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Abstract 

Illumina-based BeadChip arrays have revolutionized genome-wide DNA methylation profiling, pushing it into diagnostics. Ho w e v er, comprehen- 
sive quality assessment remains challenging within a wide range of available tissue materials and sample preparation methods. This study 
t ackles t wo critical issues: differentiating bet w een biological effects and technical artef acts in suboptimal quality samples and the impact of 
the first sample on the Illumina-like normalization algorithm. We introduce three quality control scores based on global DNA methylation dis- 
tribution (DB-Score), bin distance from copy number variation analysis (BIN-Score) and consistently methylated CpGs (CM-Score) that rely on 
biological features rather than internal array controls. These scores, designed to be adjustable for different analysis tools and sample cohort 
characteristics, were explored and benchmarked across independent cohorts. A dditionally, w e re v eal de viations in beta v alues caused b y differ- 
ent sample rankings with the Illumina-like normalization algorithm, verified these with whole-genome methylation sequencing data and sho w ed 
effects on differential DNA methylation analysis. Our findings underscore the necessity of consistently utilizing a pre-defined normalization sam- 
ple within the ranking process to boost reproducibility of the Illumina-like normalization algorithm. Overall, our study delivers valuable insights, 
practical recommendations and R functions designed to enhance reproducibility and quality assurance of DNA methylation analysis, particularly 
for challenging sample types. 
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Introduction 

DNA methylation represents one of the main epigenetic mod-
ifications that plays a crucial role not only in developmen-
tal processes but also in cancer ( 1 ). Due to its regulatory
significance, DNA methylation has gained increasing atten-
tion in research, particularly in exploring DNA methylomes
across various malignancies. Furthermore, DNA methylation
has emerged as a potential biomarker in the field of diag-
nostics, being utilized for assessing epigenetic age in lifestyle
medicine ( 2 ) and is now employed in tumor classification e.g.
for brain tumors according to the World Health Organiza-
tion ( 3–5 ). Within this DNA methylation-based diagnostic ap-
proaches not only global changes in the DNA methylome are
taken into account, but in part also modest effects at partic-
ular loci. These minor deviations are often due to biological
effects, but in some cases are merely artefacts of bioinformatic
analyses and algorithms, so that a comprehensive and repro-
ducible procedure for quality assessment and normalization is
required. 

Several high-throughput arrays for genome-wide DNA
methylation analysis have been developed over the past
few years. One of the most used array technologies for
DNA methylation analyses was established and launched by
Illumina ( https:// emea.illumina.com/ techniques/ microarrays/
methylation-arrays.html ). While the Infinium HumanMethy-
lation27k BeadChip measured DNA methylation at only
27 578 methylation sites, in the meantime the Infinium Hu-
manMethylation450 (450k) and Infinium MethylationEPIC
(EPIC) BeadChip Kit were launched interrogating > 450 000
and 850 000 methylation sites, respectively ( 6 ). Currently,
> 935 000 methylation sites are included in the EPIC v2.0 ( 7 ).

The pre-processing and normalization procedures are cru-
cial and sometimes underestimated steps when analysing high-
throughput array data. Pre-processing steps include the cor-
rection of dye bias, probe type and background. In the last
decade, not only has the number of measurable CpGs raised,
but also the number of algorithms for normalization. Widely
used methods for normalizing Illumina-based arrays comprise
e.g. the subset-quantile within array normalization ( 8 ), quan-
tile normalization ( 9 ,10 ), noob ( 11 ), functional normaliza-
tion ( 12 ) and beta-mixture quantile method ( 13 ). However,
no gold-standard pipeline has been established yet. 

Besides pre-processing and normalization, several quality
controls and filtering steps can be applied to array based
DNA methylation data. Most quality controls rely on the
control probes integrated on the array, such as those for
bisulfite conversion, G / C mismatch, extension, hybridization,
non-polymorphic sequences, specificity, target removal and
hybridization ( 14 ). Plots based on these integrated control
probes can be assessed using Illumina’s GenomeStudio soft-
ware or alternative software packages, e.g. the minfi package’s
qcReport function ( 10 ). Within these plots, the intensity values
or their log 2 of these integrated control probes are shown for
each sample; however, appropriate data interpretation is still
challenging. Another widely used quality control is the filter-
ing for reliability of signals. Therefore, detection P- values can
be calculated using e.g. GenomeStudio or minfi, whereby the
total signal for each probe is compared to the background sig-
nal, which is estimated from the negative control probes ( 14 ).
While low P- values indicate a reliable signal, high P- values
point out poor quality signals. In general, thresholds for P-
values for loci to be included in subsequent analyses are of-
ten set to < 0.01 or 0.05. Overall, all these quality parameters
are solely dependent on technical aspects referring to the ar- 
ray design, lacking controls that take biological variables into 

account. 
In various studies, we conducted exploration and validation 

of DNA methylation data derived from numerous Illumina- 
based BeadChip arrays ( 15–19 ). Thereby, we experienced 

challenges when dealing with low-quality samples, particu- 
larly those derived from formalin-fixed paraffin-embedded 

(FFPE) tissue. Distinction between a true biological effect and 

technical failure due to low DNA content or poor DNA qual- 
ity proved to be a challenging task. In addition, we investi- 
gated the central role of the initial sample in the normalization 

process when applying the algorithm used by numerous soft- 
ware packages, including Illumina’s GenomeStudio software 
(normalization to internal controls), which is subsequently re- 
ferred to as the Illumina-like normalization algorithm ( 14 ). 

Thus, within this study, we aimed to improve the quality 
control strategies by implementing adjustable quality control 
scores (QC-Scores) based on biological features. To this end,
we established three novel QC-Scores: a distribution score 
(DB-Score), a bin distance score (BIN-Score) and three mea- 
sures related to highly consistent DNA methylation levels at 
specific CpGs (CM-Scores). Furthermore, we encourage for 
the consistent utilization of a pre-defined normalization sam- 
ple within the sample ranking to enhance the reproducibility 
of the Illumina-like normalization algorithm. 

Materials and methods 

Samples 

Six paired Burkitt lymphoma samples, each as FFPE tumor 
tissue (named as: FFPE_S1-FFPE_S6) and as cryo-preserved 

tumor tissue (named as: Cryo_S1-Cryo_S6), were used for 
the DNA methylation analysis by the Infinium HumanMethy- 
lation450 BeadChip, and whole genome bisulfite sequenc- 
ing (WGBS) was performed on the cryo-preserved samples 
( 20 ). In addition, five non-neoplastic samples (germinal cen- 
ter B populations) were used for the identification of differ- 
entially methylated CpG loci. These samples were part of 
the ICGC MMML-Seq project, which has been approved by 
Ethics Committee of the Medical Faculty of the University 
of Kiel (A150 / 10) and Ulm University (349 / 11) and of the 
recruiting centres. The normalization sample was collected 

from the blood of a healthy donor. Its use in this study has 
been approved by Ethics Committee of the Medical Faculty 
of Ulm University (102 / 15). The samples are summarized in 

the Supplemental Table S1 . 
We further collected publicly available DNA methylation 

array data derived from primary material including various 
malignancies, non-malignant samples and tissues as well as 
cell lines ( n = 465) to investigate consistency of our iden- 
tified stable high and low methylated CpGs ( 21–23 ). For 
benchmarking of our QC-Scores, we used DNA methyla- 
tion array hybridizations from the ICGC MMML-Seq project 
(450k, EPIC) and hybridizations derived from FFPE tissue 
from Salmeron-Villalobos et al . (EPIC) ( 24 ). 

DNA methylation analysis 

Infinium-based methylation BeadChips 
For DNA methylation analysis 0.5 to 1 μg genomic DNA 

was bisulfite converted using the EZ DNA Methylation kit 
(ZymoResearch, Irvine, C A, US A) according to the protocol 

https://emea.illumina.com/techniques/microarrays/methylation-arrays.html
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
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Figure 1. Workflow DNA methylation analysis pipeline – normalization 
and quality assessment. Samples are normalized using the Illumina-like 
process with the minfi package in R. Afterwards, beta values are 
calculated. The quality of each sample is assessed by the newly 
implemented DB-Score, BIN-Score and the three measures based on 
deviations from consistently high or low CM-Scores. Loci with a 
detection P- value > 0.01 were filtered out and samples with a loci call 
rate (LCR) < 98% are e x cluded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

upplied by the manufacturer and subsequently hybridized
nto the Infinium Methylation EPIC v1.0 and HumanMethy-
ation450 BeadChip (Illumina Inc., San Diego, C A, US A). The
rrays were scanned using an iScan or NextSeq 550 device
Illumina Inc.). 

Raw idat files were read into the statistical program R (ver-
ion 4.3.0) using the minfi package (version 1.46.0) ( 10 ). Nor-
alization was performed with the preprocessIllumina func-

ion against the intrinsic controls and without background
orrection. For downstream analysis, beta values were calcu-
ated, the 65 rs loci (annotated with ‘rs’ in the Illumina man-
fest column IlmnID), loci on gonosomes as well as loci with
 detection P- value > 0.01 were excluded. Finally, 473 864
pGs entered the analysis. 

hole genome bisulfite sequencing 
GBS data were published and processed as described in

retzmer et al . ( 20 ). 

 CE-S eq 

llele specific copy number estimation (ACE-Seq, version
.2.6–2, https:// github.com/ DKFZ-ODCF/ ACEseqWorkflow )
as performed as previously described ( 25 ). 

tatistical analyses 

ll statistical analyses were performed in R ( www.R-project.
rg , version 4.3.0). Pearson correlation was used for the cor-
elation of beta values. The copy number variation (CNV)
nalysis was performed with the R package conumee (version
.34.0) ( 26 ). The ‘normalization samples’ were used as refer-
nce samples for the CNV analysis. For data visualization for
ntersecting CpGs sets, the R package UpSetR (version 1.4.0)
as used ( 27 ). 
Significant differentially methylated CpGs were identified

ith the limma package (version 3.58.1) ( 28 ). Differentially
ethylated CpGs with a false discovery rate (FDR) < 0.01 and
 | �β| > 0.3 were considered as significant. For comparison
f DNA methylation array and WGBS data, the WGBS data
ere reduced to the CpGs located on the array. 

esults 

mplementation of QC-scores 

e want to highlight that the QC-Scores are specifically de-
igned for use with the current DNA methylation BeadChip
rrays from Illumina (450k and EPIC). It is important to note
hat samples with functional knockouts particularly target-
ng epigenetic writers or erasers or those subjected to specific
reatments may exhibit deviations in the QC-Scores. These ex-
eptions should be considered when interpreting the results, as
he scores may not fully capture the unique DNA methylation
atterns induced by such experimental conditions. 

orkflow of the proposed DN A meth ylation analysis pipeline
ur proposed quality assessment strategy aims to provide a

omprehensive distinction between samples with DNA methy-
ation profiles that are due to a biological effect (e.g. disease-
elated changes in the DNA methylation profile or global
NA hypomethylation) and those samples where altered
NA methylation values are due to suboptimal DNA qual-

ty (‘technical failure’). 
To this end, three QC-Scores were implemented: First,
the Distribution Score (DB-Score), which indicates a shift
from a bimodal distribution of the beta values towards a
normal-like distribution. Second, the Bin Distance Score (BIN-
Score), which measures the heterogeneity of the intensity val-
ues within defined genomic segments. Third, three measures
based on deviations from consistently high or low methy-
lated CpGs (CM-Scores). Cut-offs for the QC-Scores for
data filtering represent suggestions based on our experience
( Supplemental Table S2 and Figure 1 ) and might be optimized
depending on the type of samples used. 

Our DNA methylation pipeline is implemented within the
statistic program R and is built upon the Illumina-like normal-
ization process using the R package minfi ( 10 ). In addition to
the conventional detection P -value filtering ( < 0.01), we make
use of a further parameter, termed the LCR, computed as the
percentage of CpGs with a P -value < 0.01 for an individ-
ual sample ( 29 ). In the following, the design of the scores is
described. 

DB-scores assess the ‘bimodality’ of global DN A meth ylation
After normalization, average beta values are calculated from
signal intensities ranging from 0 to 1, whereby 0 indicates 0%
and 1 represents 100% DNA methylation at a given CpG.
When visualizing all measured beta values in a histogram or
density plot, a bimodal distribution is expected in normal so-
matic samples, exhibiting two distinct peaks within the ranges
0–0.3 (representing unmethylated CpGs) and 0.7–1 (repre-
senting methylated CpGs). 

In contrast, a prevalent phenomenon in tumor sam-
ples is the genome-wide loss of DNA methylation of-
ten co-occurring with specific hypermethylation of CGI
promoters, resulting in a deviation from the bimodal
distribution shifting the peaks towards 0.5 ( 1 ). However, de-

https://github.com/DKFZ-ODCF/ACEseqWorkflow
http://www.R-project.org
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
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viations from the bimodal distribution, potentially even re-
sulting in a Gaussian-like curve, might also be derived from
technical issues. Consequently, with the implementation of the
DB-Score, we first aim to identify cases exhibiting deviations
from the expected bimodal distribution, thereby signifying po-
tentially insufficient DNA quality. 

The DB-Score is defined as the ratio between the count of
CpGs with beta values falling within the range of 0.3–0.7
(mid) and the count of CpGs with beta values less than or
equal to 0.3 (low) or greater than or equal to 0.7 (high), as
depicted in Figure 2 A. According to the DB-Score, samples
can be divided into three categories: Samples having a DB-
Score < 1 show a bimodal distribution, and are considered of
good quality. Samples in which the DB-Score is > 1 and < 8
(deviating from a bimodal distribution) are interpreted as be-
ing of problematic quality and should be further investigated
( Supplemental Figure S1 ). And finally, we detected a series
of samples with a DB-Score > ∼8, which usually show in
our data a normal-like distribution, frequently in combination
with incorrect even CNVs. These are considered as technical
failures, likely due to globally equal levels of fluorescence sig-
nals of the methylated and unmethylated beads. 

BIN-Score reveals technical failure 
As a second measure, we established a QC-Score, termed BIN-
Score. The computation of the BIN-Score relies on the uti-
lization of the R package ‘conumee,’ which facilitates CNV
calling through the analysis of DNA methylation data ( 26 ).
This score uses the distribution of the intensity values across
defined genomic fragments as a measure for good or question-
able quality. 

The genome is segmented into fragments, termed bins, each
delineated by a specified minimum size and a requisite mini-
mum number of CpGs. These bins, represented as points in the
plot, serve to visually capture gains and deletions across the
entire genome, shifting the segment line to the positive (gain)
or negative (loss) along the y-axis. Overall, a sample’s BIN-
Score is the median of the absolute deviations between bins
and their respective segment lines. It is pertinent to note that
the BIN-Score does not solely account for samples from malig-
nant tissue, where CNVs are predominantly expected. Instead,
the calculation relies on the distribution span of the bins along
the segment line and the y-axis, rather than the CNVs per se
(see Supplemental Figure S2 for a schematic representation
of the calculation). Thus, the same threshold ( < 0.25) applies
to malignant and non-malignant samples. Consequently, sub-
stantial deviations of the points from their respective segments
are indicative of technical variation, potentially induced by
suboptimal DNA quality. 

CM-Scores safeguard the detection of biological effects 
Third, we implemented three measures summarized under the
term CM-Scores. This involved the identification of CpGs
(termed stable CpG loci) characterized by a consistent DNA
methylation pattern across diverse tissues, various malignan-
cies, non-malignant samples and distinct sample preparation
methods. 

These stable CpG loci were further categorized into highly
methylated CpGs (beta value > 0.9; 450k: 279, EPIC: 249),
and lowly methylated CpGs (beta value < 0.1; 450k: 313,
EPIC: 299) ( Supplemental Table S3 ). In Supplemental Figure 
S3 , beta values from 465 samples are displayed as an example
of the stable CpG loci. Although it is well known that cell lines 
may manifest differences in their DNA methylation profiles 
when compared to primary samples ( 30 ), they also demon- 
strate notably uniform methylation patterns across these sta- 
ble CpG loci. 

On the basis of the stable CpG loci, we calculated three re- 
lated measures: ‘CM-Score low’ based on the lowly methy- 
lated stable CpGs; ‘CM-Score high’ based on the highly 
methylated stable CpGs; and ‘CM-Score difference’ represent- 
ing the absolute difference between CM-Score high and low 

(Figure 2 B). Overall, the CM-Score high and low give the 
percentage of CpGs exhibiting a deviation from their defined 

methylated thresholds (beta value > 0.9 or < 0.1). The thresh- 
old for all CM-Scores is set at 20%. If both CM-Scores ex- 
hibit > 20%, thus showing a deviation of the DNA methyla- 
tion levels in > 20% of the stable CpG loci high and 20% of 
the stable CpG loci low, this sample is categorized as a tech- 
nical failure. 

Using selected samples, the three possible scenarios are 
shown as a heatmap in Figure 2 C: good CM-Score high and 

low, bad CM-Score high and low, bad CM-Score difference.
As an example of good CM-Score high and low samples, we 
used blood-derived samples from healthy donors (e.g. the nor- 
malization sample), which clearly show high DNA methyla- 
tion for the stable high methylated CpGs (in yellow) and a 
low DNA methylation for the stable low methylated CpGs (in 

blue). In contrast, samples featuring a bad CM-Score high and 

low have an average DNA methylation of about 0.5 (depicted 

in black) across all usually stable methylated CpGs, indicat- 
ing a technical failure. Lastly, samples exclusively manifesting 
deviations for stable highly methylated CpGs, possibly due to 

global DNA methylation loss, are illustrated, resulting in an 

elevated CM-Score difference and thus may indicate a biolog- 
ical effect. 

While we have provided a set of consistently methylated 

CpGs based on our diverse dataset, we acknowledge that users 
may have specific research contexts or sample types that differ 
from those in our study. Thus, researchers may adapt the CM- 
Scores to their specific needs following the described concept 
to identify consistently methylated CpGs within their own 

datasets. 

Importance of the sample ranking using 

Illumina-like normalization process 

According to Illumina’s GenomeStudio Methylation Module 
User Guide (chapter: Applying Methylation Algorithms, Nor- 
malization to Internal Controls) the first sample within the 
sample sheet serves to calculate a normalization factor which 

is applied to all other listed samples ( 14 ). However, the extent 
to which the first sample impacts the calculated beta values 
remains unclear, and many users may not be aware of this 
factor. To investigate this further, we conducted the following 
‘ranking experiment’. 

Twelve samples from six patients, one from cryo-preserved 

and one from FFPE material, were run on the 450k ar- 
ray (Burkitt lymphoma from the ICGC MMML-Seq). When 

choosing the samples, we ensured both high-quality (as deter- 
mined by our QC-Scores) and low-quality samples (e.g. FFPE 

samples and the sample S4) were part of our cohort and used 

as the first sample ( Supplemental Figure S4 ). This allowed us 
to investigate the impact of sample quality and sample ranking 
during normalization. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
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Figure 2. Implementation of the DB-Score and CM-Scores. ( A ) Formula for calculating the DB-Score. Mid: Number of CpGs with a beta value between 
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for the CM-Scores. ( C ) Heatmap of stable high and low methylated CpGs showing outstanding examples for samples with a good CM-Score high and 
low (left panel), samples with a bad CM-Score difference (middle panel) and samples with a bad CM-Score high and low (right panel). CpGs are listed per 
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For the normalization procedure, the order within the sam-
le sheet was randomly rotated 10 times (rankings: R1–R10).
t was ensured that in each ranking the first sample differs.
ubsequently, beta values were computed for each ranking
nd compared across other rankings (afterwards referred to
s ‘without normalization sample’, Supplemental Table S4 ).
n order to compare the rankings with each other, beta values
f each sample from one ranking were correlated to the beta
alues of the same sample to the nine other rankings. Given
he influence of the initial sample in the sheet, we explored
hether the inclusion of a ‘normalization sample’ with good
uality (LCR > 98%, DB-Score < 1, BIN-Score < 0.25, CM-
cores < 20%) listed at the top lead to overall reproducible
eta values for all samples across all rankings (afterwards re-
erred to as ‘with normalization sample’). The same sample
heet rankings were normalized both with and without the in-
lusion of the normalization sample. The experimental design
s depicted in Supplemental Figure S5 . 

mpact of the first sample 
o investigate the effect of the first sample on the results of the
verall analysis, we ran the calculations several times, vary-

ng the order of the samples. Preceding this analysis, CpGs
ith a P- value > 0.01 ( Supplemental Table S4 ), loci on gono-

omes, and rs loci were excluded. By correlating beta values of
ach sample across all rankings, variations in various CpGs
ecame apparent, exemplified by the cryo-preserved sample
1 in Figure 3 A. The correlation plots show higher discrep-
ncies for R3 and R10, although to a lesser extent. Interest-
ngly, both rankings are determined by a low-quality sample
FFPE S4 and S6) listed as the first samples within the sam-
le sheet. Interestingly, almost exact correlations are observed
hen the normalization sample for both rankings is either

ryo-preserved or FFPE material. However, the incorporation
f the normalization sample effectively minimized discrepan-
ies between all rankings, as illustrated in Figure 3 B. Consid-
ering all samples across all rankings we detected Pearson cor-
relation coefficients ranging from 0.95 to 1 (Figure 3 C) and
discrepancies in beta values with standard deviations reaching
0.25 (Figure 3 D). 

Next, we conducted a detailed investigation of the CpGs
exhibiting variations among rankings. Initially, we first com-
puted the number of CpGs exhibiting a difference ( > 0.1)
for each sample between the rankings. To showcase, the dif-
ferences between R1 and R2–R10 (e.g. R1 minus R2, R1
minus R3 etc.) are illustrated in Figure 3 E and F. Differ-
ences in beta values higher than 0.1 were detected in R1
against six other rankings, with R3 revealing disparities in
over 200 000 CpGs in cryo-preserved samples (Figure 3 E)
and 150 000 CpGs in FFPE samples (Figure 3 F). The remain-
ing rankings exhibited differences in beta values within the
range of 3–75 018 CpGs. In general, the absolute average
mean for each ranking remained low, ranging from 0.01 to
0.15 ( Supplemental Figure S6 A). Nevertheless, these differ-
ences could be mitigated by incorporation of the normaliza-
tion sample ( Supplemental Figure S6 B). Furthermore, a com-
parison of the different CpGs from R1 to R2–R10 elucidated
that mostly the same CpGs were consistently affected across
all rankings ( Supplemental Figure S6 C and D). As these find-
ings were solely collected on the older 450k array, we con-
ducted a shortened version of the ranking experiment (R1–
R5) using a publicly available EPIC dataset (GSE169643).
This analysis also revealed differences using varying normal-
ization samples, as illustrated in Supplemental Figure S7 . 

To validate these observations, beta values derived from the
450k array, normalized without and with the inclusion of the
normalization sample, were compared with matched WGBS
data. WGBS is widely acknowledged as the gold-standard
method for DNA methylation analyses ( 31 ), and in this con-
text, WGBS data were exclusively available for the cryo-
preserved samples within each pair. Density plots were gen-
erated to compare beta values from all rankings (450k array)
with WGBS data from the corresponding sample (Figure 4 ).

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data


6 NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 4 

A Bwithout normalization sample with normalization sample

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

C

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

without normalization sample with normalization sample

cryo−preserved
FFP

E

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

st
an

da
rd

 d
ev

ia
tio

n 
ac

ro
ss

 ro
ta

tio
ns

D

R1 m
inu

s R
2

R1 m
inu

s R
3

R1 m
inu

s R
4

R1 m
inu

s R
5

R1 minu
s R

6

R1 m
inu

s R
7

R1 m
inu

s R
8

R1 m
inu

s R
9

R1 m
inu

s R
10

0

2500

5000

7500

10000

R1 m
inu

s R
2

R1 m
inu

s R
3

R1 m
inu

s R
4

R1 m
inu

s R
5

R1 m
inu

s R
6

R1 m
inu

s R
7

R1 m
inu

s R
8

R1 m
inu

s R
9

R1 m
inu

s R
10

0

100000

200000

N
um

be
r o

f d
iff

er
in

g 
C

pG
s

cryo-preserved

R1 m
inu

s R
2

R1 m
inu

s R
3

R1 m
inu

s R
4

R1 m
inu

s R
5

R1 m
inu

s R
6

R1 m
inu

s R
7

R1 m
inu

s R
8

R1 m
inu

s R
9

R1 m
inu

s R
10

0

2500

5000

7500

10000

R1 m
inu

s R
2

R1 m
inu

s R
3

R1 m
inu

s R
4

R1 m
inu

s R
5

R1 m
inu

s R
6

R1 m
inu

s R
7

R1 m
inu

s R
8

R1 m
inu

s R
9

R1 m
inu

s R
10

0

100000

200000

N
um

be
r o

f d
iff

er
in

g 
C

pG
s

FFPEE F

First sample
cryo-preserved
FFPE

1

2

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

0.0 0.5 1.0 0.0 0.5 1.00.0 0.5 1.0 0.0 0.5 1.00.0 0.5 1.0 0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0 0.0 0.5 1.0

Corr:
0.999

Corr:
0.996

Corr:
0.998

Corr:
0.998

Corr:
0.996

Corr:
0.996

Corr:
0.999

Corr:
0.999

Corr:
0.999

Corr:
0.999

Corr:
0.999

Corr:
0.999

Corr:
0.999

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
0.999

Corr:
0.999

Corr:
0.977

Corr:
0.977

Corr:
0.999

Corr:
1.000

Corr:
1.000

Corr:
0.970

Corr:
1.000

Corr:
1.000

Corr:
0.969

Corr:
0.999

Corr:
0.978

Corr:
0.979

Corr:
0.999

Corr:
0.970

Corr:
0.999

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
0.998

Corr:
0.999

Corr:
0.986

Corr:
0.999

Corr:
0.970

Corr:
0.988

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

Corr:
1.000

1

2

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

0.0 0.5 1.0 0.0 0.5 1.00.0 0.5 1.0 0.0 0.5 1.00.0 0.5 1.0 0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0 0.0 0.5 1.0

R
10

R
9

R
8

R
7

R
6

R
5

R
4

R
3

R
2

R
1

R10R9R8R7R6R5R4R3R2R1

R
10

R
9

R
8

R
7

R
6

R
5

R
4

R
3

R
2

R
1

R10R9R8R7R6R5R4R3R2R1

Beta value

B
et

a 
va

lu
e

Beta value

eulav
at e

B

without normalization samples with normalization samples

cryo−preserved
FFP

E

0.96

0.98

1.00

0.96

0.98

1.00

Pe
ar

so
n 

co
rr

el
at

io
n 

co
ef

fic
ie

nt
 R

S1 S2 S3 S4 S5 S6

Figure 3. Influence of the first listed sample using Illumina-like normalization algorithm. A total of 12 samples from 6 patients, of which one sample was 
cr yo-preser ved and one FFPE, were selected. Samples were 10 times randomly rotated to generate different sample sheet orders. Special care was 
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hile some rankings exhibited better concordance between
50k and WGBS data, others displayed more pronounced dis-
repancies like ranking R3, characterized with a bad quality
ample at the beginning, with an absolute mean difference
bove 0.15 for all samples [Figure 4 A (left panel) and Fig-
re 4 B (left panel)]. Notably, the inclusion of the normaliza-
ion sample within the sample sheets resulted in uniform beta
alue distributions and absolute mean differences across all
rray rankings [Figure 4 A (right panel) and Figure 4 B (right
anel)], taking into account the general shift of the array data
ompared to the WGBS data due to the array technology. 
In summary, our detailed examination of beta value dispari-
ties across different sample sheet rankings, particularly promi-
nent in R3, highlights the significance of normalization sample
in attenuating these variations. 

Influence of the use of normalization sample on downstream
analysis 
Due to this deviation in beta values based on the sample order,
our subsequent investigation focused on elucidating its impact
on further downstream analysis. Thus, we performed a differ-
ential DNA methylation analysis on the 12 lymphoma sam-
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ples from the ranking experiment, comparing them against
five non-neoplastic samples derived from germinal center B
cells. 

Without normalization sample, varying numbers of signifi-
cant differentially methylated CpGs (FDR < 0.01, mean | �β|
> 0.3) were identified comparing the 10 sample sheet rank-
ings ranging between 12 997 CpGs and 96 416 CpGs with an
overlap of only 7 212 CpGs (Figure 5 A). Remarkably, using
the normalization sample, the same set of 13 104 significant
CpGs was consistently detected across all 10 rankings (Fig-
ure 5 B). We compared our differentially methylated CpGs to
unreliable probes identified in the literature and found only
minimal overlap, indicating that these CpGs are unlikely to
be affected by quality issues ( Supplemental Figure S8 ). 

The findings suggest that differential DNA methylation
analysis on the 450k data, particularly when influenced by dif-
ferent sample sheet rankings, resulted in varying numbers of
significant differentially methylated CpGs. This underscores
the importance of carefully considering sample sheet order
and the potential benefits of including a normalization sample
in ensuring robust and consistent DNA methylation analysis.

Influence of the use of normalization sample on QC-Scores 
Given the observed variations in beta values associated with
different samples listed at the top, we sought to investigate
the potential influence on the introduced QC-Scores. Thus, we
compared the QC-Score for each sample and each ranking to
one another ( Supplemental Table S5 ). 

Since the CNV analysis, and consequently, the calculation
of the BIN-Score, relies on the methylated and unmethylated
intensity values and the set of reference samples used for
CNV analysis, no or only minor differences were expected
and observed based on the first sample or the utilization of
a normalization sample. Consistently, nearly identical BIN-
Scores were computed for each sample across all rankings
( Supplemental Figure S9 A). Notably, BIN-Scores were con-
sistently higher for almost all FFPE samples when compared
to their corresponding cryo-preserved counterparts, with the
highest BIN-Score for FFPE sample S6 at 0.28. 

DB-Scores exhibit slight fluctuations among rankings for all
samples between 0.23 and 0.55 (not considering FFPE sample
S4), with ranking R3 consistently displaying a notably higher
value between 0.51 and 1.27 ( Supplemental Figure S9 B). R3 is
a good example of the impact of a low-quality sample, namely
the FFPE sample S4 used as a normalization sample. Its use
increases the DB-Score for all subsequent normalized samples.
However, the utilization of the normalization sample ensures
consistent DB-Scores between 0.23 and 0.46 for all samples
despite FFPE sample S4 with a DB-Score > 20. 

The same holds for the CM-Score high; however, although
the CM-Score high of all samples for the R3 is > 50%, the
CM-Score high of all other rankings is < 20%, underpinning
the influence of the first sample. Once again, applying the
normalization sample facilitates the calculation of consistent
CM-Scores for all samples across all rankings ( Supplemental 
Figure S9 D). 

Overall, for the FFPE sample S4 (previously known for its
poor quality), consistently poor DB-Scores (ranging from 6.7
to 25.0) and deficient CM-Score high and low, both at 100%,
resulting in a CM-Score difference of zero, were computed
across all rankings ( Supplemental Figure S9 B–E). 

It is important to acknowledge that numerous other qual-
ity metrices exist for assessing DNA methylation array data
quality, either to detect unreliable probes or bad quality sam- 
ples. We evaluated some of those in the light of the 12 samples 
used in the ranking experiment. Results are provided in the 
Supplemental Figure S10 . 

Significance of DB-score and BIN-Score: 
application to different sample types 

To validate our findings and approaches, we applied our 
DNA methylation analysis pipeline to four distinct cohorts,
one cryo-preserved-based, one FFPE-based, on 5-azacytidine- 
treated samples and on a large cohort of cell lines, specifically 
highlighting the utility of the DB-Score and BIN-Score. All 
datasets were normalized with the inclusion of a normaliza- 
tion sample. 

In the first cohort, we assessed the quality of 413 samples 
(including replicates) from the 450k and EPIC array of cryo- 
preserved samples (ICGC MMML-Seq cohort). Overall, the 
majority of the samples exhibit a good DB-Score ( < 1) and 

BIN-Score ( < 0.25) (Figure 6 A), as further evidenced by ar- 
ray and WGBS data alignment for four representative sam- 
ples (Pearson correlation R = 0.91–0.96, Figure 6 B). Among 
the hybridizations, we identified 13 lacking CNVs exhibit- 
ing a nearly normal-like distribution and, thus, a high DB- 
Score ( > 8), 21 with questionable quality, and one as a tech- 
nical failure ( Supplemental Table S6 ). We further investi- 
gated two cases with questionable quality in more detail (Fig- 
ure 6 C, labelled in orange). Case S11 displayed a good DB- 
Score but an unfavorable BIN-Score. In general, a higher 
BIN-Score indicates problems with the quality . Intriguingly ,
analysis of whole genome sequencing data with the bioinfor- 
matic tool ACE-Seq (Figure 6 C, Supplemental Figure S11 and 

Supplemental Table S7 ) revealed a large number of small du- 
plications, which could explain the heterogeneity of the inten- 
sity values and hence the heightend BIN-Score. Conversely,
case S12 exhibited a poor DB-Score but a good BIN-Score,
placing it in the category of cases with questionable qual- 
ity. However, WGBS data demonstrated a robust concordance 
with the BeadChip array data (Pearson correlation R = 0.93) 
for this case as both methods show a global loss of DNA 

methylation (Figure 6 C, right). 
For the second cohort, data was collected from a pub- 

licly available study, comprising 48 FFPE samples of pedi- 
atric nodal marginal zone lymphoma and pediatric-type fol- 
licular lymphoma ( 24 ). Within this cohort we observed that 
although all samples exhibit a good DB-Score they show 

higher BIN-Scores with the majority above 0.1 (Figure 6 D and 

Supplemental Table S8 ). This trend is likely attributed to the 
fixation method, as FFPE material is known to exhibit more 
fragmented DNA. 

For the third cohort, we investigated the effects of 5- 
azacytidine (AZA) treatment on DNA methylation pat- 
terns in two cell lines, A549 and KMST-6TNF. Cells 
from each cell line were treated with AZA in dupli- 
cate. Our analysis revealed that AZA-treated samples ex- 
hibited a global decrease in DNA methylation levels,
which was reflected in higher DB-Scores (Figure 6 E and 

F). This effect was more pronounced in the A549 cell 
line compared to KMST-6TNF. Interestingly, we also ob- 
served that AZA-treated samples showed slightly elevated 

BIN-Scores. 
In our fourth and final cohort, we conducted a large-scale 

analysis of 1 080 (predominately) cancer cell lines, com- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae181#supplementary-data
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Figure 5. Identification of differentially methylated CpGs while normalizing without and with a normalization sample. Six paired samples ( n = 12), once 
cr yo-preser ved and once FFPE, were selected and randomly mixed to set up 10 different sample sheet rankings (R1–R10). Each ranking was once 
normalized without and with a normalization sample. Student t -test was applied to the 12 samples (cr yo-preser ved and FFPE) against 5 non-neoplastic 
samples for the 10 sample sheet rankings. ( A ) Intersections of differentially methylated CpGs (FDR < 0.01, mean | �β| > 0.3) normalized without a 
normalization sample. In addition to varying numbers of significant CpGs, only 7217 significant CpGs were detected in all sample sheet rankings. ( B) 

Intersections of differentially methylated CpGs normalized with a normalization sample. The same 13 104 significant CpGs were detected for all sample 
sheet rankings. 
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ining in-house samples with publicly available data from
SE68379. We selected a cohort of cancer cell lines to increase

or the frequency of samples with high genomic instability,
hich could potentially influence the calculation of the BIN-

core. Despite this inherent high frequency of samples with
hromosomal instability, our analysis revealed that only two
ut of the 1 080 cell lines exhibited a BIN-Score slightly ex-
eeding (BIN-Score: 0.255, 0.265) our established threshold
f 0.25 (Figure 6 G and H, upper plot). This finding under-
cores the robustness of our BIN-Score metric, even in the con-
ext of potentially unstable genomic landscapes. To showcase
n extreme example of genomic instability within this large
ohort, we have included a CNV-plot of a cell line (MDA-MB-
36: DB-Score = 0.197; BIN-Score = 0.176) with particularly
igh genomic instability in Figure 6 H (lower plot). 

iscussion 

ere, we present three novel QC-Scores that provide a more
omprehensive quality assessment, particularly when dealing
ith suboptimal quality samples like FFPE tissue. The main

dvantage of these QC-Scores is that they are independent of
he internal array control probes, which serve as the basis for
he conventional quality monitoring of several experimental
rocedures ( 14 ), accessible through various R packages like
infi or Enmix ( 10 ,32 ). While existing tools provide various
uality assessment measures, our QC-Scores are specifically
ailored to address the unique challenges posed by subopti-
al quality samples. Importantly, our principles underlying
ur scores allow adjustment towards study specific features,
nabling researchers to adapt them to different analysis tools
nd the specific characteristics of their sample cohorts. By of-
ering a complementary approach to current quality control
ethods, these scores contribute to enhancing the overall reli-

bility of DNA methylation data analysis, particularly in sce-
arios where sample quality may be compromised. 
The DB-Score, which reflects the distribution of beta val-
ues in a histogram, is intended to indicate samples of doubtful
quality . Interestingly , most packages ( 10 ,32–34 ) allow to cre-
ate histograms and density plots, but the concept of a thresh-
old and why the sample should be excluded are not explic-
itly specified or described. Thus, the statistical summary of
the beta value distribution in the DB-Score in combination
with the BIN-Score gives the user the opportunity to assess
the quality of the samples more precisely and to distinguish
technical issues from possible biological effects. However, it is
important to note that certain biological conditions, such as
rare cancers characterized by extensive DNA hypomethyla-
tion cells at certain times during development (e.g. primordial
germ cells) or samples with extensive alterations due to dis-
tinct defects in epigenetic writers or erasers, as well as those
treated with demethylation agents (e.g. 5-azacytidine), may
present exceptions where a high DB-Score could reflect under-
lying biological phenomenon rather than technical artifacts.
As long as only one score alone has a high value, this indicates
questionable quality, but if both scores are high (DB-Score > 1
and BIN-Score > 0.25), this is likely due to a technical
complication. 

For the BIN-Score calculation we chose the conumee pack-
age due to its widespread use and established clinical rele-
vance in CNV analysis ( 35 ). We acknowledge that alternatives
like ChAMP ( 36 ), cnAnalysis450K ( 37 ) and Epicopy ( 38 ) ex-
ist. Taking into account the underlying principle of the BIN-
Score approach these alternatives could also be adapted by re-
searchers favoring these packages. Regarding the BIN-Score,
it is crucial to highlight that a significant proportion of tumors
have a high number of chromosomal imbalances or mutation
hotspots (e.g. chromothripsis or kataegis), which could have
an impact on the computation of the BIN-Score ( 39 ). Within
this study we explored one case showing multiple small
duplications leading to a high BIN-Score ( > 0.25). Further-
more, it should be noted that FFPE tissue samples, in
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Figure 6. Application of the DNA methylation analysis pipeline. We applied our DNA methylation pipeline on four distinct cohorts, one 
cr yo-preser ved-based, one FFPE-based, on 5-azacytidine-treated samples and a large cohort of predominately cancer cell lines ( n = 1080), specifically 
highlighting the utility of the DB-Score and BIN-Score. ( A ) Correlation of DB-Score and BIN-Score from cr yo-preser ved samples of the ICGC MMML-Seq 
cohort (including 450k and EPIC array data). As the ICGC MMML-Seq cohort comprises 450k and EPIC array data, two normalization samples are 
displa y ed. Good quality: DB-Score < 1 and BIN-Score < 0.25; questionable quality: DB-Score > 1 or BIN-Score > 0.25; technical failure: DB-Score > 1 
and BIN-Score > 0.25. ( B ) Comparison of 450k array and WGBS data from samples with a good DB- and BIN-Score. Pearson correlation was applied. 
See samples S7-S10 in panel (A). ( C ) Left panel (case S11: histogram and CNV-plot): Example with a questionable quality due to a good DB-Score but bad 
BIN-Score likely because of a large number of small duplications. Sample S11 in panel (A). Right panel (case 12: density plot and CNV-plot): Example of a 
sample with a questionable quality due to a bad DB-Score but good BIN-Score. Correlation with WGBS data demonstrated a robust concordance with 
array data demonstrated by Pearson correlation, suggesting an authentic biological effect. See sample S12 in panel (A). ( D ) Correlation of DB-Score and 
BIN-Score from FFPE tissues (EPIC array data). ( E ) Correlation of DB-Score and BIN-Score from 5-azacytidine (AZA)-treated samples. Cells from two cell 
lines (A549, KMST-6-TNF) were treated with AZA (duplicates). ( F ) Density plots of the AZA-treated samples and corresponding controls. ( G ) Correlation 
of DB-Score and BIN-Score from predominately cancer cell lines ( n = 1 080, GSE68379). ( H ) CNV-Plots of two distinct cell lines, one with a high 
BIN-Score (upper plot, BIN-Score: 0.265) and a cell line showing extensive genomic aberrations (lower plot). 
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articular, have a higher BIN-Score, as the fixation results in
ore fragmented DNA, which can lead to problems during
ybridisation of the DNA to the array probes ( 40 ). Thus, we
ant to emphasize again, whereas the scores can be applied
idely, that the precise thresholds of the here presented QC-

cores are determined based on our experience and might re-
uire adjustment to suit the specific characteristics of individ-
al cohorts and laboratories. 
Utilizing the Illumina-like normalization algorithm (against

ntrinsic controls), the initial sample listed within the sample
heet serves to calculate a normalization factor, which is ap-
lied to all subsequent samples. Although Illumina points out
o this fact in the GenomeStudio Methylation Module User
uide ( 14 ), it is not widely recognized. Thus, we here demon-

trated by comparing beta values observed from different sam-
le sheet rankings, especially differing in the first sample, sig-
ificant changes. We made two observations through a com-
arative analysis of beta values derived from the same sam-
les subjected to different sample sheet rankings. First, we de-
ected a considerable amount of varying CpGs for one sam-
le across different sample sheet rankings. Subsequently, these
ariations in beta values exerted an impact on further down-
tream analyses, leading to the identification of distinct dif-
erentially methylated CpGs. The observed fluctuation in beta
alues underscores the importance of implementing stringent
riteria when identifying significant CpGs. In particular, fil-
ering based on absolute delta beta values is crucial. While
 -values can indicate statistical significance, they do not guar-
ntee biological relevance. A CpG site may show a low P -
alue, which may also fall out of the detection limits of the
rray, but have a negligible difference in beta values, indicat-
ng no meaningful biological impact. By applying an absolute
elta beta threshold, we aim at ensuring that the differences re-
orted are beyond technical noise or the result of variations in-
roduced during pre-processing and normalization steps, pre-
enting false positives in downstream analyses (e.g. gene on-
ology enrichment analysis) and enhancing the robustness of
he findings. This approach allows to focus on CpG sites that
emonstrate both statistical and biological significance, im-
roving the reliability of the results. 
Illumina’s approach of using negative control probes for

 -value detection filtering has been a standard practice in
NA methylation data analysis. However, recent studies have
emonstrated that this method is insufficient for accurately
apturing signal background ( 41 ,42 ). The limitations of nega-
ive control probes in estimating background noise levels can
ead to suboptimal filtering of low-quality probes. An emerg-
ng alternative is the use of Infinium-type-I probe out-of-band
ignal for background correction and normalization ( 41 ). 

While the ‘first sample’ method for dye bias correction is
sed by Illumina GenomeStudio, more advanced and effective
ethods have been developed in recent years. These include,

.g. RELIC (REgression on Logarithm of Internal Control
robes) ( 43 ), or approaches used in the Funnorm method ( 12 )
nd the dasen option in the wateRmelon R package ( 44 ). Re-
earchers might therefore consider alternative methods when
ddressing dye bias in DNA methylation array data analysis. 

With this study, we aim to underline the significance of a
igh-quality assessment in the analysis of array-based DNA
ethylation data since it affects the functional downstream

nalysis. To assure correctness and better reproducibility, we
trongly recommend using a normalization sample in combi-
ation with the Illumina-like normalizing algorithm. 
Data availability 

Required scripts for the calculation of the established QC-
Scores as well as for generating Figures 2 –6 are available
on the following GitHub page: https:// github.com/ GlaserSe/
DNAm- qc- scores . The information is stored and released on
Zenodo (DOI: 10.5281 / zenodo.14189846). 

WGBS data are available at the European Genome-
phenome Archive (EGA, http:// www.ebi.ac.uk/ ega/ ) under ac-
cession number EGAS00001001067. HumanMethylation450
BeadChip has been deposited in the Gene Expression Om-
nibus (GEO) under accession number GSE269421. 
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