
Editorial: Proceedings of the 9th
international symposium on the
biology of vertebrate sex
determination 2023

Talia Hatkevich1* and Dagmar Wilhelm2*
1Department of Cell Biology, Duke University Medical Center, Durham, NC, United States, 2Department
of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia

KEYWORDS

sex determination, gonad, gonadal development, Müllerian duct, Sry

Editorial on the Research Topic
Proceedings of the 9th international symposium on the biology of
vertebrate sex determination 2023

The survival of sexually reproducing species is reliant on proper formation of mature
gametes and their subsequent fertilization, and in many organisms, this is dependent upon
gonadal sex determination. Gonadal sex determination is the processes in which the
bipotential genital ridge differentiates into an ovary or a testis, which can be driven by
cues from genetic factors and/or environmental signals (Nagahama et al., 2021). In most
mammals, sex determination is genetically dictated, initiated by the expression of the testis-
promoting gene Sry from the Y chromosome (Koopman et al., 1991; Sinclair et al., 1990).
Expression of Sry triggers the differentiation of the testes by activating Sox9 in supporting
precursor cells (Sekido and Lovell-Badge, 2008). This initiates a cascade of events, including
the formation of Sertoli cells and Leydig cells, which are essential for producing sex hormones
that subsequently drivemale reproductive organ development (Svingen and Koopman, 2013).
In the absence of the Y chromosome, the -KTS splice form of the transcription factor
WT1 initiates ovarian development (Gregoire et al., 2023), which is associated with activated
canonical WNT/β-catenin signalling and expression of the transcription factor FOXL2
(Chassot et al., 2008; Garcia-Ortiz et al., 2009; Gustin et al., 2016; Maatouk et al., 2008;
Yao et al., 2004). Furthermore, to ensure proper gonad development, the testicular and
ovarian program suppress each other (Kim et al., 2006). However, the mechanisms
surrounding the nuanced processes of sex determination and sex-specific structures
throughout vertebrates remain poorly defined. This Special Research Topic, “Proceedings
of the 9th International Symposium on the Biology of Vertebrate Sex Determination 2023,”
brings together articles that explore the complex mechanisms underlying sex determination
and differentiation in vertebrates. The contributing pieces address key outstanding questions
in the field, presenting novel findings and ideology that shed light on genetic, epigenetic, and
hormonal regulation of gonadal development and sexual differentiation.

A central question within the field focuses on how genetic and epigenetic mechanisms
orchestrate the sex-specific development of the bipotential gonad. Here, Ming et al.
introduce a new testicular target gene of SOX9, Trpc3. This study shows that Trpc3 is
highly expressed in Sertoli cells during early gonadal development, and in Sox9 knockout
mice, Trpc3 is downregulated. Inhibiting TRPC3 leads to reduced germ cell proliferation
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and endothelial cell apoptosis. Collectively, this work suggests that
TRPC3 may mediate SOX9’s function in the testis, highlighting the
role of Trpc3 in gonadal development and its potential implications
for understanding male infertility.

Expanding on themolecular landscape of sex determination, Stevant
et al. explore the role of transposable elements (TEs), mobile genetic
elements that can influence gene expression (Percharde et al., 2018).
Sophisticated bioinformatics analysis identified TEs as key players in the
regulation of sex-specific genes. Further, this study shows that TEs not
only regulate gene expression through the production of TE-derived
RNAs but also function as cis-regulatory elements that control the
expression of sex-specific genes. TEs appear to play a crucial role in
gonadal sex determination and differentiation,making TEs integral to the
genetic program of sexual differentiation in vertebrates.

Sex determination mechanisms are diverse and can vary
significantly across species. While mammals rely heavily on genetic
factors, other vertebrates like zebrafish exhibit more flexible sex
determination systems (Nagahama et al., 2021). In this research
topic, Wilson et al. studied a wild strain of Danio rerio, which
exhibits a ZZ/ZW chromosomal system. Using single cell
sequencing, this work found that the presence of a W chromosome
or fewer than two Z chromosomes is crucial for initiating ovarian
development. Conversely, gonads with two Z chromosomes develop
into testes, bypassing the juvenile ovary stage altogether. This discovery
in zebrafish helps expand our understanding of the evolutionary forces
that shape sex determination mechanisms across vertebrates.

The development of the Müllerian ducts, which give rise to the
female reproductive tract, has long been a subject of study in sexual
differentiation. In mammals, the ducts differentiate into the Fallopian
tubes, uterus, and upper vagina, while in birds, the ducts form the
oviducts. The role of anti-Müllerian hormone (AMH) in the
regression of Müllerian ducts in males is well-established
(Behringer, 1994; Behringer et al., 1990; Josso, Cate, et al., 1993;
Josso, Lamarre, et al., 1993; Josso and Picard, 1986); however, there are
remaining questions regarding species that exhibit sexual asymmetry,
including chickens (Bakst, 1998). In female chickens, only the left
Müllerian duct forms an oviduct. Tan et al. present a literature review
on avian Müllerian duct asymmetry and proposes that local
interactions between AMH and sex steroids could explain this
phenomenon. Furthermore, while Müllerian ducts give rise to
oviducts, the Wolffian ducts are precursors of the male
reproductive tract. These reproductive tracts export gametes for
subsequent fertilization. However, some species, like cyclostomes
and basal teleost, lack genital ducts and instead possess genital
pores to export gametes (Goodrich, 1930). These differences in
gamete-exporting organs across vertebrates are discussed in a
comprehensive review by Kanamori and Kobayashi. This review
posits outstanding questions on the structure and development of
gamete-exporting organs and emphasizes the importance of
additional studies on cyclostomes, cartilaginous fishes, basal ray-
finned fishes and teleost.

Testicular descent, the movement of testes from near the kidneys to
the scrotum, is a key feature of most mammals, believed to be linked to
the evolution of endothermy (Werdelin and Nilsonne, 1999). However,
certain groups of mammals, particularly within Afrotheria and
monotremes, exhibit either partial descent or internal testes
(Sharman, 1970). Here, Menzies et al. explore the conservation and
mechanism of marsupial testicular decent. Using phylogeny and gene

analysis of hormone insulin-like peptide 3 (Insl3), the authors argue for
a therian origin of INSL3 mediated testicular descent in mammals.

A critical aspect of sexual differentiation is the action of steroid
hormones, which regulate gonadal function and fertility (De Gendt
et al., 2004; Liu et al., 2009; Publicover and Barratt, 2011). Hormones
like androgens, estrogens, progesterone, cortisol, and aldosterone
influence testicular function through specific receptors, and
disruption of these hormonal signals can have profound effects
on fertility and sexual development. Matsuyama and DeFalco
highlight the complex network of steroid hormones and their
receptor function and localization. This review underscores the
interplay of these signaling pathways and aims to serve as a
resource for further investigation into hormonal mechanisms
regulating of male reproductive health.

In addition to the gonad, the brain itself undergoes sexual
differentiation, often influenced by steroid hormones released
from the gonads (Arnold, 2009; Phoenix et al., 1959). However,
genetic factors may also play a role in brain sex differentiation,
independent of gonadal influence. Paylar et al. show that in rat
brains sex-specific gene expression occurs prior to the onset of
gonadal hormone action. The genes Sry2, Eif2s3y, and Ddx3y were
found to be expressed at higher levels in males, perhaps contributing
to the development of the male brain. These findings suggest that
sex-specific genetic programs may contribute to brain
differentiation alongside hormonal signals.

In conclusion, the field of vertebrate sex determination is rapidly
evolving, with new findings shedding light on the genetic, epigenetic, and
hormonal regulation of sexual differentiation. From the identification of
novel testicular target genes to the exploration of TEs and homology of
sex organs across species, this Special Research Topic highlights the
complexity and diversity of sex determination mechanisms.
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