-dimensional / embedded
pace via analytical transformation of distances adjusted by
ID ( 48 ), has solved the widely accepted problem that there
are geometrical distortions between two spaces (original space
and embedded space). It might be useful to change the opti-
mization procedure of UMAP to decrease the repulsion per
edge by considering non-KNN graph edges in loss function
( 28 ) as implemented in SpaceMAP, and we will explore it in
future work. There isn’t an explicit index available to evaluate
how well overall annembed, or another library, preserves the
global structure compare to the original space. TriMap and
SpaceMAP attempt to implement such an index to calculate
how well the global structure is preserved by using PCA as
the standard ( 50 ). We will explore these ideas in the future
to provide a similar index of how well the global structure is
preserved. 

We believe that annembed library will accelerate large scale
(e.g., millions or even billions) non-linear dimension reduc-
tion tasks, where alternative methods are limited by the NNS
step and downstream single-threaded computations. Annem-
bed can also help visualizing large-scale genomic databases or
single-cell RNA sequencing studies and advance scientific dis-
coveries related to cancer and other diseases. 

Data availability 

Annembed library can be found via Zenodo ( https://doi.org/
10.5281/zenodo.13761466 ) or Github ( https://github.com/
jean-pierreBoth/annembed ). GSearch (visualizing genomes)
can be found via Zenodo ( https:// doi.org/ 10.5281/ zenodo.
10543594 ) or Github ( https:// github.com/ jean-pierreBoth/
gsearch ). R and python scripts for reproducing all the
analysis can be found via Zenodo ( https:// doi.org/ 10.5281/
zenodo.13763717 ) or Github ( https:// github.com/ jianshu93/
annembed _ analysis ). 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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