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Standard first-line therapy for patients with metastatic non-small cell lung cancer

(mNSCLC) without identified actionable mutations consists of regimens

comprising immune checkpoint inhibitors (ICIs), alone or in combination with

platinum-based chemotherapy (CTx). However, approximately 20–30% of

patients with mNSCLC (including some patients with high tumor programmed

cell death ligand-1 expression) display primary resistance to ICIs, either alone or

in combination with CTx. Mutations in tumor suppressor genes serine/threonine

kinase 11 (STK11), and Kelch-like ECH-associated protein 1 (KEAP1) often

detected in patients with Kirsten rat sarcoma virus mutations, are associated

with an aggressive disease phenotype and resistance to standard ICI regimens.

Consequently, there is an important need for effective treatments for patients

with NSCLC with STK11 or KEAP1 mutations. In this article, we describe new data

on the prevalence of STK11 and KEAP1 mutations in a large clinical population,

consider practicalities around the detection of these mutations using available

biomarker testing methodologies, and describe experiences of managing some

of these difficult-to-treat patients in our clinical practice.
KEYWORDS

protein serine-threonine kinases, kelch-like ECH-associated protein 1, c proto-
oncogene proteins p21(ras), carcinoma, non-small-cell lung, immunotherapy
Introduction

Globally, lung cancer is the second most commonly diagnosed malignancy, but the

leading cause of cancer mortality (1). Among the more than 2 million cases of lung cancer

diagnosed each year (1), most are diagnosed at an advanced stage, leading to a poor

prognosis for these patients (2). The most common lung cancer subtype, non-small cell
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lung cancer (NSCLC) accounts for 85% of cases (3), but can be

further divided by histological subtype, with adenocarcinoma being

the most common (4, 5). NSCLC is driven by an array of genomic

events and molecular mechanisms which lead to disparities in

outcomes (5, 6). As our understanding of the molecular

pathology of NSCLC has advanced, so has our ability to

distinguish between specific molecular subtypes, to reach more

accurate judgments regarding the prognoses of the patients in our

care, and to tailor treatment regimens that target the specific

etiology of each individual’s disease.

Advances in molecular subtyping have facilitated the

development of personalized treatments for NSCLC (7), and

organizations such as the National Comprehensive Cancer

Network® (NCCN®), the American Society of Clinical Oncology

(ASCO), and the European Society for Medical Oncology (ESMO)

now advocate the use of biomarker testing at the time of diagnosis

of advanced/metastatic NSCLC, to ensure that patients with

actionable molecular alterations are treated with the appropriate

targeted therapies (8–10). For those without actionable mutations,

the addition of an anti-programmed cell death ligand-1 (PD-L1)/

programmed cell death-1 (PD-1) agent to chemotherapy (CTx)

provides a survival benefit compared with chemotherapy alone (11–

18). NCCN Clinical Practice Guidelines in Oncology (NCCN

Guidelines®) recommend the use of chemoimmunotherapy (CIT)

regimens as options in this broad subset of patients, irrespective of

PD-(L)1 expression status (9). However, in some patients with

mutations in certain tumor suppressor genes, including the serine/

threonine kinase 11(STK11) and Kelch-like ECH-associated protein

(KEAP1) genes, the benefit of CIT appears to be less clear (19–24).

Understanding the molecular and cellular basis of resistance to PD-

(L)1 inhibition may allow us to better refine treatment strategies for

patients with STK11 and KEAP1 mutation-positive NSCLC. In this

article we consider the latest information and provide our

perspectives on the treatment of patients with NSCLC tumors

harboring STK11 and KEAP1 mutations.
Therapeutic options for patients with
advanced NSCLC and KRAS mutations

The Kirsten rat sarcoma virus (KRAS) mutation is the most

frequently occurring genomic abnormality in NSCLC, being present

in up to 30% of tumors (19). The KRAS inhibitors sotorasib and

adagrasib were approved by the US Food and Drug Administration

(FDA) for second-line treatment of KRAS G12C-mutated NSCLC

(25, 26) after demonstrating acceptable objective response rates in

these patients after failure of standard therapies, including CIT (27,

28). More information is required on the effectiveness of KRAS

inhibitors for first-line treatment of metastatic (m)NSCLC; the

results of several ongoing trials of KRAS inhibitors in

combination with PD-(L)1 inhibitors are awaited.

In the absence of data on first-line therapy for tumors with KRAS

mutations (of any type), the NCCN Guidelines® continue to

recommend the use of CIT as a treatment option (9). Although

immunotherapy (IO), with or without CTx, has demonstrated
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efficacy in patients with a KRAS mutation (24, 29), there are

notable variabilities in reported outcomes among these patients,

some of which may be explained by genetic heterogeneity. Firstly,

while KRAS mutations arise most commonly in the G12 codon (30,

31), increasing evidence suggests that there are important differences

between the three most common G12 mutations: G12C (40% of

KRASmutations in lung), G12V (22%), and G12D (16%) (32). G12C

and G12V mutations both result from a smoking-induced point

mutation, whereas G12D mostly occurs in low/never-smokers (33,

34). G12C and G12V appear to be induced by chronic exposure to

tobacco carcinogens, which also increases tumor mutational burden

(TMB) and PD-1/PD-L1 expression, both of which are predictors of

good response to immunotherapy (35–39). In contrast, neither PD-

L1 expression nor TMB are enriched in tumors with KRAS G12D

mutations. Rather, such tumors have an immunologically ‘cold’

immune microenvironment, with relatively low expression of

tumor neoantigens and little T-cell infiltration (39). Consequently,

compared with the favorable outcomes observed in patients with

tumors bearing KRAS G12C or G12V mutations, those with G12D

mutations have worse outcomes on any line of anti-PD-(L)1 therapy

(33, 40).

Other forms of genomic diversity exist among patients with

NSCLC tumors harboring KRAS mutations. As described in the

following sections, recent advances in our understanding of the

influence of this genomic diversity are beginning to inform our

clinical practice.
The influence of STK11 and KEAP1
mutations on outcomes of
advanced NSCLC

Around half of patients with identified KRAS mutations have

been found to harbor additional cancer-associated mutations, most

frequently in tumor suppressor genes, specifically STK11 and

KEAP1 (41–43). These genes normally act to inhibit cell

proliferation and tumor development, so their loss or inactivation

removes this inhibition of cell proliferation and contributes to

abnormal proliferation of the tumor cells (42–44). Tumors

bearing such mutations tend to have an aggressive disease

biology, due to alterations in metabolic pathways that contribute

to an immunosuppressive tumor environment (24, 45).

As mentioned, the results of several analyses suggest that

patients with KRAS mutations benefit from standard-of-care CIT

(24, 29, 46); however, the presence of concurrent STK11 and KEAP1

may lead to relatively poor outcomes (19, 20, 22, 47–49). In some

real-world studies, overall survival (OS) outcomes in patients with

advanced NSCLC treated with CTx, IO, or CIT were found to be

worse among patients with KRAS-mutated NSCLC with co-

mutations in STK11 or KEAP1, compared with tumors with

KRAS mutations alone (Table 1A).

The presence of STK11 and/or KEAP1 mutations (without

concurrent KRAS mutations) also appears to predict for poor

therapeutic outcomes in patients with advanced NSCLC. In some

studies, OS and progression-free survival (PFS) were worse among
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patients with STK11 and/or KEAP1mutations treated with CTx, IO,

or CIT, compared with patients with STK11 or KEAP1 wild-type

tumors (Table 1B). KEAP1 mutations have also been shown to

confer resistance to radiotherapy (50). Although it is currently

recommended that patients with STK11 or KEAPmutation-positive

NSCLC should receive standard-of-care CIT (8–10), the

introduction of IO has not improved the outlook for these

patients (22, 51), who continue to have relatively poor outcomes,
Frontiers in Oncology 03
irrespective of the treatment regimen given (Table 1B). There is no

firm consensus on whether the presence of these mutations is

negatively prognostic or predicts poor survival outcomes with

specific therapies.

There is a clear unmet need for effective treatments for patients

with STK11 and KEAP1 mutations (with or without concurrent

KRAS mutations). Select treatment regimens comprising PD-(L)1

inhibitors in combination with CTx, and specific combinations
TABLE 1 Impact of STK11, KEAP1, and KRAS mutations or co-mutations on survival outcomes with standard therapies (A, B), and on survival outcomes
with IO + CTx combinations vs. CTx alone (C).

A. Patients with KRAS mutations: HRs for PFS and OS between subgroups with/without STK11 and/or KEAP1
co-mutations

Analysis Therapy type
PFS
HR (95% CI)a

OS
HR (95% CI)a

HRs for KRASm + STK11m vs. KRASm + STK11wt

Julianb (49) IO ± CTx, or CTx (1L) – 1.00 (0.67, 1.51) P=0.99

Julianb (49) IO ± CTx, or CTx (2L) – 1.02 (0.56, 1.84) P=0.96

Peters (48)
IO ± CTx,
or IO + CTx + VEGFi

– 1.63 (1.12, 2.39) P=0.0136

HRs for KRAS G12Cm + KEAP1m vs. KRAS G12Cm + KEAP1wt

Julian (49) IO ± CTx, or CTx (1L) – 1.57 (0.95, 2.60) P=0.08

Julian (49) IO ± CTx, or CTx (2L) – 1.63 (0.77, 3.45) P=0.20

HRs for KRAS G12Cm + STK11m + KEAP1m vs. KRAS G12Cm + STK11wt + KEAP1wt

Julian (49) IO ± CTx, or CTx (1L) – 1.93 (1.35, 2.75) P<0.001

Julian (49) IO ± CTx, or CTx (2L) – 2.20 (1.27, 3.81) P=0.005
B. HRs for PFS and OS between subgroups with/without STK11, KEAP1 and STK11 + KEAP1 mutations

Analysis Therapy type PFS
HR (95% CI)c

OS
HR (95% CI)c

HRs for STK11m vs. STK11wt

Papillon-Cavanagh (22) CTx 1.32 (1.04, 1.68) P=0.01–0.05 1.19 (0.89, 1.6)d

Papillon-Cavanagh (22) Anti PD-(L)1 1.33 (0.93, 1.9)d 1.43 (0.91, 2.26)d

Cordeiro de Lima (51) Anti PD-(L)1 1.31 (1.12, 1.88) P=0.02 1.33 (1.13, 2.21) P=0.001

Julian (49) IO ± CTx, or CTx (1L) - 1.27 (1.00, 1.62) P=0.05

Julian (49) IO ± CTx, or CTx (2L) – 1.32 (0.95, 1.83) P=0.10

Peters (48)
IO ± CTx,
or IO + CTx + VEGFie

– 1.46 (1.12, 1.92) P=0.0070

HRs for KEAP1m vs. KEAP1wt

Papillon-Cavanagh (22) CTx 1.53 (1.22, 1.93) P ≤ 0.001 1.49 (1.14, 1.95) P=0.001–0.01

Papillon-Cavanagh (22) Anti PD-(L)1 1.71 (1.2, 2.45) P=0.001–0.01 1.71 (1.04, 2.81) P=0.01–0.05

Cordeiro de Lima (51) Anti PD-(L)1 1.27 (0.97, 1.29) P=0.32 1.19 (1.18, 1.31) P=0.04

Julian (49) IO ± CTx, or CTx (1L) – 1.21 (1.00, 1.48) P=0.06

Julian (49) IO ± CTx, or CTx (2L) – 1.20 (0.93, 1.55) P=0.17

Peters (48)
IO ± CTx,
or IO + CTx + VEGFie

– 1.26 (0.95, 1.68) P=0.1172

(Continued)
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incorporating anti-cytotoxic T−lymphocyte-associated antigen 4

(CTLA-4) agents are NCCN-recommended and FDA-approved

first-line treatment options for patients with mNSCLC with

performance status (PS) 0–1 and without driver mutations (9, 52,

53). In three Phase 3 studies (CheckMate 227 [NCT02477826],

POSE IDON [NCT03164 6 1 6 ] and Che c kMa t e 9LA

[NCT03215706]), conducted in treatment-naïve patients with

EGFR and ALK wild-type mNSCLC, dual PD-(L)1 and CTLA-4

inhibition with CTx led to improvements in OS and PFS compared
Frontiers in Oncology 04
with CTx alone (54–56). Exploratory analyses suggest that such

regimens may also be beneficial for patient subgroups with

historically poor outcomes (specifically, patients with STK11 and/

or KEAP1mutations). In each of these studies, patients treated with

these regimens achieved improvements in OS compared to those

treated with CTx, in subsets both with and without STK11, KEAP1,

or KRAS mutations (Table 1C) (54, 55, 57). However, considering

the small numbers in these subsets, prospective analyses based on

larger sample sizes are required to adequately evaluate the effects of
TABLE 1 Continued

B. HRs for PFS and OS between subgroups with/without STK11, KEAP1 and STK11 + KEAP1 mutations

Analysis Therapy type
PFS
HR (95% CI)c

OS
HR (95% CI)c

HRs for STK11m + KEAP1m vs. STK11wt + KEAP1wt

Julian (49) IO ± CTx, or CTx (1L) – 1.81 (1.44, 2.26) P<0.001

Julian (49) IO ± CTx, or CTx (2L) – 1.83 (1.35, 2.49) P<0.001
C. HRs for PFS and OS between investigational therapy and CTx (for subgroups with/without KRAS, STK11 and
KEAP1 mutations)

Analysis Comparison
PFS
HR (95% CI)f

OS
HR (95% CI)f

KRAS subgroups KRASm KRASwt KRASm KRASwt

POSEIDONg Anti-PD-L1 vs. CTx 0.82 (0.53,
1.29) (57)

NR 0.74 (0.50,
1.09) (70)

0.87 (0.68,
1.12) (70)

CheckMate 227 (54) Anti-PD-1 + Anti-CTLA-4 vs. CTx – 0.79 (0.55, 1.12) 0.73 (0.56, 0.95)

CheckMate 9LA (55) Anti-PD-1 + Anti-CTLA-4 + CTx
vs. CTx

0.74 (0.50, 1.10) 0.73 (0.52, 1.02) 0.72 (0.48, 1.08) 1.0 (0.72, 1.39)

POSEIDONg Anti-PD-1 + Anti-CTLA-4 + CTx
vs. CTx

0.57 (0.35,
0.92) (57)

NR 0.55 (0.36,
0.83) (70)

0.78 (0.61,
1.00) (70)

STK11 subgroups STK11m STK11wt STK11m STK11wt

POSEIDONg Anti-PD-L1 vs. CTx 1.02 (0.55,
1.93) (57)

NR 1.02 (0.59,
1.80) (70)

0.79 (0.63,
1.00) (70)

CheckMate 227 (54) Anti-PD-1 + Anti-CTLA-4 vs. CTx – – 0.78 (0.48, 1.27) 0.75 (0.59, 0.94)

CheckMate 9LA (55) Anti-PD-1 + Anti-CTLA-4 + CTx
vs. CTx

0.61 (0.37, 1.00) 0.77 (0.57, 1.04) 0.79 (0.48, 1.28) 0.90 (0.67, 1.22)

POSEIDONg Anti-PD-1 + Anti-CTLA-4 + CTx
vs. CTx

0.47 (0.23, 0.93) NR 0.57 (0.32,
1.04) (70)

0.71 (0.56,
0.90) (70)

KEAP1 subgroups KEAP1m KEAP1wt KEAP1m KEAP1wt

POSEIDONg Anti-PD-L1 vs. CTx 1.51 (0.55,
5.25) (57)

NR 0.77 (0.31,
2.15) (70)

0.83 (0.70,
0.98) (70)

CheckMate 227 (54) Anti-PD-1 + Anti-CTLA-4 vs. CTx – – 0.31 (0.14, 0.70) 0.80 (0.65, 1.00)

CheckMate 9LA (55) Anti-PD-1 + Anti-CTLA-4 + CTx
vs. CTx

0.34 (0.14, 0.83) 0.79 (0.60,1.03) 0.51 (0.24, 1.08) 0.94 (0.71, 1.23)

POSEIDONg Anti-PD-1 + Anti-CTLA-4 + CTx
vs. CTx

0.94 (0.33,
3.35) (57)

NR 0.43 (0.16,
1.25) (70)

0.76 (0.64,
0.90) (70)
aHR >1.0 indicates that the comparison favors the subgroup without STK11/KEAP1 co-mutations; bKRAS G12Cm only; cHR >1.0 indicates that the comparison favors the subgroup without
STK11/KEAP1 mutations; dP value not available; ePatients received pembrolizumab (n=94), pembrolizumab + chemotherapy, NSQ (n=462), pembrolizumab + chemotherapy, SQ (n=122), or
atezolizumab + bevacizumab + chemotherapy (n=4); fHR <1.0 indicates that the comparison favors the investigational therapy; gAnalysis performed in patients with NSQ histology only.
1L, first-line; 2L, second-line; CI, confidence interval; CTLA-4, cytotoxic T−lymphocyte-associated antigen 4; CTx, chemotherapy; HR, hazard ratio; IO, immunotherapy; KEAP1(m/wt),
Kelch-like ECH-associated protein 1 (mutation-positive/wild-type); KRAS(m/wt), Kirsten rat sarcoma virus (mutation-positive/wild-type); NR, not reached; NSQ, non-squamous; OS, overall
survival; PD-(L)1; programmed cell death (ligand)-1; PFS, progression-free survival; SQ, squamous; STK11(m/wt), serine/threonine kinase 11 (mutation-positive/wild-type); VEGF, vascular
endothelial growth factor.
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these regimens in these difficult-to-treat patients, and to fully

establish the value of STK11, KEAP1, and KRAS mutations as

biomarkers to inform routine clinical practice.
Prevalence of STK11 and KEAP1
mutations in NSCLC: pathological
subtyping of NSCLC in a large
clinical population

At Baylor University Medical Center, Dallas, Texas patients

with NSCLC undergo routine pathological subtyping using the

OncoKB platform. Subsequently, biomarker testing is conducted

at PathGroup [RA] using the Endeavor test, a broad panel designed

to detect variants in more than 500 cancer genes, with full exon

coverage, as well as TMB.

The authors [MS and RA] analyzed tumor samples collected

from 3,745 patients with NSCLC of any stage, including patients with

actionable oncogenic alterations. Patients with mixed histology and

unknown PD-L1 status were excluded from relevant subgroup

analyses. In addition to routine biomarker testing using the

Endeavor test, the PGDx elio™ tissue complete assay was used to

evaluate TMB; the results were cross-validated with FoundationOne®

CDx and MSK-IMPACT® assays. TMB-high status was defined as

≥16.0 mutations/megabase (mut/Mb), TMB-low status was defined

as <16.0 mut/Mb. PD-L1 testing was performed using the PD-L1 IHC

22C3 pharmDx assay; a tumor proportion score (TPS) ≥1% was

deemed to be positive and TPS <1% negative (indeterminate results

were excluded from the analysis).

The current analysis revealed that KRAS mutations were present

in 27.5% of NSCLC tumors, similar to previous reports that indicate

the overall prevalence to be ~30% (19). In this analysis, we report the

prevalence of pathogenetic variants only. Without this curation, our

dataset could include ‘passenger’ mutations that would unknowingly

be interpreted as false positives for oncogenicity. Other studies may

not have curated their prevalence data in the same way. Accordingly,

in the current analysis, STK11mutations and KEAP1mutations were

identified relatively infrequently (in 8.6% and 5.7% of patients,

respectively), compared with the previously reported prevalence

ranges of 18–25% for STK11 (24, 58, 59) and 10–15% for KEAP1

(24, 59). KRAS was co-mutated with STK11 in 4.0% of tumors, and

with KEAP1 in 1.9% of tumors. Co-mutations in KEAP1 and STK11

occurred in 1.5%, while 0.8% harbored triple mutations in KRAS,

STK11, and KEAP1.
Relationships between mutation
frequencies and tumor histology,
TMB, and PD-L1 status

All the mutations and co-mutations evaluated (in STK11, KEAP1,

and KRAS) were markedly more frequent in tumors with non-

squamous (n=2,289) than squamous histology (n=948) (Figure 1A).

Moreover, no squamous cell tumors harbored KRAS and KEAP1 co-
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mutations or triple mutations (in KRAS, STK11 and KEAP1). The

marked differences between patients with non-squamous and

squamous histology were also apparent in subgroups defined both

by histology and either TMB (Supplementary Figure S1A) or PD-L1

expression status (Supplementary Figure S1B).

The curation of prevalence data to identify only pathogenic

variants of KRAS, STK11, and KEAP1 is especially pertinent to

comparisons between the TMB-high and -low subsets, as non-

oncogenic passenger mutations are more likely to occur in the

TMB-high subset than the TMB-low subset. By reporting

pathogenic variants specifically, our dataset is more likely to

represent the clinically relevant phenotype. In our analysis,

KEAP1 mutations were identified in almost twice the proportion

of patients with TMB-high than TMB-low tumors (Figure 1B). This

difference between patients with TMB-high and TMB-low status

was also apparent in the subgroups with either PD-L1-positive or

PD-L1 negative tumors (Figure 1C), and in the non-squamous but

not the squamous subgroup (Supplementary Figure S1A).

The rate of STK11mutations (occurring alone and concurrently

with KRAS mutations) was substantially higher in the subset with

PD-L1 negative tumors, almost twice the rate in the subset with PD-

L1 positive tumors (Figure 1D). This difference between patients

with PD-L1 negative and PD-L1 positive tumors was also apparent

in the subgroups with either TMB-high or TMB-low status

(Figure 1C) and in the non-squamous but not the squamous

subgroup (Supplementary Figure S1B).
Perspectives on the use of STK11 and
KEAP1 biomarker testing in current
clinical practice

Currently, biomarker testing is routinely used at diagnosis of

NSCLC, to determine the patient’s eligibility for one of the currently

available targeted therapies. When feasible, testing for additional

markers (other than actionable abnormalities) could provide more

detailed and specific insights into the molecular pathology that

drives the disease in individual patients. We believe that integrating

STK11 and KEAP1 biomarker testing into routine practice can be

valuable for clinicians making treatment decisions for patients with

mNSCLC. Understanding the potential impact of these biomarkers

on prognosis provides some foresight into how the patient’s disease

would be likely to develop during planned treatment. Thus, broader

genomic testing may lead to improvements in selection and

sequencing of treatment.

At the Sarah Cannon Research Institute, Nashville, a 65-year-old

male presented to MJ with mNSCLC and several metastatic brain

lesions. In line with our usual biomarker testing practice, next-

generation sequencing (NGS) and immunohistochemistry testing for

PD-L1 in tissue specimens were performed. The patient’s tumor had an

elevated PD-L1 expression of 75%, together with mutations in both

STK11 and KRAS G12D. TMB reported as part of NGS was 12 mut/

Mb. The patient was treated with whole-brain radiation and an initial

course of steroids, followed by pembrolizumab 200 mg every 3 weeks.

Although his PS was robust at diagnosis, by the time the course of
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radiotherapy had been completed, he began to show signs of disease

progression and systemic decline. We expected his condition to

improve once IO was started, but unfortunately, he continued to

weaken, until he became too frail to receive additional therapy.

Nowadays, we would still use radiotherapy to treat this type of

patient, as this can achieve clinically valuable improvements when

added to CTx or IO. However, knowing the negative prognostic impact

of STK11 and KEAP1 mutations, we would also consider combining

radiotherapy with concurrent or sequential CIT.

Obtaining information on STK11 and KEAP1 mutation status

‘up-front’ may further inform the choice of therapeutic regimen

offered to our patients. Given that the incorporation of an additional

IO agent can impose a greater financial burden on patients than PD-

(L)1 inhibition alone, and that many oncologists are cautious of

immune-mediated adverse events (IMAEs) that may arise with dual

ICIs, being able to select patients who are characterized by good

response may help us to refine our treatment strategy.

At UC San Diego (UCSD) Health, a patient with a history of

moderate smoking presented to SPP with non-squamous mNSCLC.

Plasma was sent to a vendor for cell-free DNA (cfDNA) NGS testing,
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given minimal tissue availability and the need for rapid diagnosis. The

patient was found to have a KRASG12Vmutation with co-mutations

in STK11 and KEAP1. The PD-L1 expression score was 0 and TMB

was approximately 9 mut/Mb. As is typical for patients with these

disease characteristics treated at UCSD Health, the patient began

combination treatment with CTx, a PD-1 inhibitor, and an anti-

CTLA-4 agent. The patient tolerated treatment well and remains in

remission over a year into their therapy.

In our experience, IMAEs in patients receiving an additional

CTLA-4 inhibitor with CIT can be managed by the tumor board, and

this can prolong the benefits achieved with IO. In this case, the

patient had an IMAE (Grade 2 immune colitis with no blood). This

was managed by a tumor board which included an immunologist

who recommended treatment with steroids. The patient responded

rapidly to prednisone (1 mg/kg oral starting dose), and the dose was

tapered over four weeks. When immune colitis recurred, treatment

with vedolizumab (a selective biologic drug that decreases gut

inflammation, with only limited system-wide immunosuppression)

was initiated. CIT was continued successfully without the CTLA-4

agent for two years.
FIGURE 1

Incidence of KRAS, STK11, and KEAP1 (co-)mutations by pathological subtype (A), TMBa status (B), TMBa and PD-L1 expressionb status (C), and PD-L1

expressionb status (D). aThe PGDx elio™ tissue complete assay was used to determine TMB high (≥16.0 mut/Mb) vs. TMB low (<16.0 mut/Mb) status;
bThe PD-L1 IHC 22C3 pharmDx assay was used to determine PD-L1 positive (TPS ≥1%) vs. PD-L1 negative (TPS <1%) status. KEAP1(m), Kelch-like
ECH-associated protein 1 (mutation-positive); KRAS(m), Kirsten rat sarcoma virus (mutation-positive); PD-L1, programmed cell death ligand-1; STK11
(m), serine/threonine kinase 11 (mutation-positive); TMB, tumor mutational burden; TPS, tumor proportion score.
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Further considerations on
biomarker testing

Comprehensive genomic profiling (CGP) is recommended by

ASCO, ESMO, and NCCN Guidelines, and is specified in the

College of American Pathologists, International Association for the

Study of Lung Cancer, and Association for Molecular Pathology

guidelines (8, 9, 60, 61). Guidelines suggest broad biomarker testing

may be used to support access to new treatments or clinical trials (8).

Most often, CGP is carried out using an NGS-based platform; many

commercially-available assays (Supplementary Table S1) include

STK11 and KEAP1 mutations in their gene panel. Although tissue

sampling remains the gold-standard for diagnostic testing of mNSCLC,

in our experience, plasma (‘liquid biopsies’) may also be suitable for

analysis of STK11 and KEAP1mutations, particularly for patients with

advanced disease, where the rate of detection tends to be higher. In the

case of tissue testing, the need to screen for an increasingly broad range

of markers will require a sufficient quantity of high-quality specimens

that may not be available to clinicians in some clinical settings (62).

Furthermore, as patients with STK11 andKEAP1mutations often show

rapid clinical deterioration, there is a limited therapeutic window.

Consequently, the relatively long turnaround time required for tissue

biopsy and testing may prove to be unfeasible in some circumstances.

Conclusions

We believe that all patients with NSCLC should receive NGS-

based CGP at diagnosis, using tumor tissue or cfDNA (particularly

when tissue is limited or unavailable). As shown in our analysis, the

distinct patterns of mutational prevalence between PD-L1 and TMB

subgroups only further highlight the complex relationship between

these two biomarkers. In light of recent guidelines that TMB should

not be used as a sole indicator for ICIs (63), there is a need to identify

new confounding factors that may influence treatment outcomes.

This could include improving TMB scoring through more robust

filtering of ancestral bias, assessment of the mutational status of

KEAP1 and STK11, and integrating PD-L1 positivity into a

comprehensive score predictive of response. Emerging evidence on

the prevalence of these mutations in specific racial/ethnic groups may

also help to shed light on the heterogeneous nature of such tumors,

and may allow us to tailor our clinical practice accordingly (51).

Given their poor prognosis when receiving standard CIT,

patients with STK11 and KEAP1 mutations should be offered

clinical trials with novel agents that specifically target on these

genomic mechanisms. Increasing the ease of NGS testing for all

patients with NSCLC, including in the first-line setting, will be vital

for identifying these patients before they initiate less effective

treatments. Future prospective studies will have a critical role in

evaluating STK11 and KEAP1 mutations as predictors of resistance

to anti-PD-1 (only)-directed strategies, and in determining the

efficacy of combinatorial strategies (including combinations with

anti-CTLA-4). Other emerging biomarkers of potential interest

include TP53 and SMARCA4, both being associated with

aggressive disease biology (64–67), and LRP1B, which is

potentially predictive of favorable outcomes with IO (68, 69).
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