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Abstract
Knowledge of the spatial distribution of many polar seabird species is incomplete due to the remoteness of their breeding 
locations. Here, we compiled a new database of published and unpublished records of all known snow petrel Pagodroma 
nivea breeding sites. We quantified local environmental conditions at sites by appending indices of climate and substrate, 
and regional-scale conditions by appending 30 year mean (1992–2021) sea-ice conditions within accessible foraging areas. 
Breeding snow petrels are reported at 456 sites across Antarctica and subantarctic islands. Although many counts are old 
or have large margins of error, population estimates available for 222 known sites totalled a minimum of ~ 77400 breeding 
pairs. However with so many missing data, the true breeding population will be much higher. Most sites are close to the 
coast (median = 1.15 km) and research stations (median = 26 km). Median distance to the November sea-ice edge (breed-
ing season sea-ice maximum) is 430 km. Locally, most nests occur in cavities in high-grade metamorphic rocks. Minimum 
air temperatures occur at inland sites, and maxima at their northern breeding limit. Breeding location and cavity selection 
is likely determined by availability of suitable breeding substrate within sustainable distance of suitable foraging habitat. 
Within this range, nest sites may then be selected based on local conditions such as cavity size and aspect. Our database will 
allow formal analyses of habitat selection and provides a baseline against which to monitor future snow petrel distribution 
changes in response to climate change.
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Introduction

Globally, seabirds are one of the most threatened marine 
taxonomic groups (Sydeman et al. 2012; Dias et al. 2019). 
However, knowledge of their spatial distribution and popula-
tion sizes is incomplete, particularly in remote, often inac-
cessible locations such as Antarctica (Rodríguez et al. 2019). 
Satellite remote sensing in Antarctica has enabled the dis-
covery and estimation of population sizes for colonies of 

several surface-nesting species: Adélie penguins Pygoscelis 
adeliae, emperor penguins Aptenodytes forsteri, chinstrap 
penguins P. antarcticus and Antarctic petrels Thalassoica 
antarctica (Schwaller et al. 1989, 2013, 2018; Fretwell and 
Trathan 2009; Fretwell et al. 2012, 2015; Lynch and LaRue 
2014; Román et al. 2022). However, knowledge of the cir-
cumpolar distributions of smaller cavity-nesting or burrow-
ing seabirds remains largely reliant on direct observations 
(Southwell et al. 2011; Barbraud et al. 2018). In the South-
ern Ocean, seabirds are often considered to be useful indica-
tors of ecosystem health, and species distribution data are 
critical to conservation and management (González-Zevallos 
et al. 2013; Pande and Sivakumar 2022). Our focus here 
is on defining the breeding distribution of the most south-
erly breeding vertebrate, the snow petrel Pagodroma nivea, 
which was last reviewed almost three decades ago (Crox-
all et al. 1995). Since then, scientific research has inten-
sified on the continent and several targeted surveys have 
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been undertaken (Barbraud et al. 1999; Convey et al. 1999; 
Olivier et al. 2004; Pande et al. 2020). Given the importance 
of baseline distribution data for seabird monitoring, and 
because observations have continued to be made in the inter-
vening period, it is now timely to provide an updated review 
of the known circumpolar snow petrel breeding distribution.

Snow petrels are a high-trophic-level seabird endemic to 
Antarctica with a northern breeding limit in South Georgia 
(Croxall et al. 1995). They have one of the highest affinities 
for pack ice of all Antarctic seabirds, feeding predominantly 
on fish, krill, and squid in proportions that vary dependent 
on foraging location (Ainley and Jacobs 1981; Ainley et al. 
1984; Ridoux and Offredo 1989). When foraging at sea, 
snow petrels are largely confined to the Marginal Ice Zone 
[MIZ] and in particular, intermediate sea-ice concentrations 
of 12.5–50% (Zink 1981; Ainley et al. 1984, 1998). Like 
all seabirds, their foraging ranges during the breeding sea-
son are limited by the central-place constraint (Delord et al. 
2016). Variability in sea-ice conditions within their foraging 
areas, both prior to and during the breeding season, affects 
annual adult survival, colony size, and breeding phenology 
(Barbraud et al. 2000; Barbraud and Weimerskirch 2001; 
Jenouvrier et al. 2005; Sauser et al. 2021b).

Snow petrels are cavity nesters, requiring ice-free areas 
for breeding (Walton 1984). The lithology and geomorphol-
ogy at breeding sites is thus important in determining cav-
ity presence. Nesting cavities occur in cliff faces, on scree 
slopes, and under boulders on flat and sloping ground. Char-
acteristics such as slope, aspect, number of entrances, and 
nest bowl slope vary within and among breeding sites. How-
ever, nests with single, narrow entrances are used more fre-
quently, and hatching success and chick survival are greatest 
when nest bowls are flat (Jouventin and Bried 2001; Einoder 
et al. 2014). Local meteorological conditions can affect 
access to nests or cause breeding failure (Sydeman et al. 
2012), and it has been suggested that the combination of nest 
aspect and local wind direction is critical in ensuring that 
cavities remain snow-free for breeding (Olivier and Woth-
erspoon 2006). However, the relationship is not consistent; 
in the Windmill Islands, most snow petrel nesting cavities 
are oriented towards strong prevailing winds (Cowan 1981), 
whereas in the Bunger Hills and Dronning Maud Land they 
are typically oriented for protection from prevailing kataba-
tic winds (Wand and Hermichen 2005). Variability in local 
climatic conditions during the breeding season, including 
timing, intensity and duration of precipitation, wind speed, 
direction and duration, and local air temperatures, affect 
snow petrel breeding phenology and demography (Chastel 
et al. 1993; Sauser et al. 2021a, b). Baseline knowledge of 
conditions in the foraging and breeding habitats of snow 
petrels is therefore required for predicting how populations 
are likely to respond to future environmental changes at sea 
and on land.

In the only comprehensive review to date, snow petrels 
were confirmed as breeding at 195 sites across Antarctica 
and subantarctic islands, and suspected to breed at another 
103 localities, from which the authors concluded that the 
minimum known total breeding population was 63000 pairs 
(Croxall et al. 1995). Typically, a large proportion (> 50%) 
of petrel populations is represented by non-breeders (juve-
niles, immatures, and non-breeding adults) (Phillips et al. 
2017; Carneiro et al. 2020), and based on regional at-sea 
counts (Ainley et al. 1984; Cooper and Woehler 1994), a 
total population size of several million birds was estimated 
(Croxall et al. 1995). However, regional breeding popula-
tions are often much smaller than at-sea densities would 
suggest. For example, 1.97 million snow petrels were esti-
mated in the Ross Sea area from counts at sea, but in this 
region only 14 breeding sites totalling ~ 5300 breeding pairs 
were recorded, suggesting many breeding sites may remain 
undetected (Ainley et al. 1984; Croxall et al. 1995).

The primary aim of this study was to (1) review the 
known global breeding distribution and habitat use of snow 
petrels. This includes exploring previously unquantified 
relationships between lithology and cavity availability, and 
between foraging habitat use and the distribution of known 
sites. To do so, we first collated records of breeding loca-
tions, including population estimates when available. Due 
to a paucity of reliable count data at most sites and a lack of 
longitudinal count data at all but a handful of sites, we did 
not aim to produce a comprehensive population estimate nor 
examine population change over time. Our subsidiary aims 
were to (2) characterise the local environmental conditions 
at breeding sites (specifically lithology and climate variables 
including temperature, precipitation and wind speed) and 
distance from the coast, and (3) characterise regional sea-ice 
conditions within areas accessible from each site. By doing 
so, we describe both the breeding habitat use and distribu-
tion of snow petrels throughout their circumpolar range. All 
data are presented in an accompanying open access database 
(Francis et al. 2024), which we hope will facilitate ongoing 
research and conservation.

Methods

Database compilation

To determine the known breeding distribution, an intensive 
search of the published literature and archived field reports 
was conducted, and all identified breeding sites were incor-
porated into a database with the following information: Site 
name and decimal coordinates; site aspect, elevation and 
local lithology; and when survey data were available, nest 
density. Snow petrel nest densities range from highly dis-
persed (0.3 nests per ha) to relatively dense aggregations 
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(24.1 nests per ha) (Olivier et al. 2004; Olivier and Woth-
erspoon 2008), and uncalculated densities may be higher. 
However, even the maximum densities do not reach the high 
densities of colonies of the Antarctic petrel, which is closely 
related and also breeds in the region (Mehlum et al. 1988; 
Schwaller et al. 2018). Therefore, it is difficult to define the 
spatial extent of a snow petrel colony, and to avoid ambi-
guity, we use the term ‘breeding site’ instead of ‘colony’, 
where a breeding site is defined as a locality with individual 
coordinates where breeding is likely or confirmed (based 
on observations).

Archived field reports, field notebooks, and maps from 
1945 onwards at the British Antarctic Survey were searched 
to extract relevant spatial data, including from locations pro-
vided by Croxall et al. (1995). We also contacted seabird 
biologists with field knowledge of the Antarctic region and 
included their unpublished observations.

In all cases, we included the most recent quantitative data 
(e.g., coordinates, estimates of population size) for a spe-
cific breeding site in the database. Additional fields included 
breeding site identification [IDs] and Antarctic Conserva-
tion Biogeographic Region / Benthic Biogeographic Region 
(Terauds and Lee 2016; Convey et al. 2014). For breeding 
sites between 30°E and 150°E, fields of ‘Spatial sub-group’ 
and ‘Site_ID(s)’ were added to conform with the spatial ref-
erence system of Southwell et al. (2021). At each locality, 
we distinguished whether breeding was confirmed or uncon-
firmed. For breeding to be confirmed, observations of active 
nests and the presence of eggs or chicks had to be reported. 
Otherwise, where nests were suspected but not found (e.g., 
Moss Island (González-Zevallos et al. 2013)), or breeding 
was either not mentioned or reported to be likely or possible 
(e.g., Stinear Peninsula (Pande et al. 2020)), breeding was 
recorded as unconfirmed. Sites that were checked but there 
was no evidence of breeding (i.e., during dedicated surveys) 
were recorded as absences.

Local environmental conditions

To describe breeding habitat use at the local scale, climate 
and lithology at the breeding sites were quantified.

Climate reanalysis data for the period 1992–2021 were 
obtained from the ERA5-Land monthly averaged dataset, 
Copernicus (Muñoz Sabater 2019), including: 2m surface 
temperature, total precipitation, and 10m wind speed and 
direction. Seasonal 30-year averages and summary statis-
tics for each variable were then calculated for each breeding 
site. The breeding season was defined as November-March, 
which covers the period between arrival of adults and chick 
fledging (Olivier et al. 2005).

Lithological data were extracted from the SCAR Geo-
MAP shapefile, comprising the known geology of all Ant-
arctic bedrock and surficial deposits (Cox et al. 2023a). 

Breeding site lithologies were subsequently grouped into 
8 categories for analysis, according to the simple lithologi-
cal description in Cox et al. (2023b). In order to determine 
if habitat use reflected availability, the relative frequency 
distribution of lithology at breeding sites was compared to 
that within all exposed rock polygons.

Regional sea‑ice conditions

To characterise the foraging habitat available to snow petrels 
at each breeding site, we assumed a mean and maximum 
summer foraging range of 700 km and 1500 km, respec-
tively (Delord et al. 2016; authors’ unpublished GPS track-
ing data).

Passive microwave sea-ice data for the years 1992–2021 
were acquired from the National Snow and Ice Data Centre 
(NSIDC). Sea-ice conditions were based on 30-year aver-
ages in November and February—chosen as the points in the 
breeding season when sea-ice extent [SIE] is at its maximum 
and minimum, respectively. We focused on the low sea-ice 
concentration [SIC] MIZ most commonly used by breeding 
snow petrels for foraging. For November and February, we 
calculated the contours at the outer ice edge with 15% SIC 
(Olivier et al. 2005), and 50% SIC, because these corre-
spond to the two habitats where the highest at-sea densities 
of snow petrels are recorded (Zink 1981). We also generated 
the associated rasters of SIC. We calculated the distance 
from breeding sites to the 15 and 50% SIC contours for these 
months in 1992–2021, then calculated the average over the 
30 years. Finally, we estimated the foraging area within the 
mean and maximum foraging ranges of each breeding site, 
using buffers of 700 and 1500 km from breeding sites, by 
counting the number of pixels between 15–50% SIC for the 
relevant months between 1992 and 2021, and transforming 
to an area by multiplying by the area of a single pixel (625 
km2). For all sea-ice metrics, results were plotted by fre-
quency, and summarised by calculating the median, inter-
quartile range [IQR], and range. All analyses were carried 
out in QGIS version 3.26.3 (QGIS Development Team 2023) 
and R version 4.2.2 (R Core Team 2022).

Results

Spatial distribution and size of breeding sites

Our database represents a considerable expansion in knowl-
edge of the global breeding distribution of snow petrels 
(Fig. 1) since Croxall et al. (1995). We list 456 confirmed 
and suspected (snow petrels observed but breeding uncon-
firmed) breeding sites. Of these, 158 are newly identified, 
principally in Dronning Maud Land (28 new sites), the 
Prince Charles Mountains (11 new inland, 43 new coastal 
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sites), and Adélie Land (19 new sites). Additionally, sur-
veys in localities such as the Larsemann Hills (Pande et al. 
2020) have enabled separation of a single breeding site in 
Croxall et al. (1995) into multiple sites in our database. Of 
the 456 known sites, breeding was confirmed at 267 (59%), 
and unconfirmed (but suspected) at the remaining 189. Most 
breeding sites (74%) are located around the Antarctic con-
tinent, and 120 (26%) on islands (Bouvet Island, Balleny 
Islands, South Orkney Islands, South Sandwich Islands, 
South Georgia). However, when considering the total popu-
lation estimate (combined counts over time), just 51% of 
known breeding pairs are (or were) on the continent—not-
ing that population estimates are only available for 55% of 
continental breeding sites, and that the estimate of 20000 
breeding pairs on Laurie Island (South Orkney Islands) con-
stitutes a large proportion of the known breeding population.

The median distance of breeding sites from the coast-
line (based on Gerrish et al. 2023) was 1.15 km (IQR = 0.23 
to 42.75 km, range = 0.00 to 471.27 km, n = 456). Prior to 
1995, the furthest known inland breeding sites were in the 
Tottanfjella, Dronning Maud Land, over 300 km from the 
coast (Bowra et al. 1966). Although most known breeding 
sites are very close to the coast (Fig. 2a), a small breed-
ing site exists 440 km inland at Greenall Glacier, Mawson 
Escarpment, and an unconfirmed breeding site at Rimington 
Bluff (470 km inland) in the inland Prince Charles Moun-
tain (Goldsworthy and Thomson 2000). The site at Greenall 
Glacier increases the distance inland at which snow petrels 
are known to breed by 140 km.

The number of breeding pairs is extremely variable 
among sites (median = 50, IQR = 10 to 171, range = 1 to 
20000, n = 222; Fig. 2b). At some, single breeding pairs were 
recorded (e.g., Orvinfjella region, Dronning Maud Land; 
Dragons Teeth Cliffs, Prince Charles Mountains; Mount 
Haskel, north-west Antarctic Peninsula). In contrast, 4,575 
breeding pairs were estimated on Browning Peninsula, South 
Windmill Islands (Olivier et al. 2004), and 20000 breeding 
pairs on Laurie Island, South Orkney Islands (Clarke 1906; 
Croxall et al. 1995). However, the number of breeding pairs 
is only known (counts or estimates) at 222 sites (49%). If 

past counts are representative of current population sizes, 
this indicates a minimum total breeding population estimate 
of ~ 77400 pairs. Where population sizes have at some time 
been known, 69% of breeding sites held ≤ 100 pairs.

Most known breeding sites are relatively close to research 
stations (median distance = 25.96 km, IQR = 8.53 to 81.76 
km, range = 0.32 to 875.38 km; Fig. 3), with 406 breed-
ing sites (86%) < 200 km from the nearest station, and 297 
(65%) < 50 km from the nearest station. However, much 
exposed rock (a requirement for nesting) is available beyond 
50 km from stations where considerably fewer sites are 
reported, and unknown breeding sites may exist.

Local environmental conditions

There was extensive variation in environmental conditions at 
breeding sites (Fig. 4, Table 1), with a median temperature 
of − 6.9 °C (IQR = − 12.8 to − 4.2 °C, range = − 23.8 to 
2.9 °C, n = 247), total precipitation of 1.0 mm (IQR = 0.7 to 
3.1 mm, range = 0.1 to 6.9 mm) and seasonal wind speed of 
3.5 ms−1 (IQR = 2.5 to 4.9 ms−1, range = 0.5 to 10.0 ms−1). 
The mildest climatic conditions are experienced at South 
Georgia (the northern breeding limit), where mean seasonal 
temperatures and total precipitation were > 0 °C and > 3.0 
mm, respectively, but mean wind speeds were similar to the 
median for all sites. On the Antarctic Peninsula, mean sea-
sonal surface temperatures vary between − 10 and 0 °C, and 
total precipitation between 0.5 and 7.0 mm, with warmer 
and wetter conditions closer to the west coast. The lowest, 
most extreme mean seasonal temperatures are experienced at 
inland Antarctic breeding sites, varying between − 23.8 and 
− 4.0 °C, whereas mean seasonal wind speeds are highest at 
sites in coastal East Antarctica.

The most available lithology by frequency in Antarctica 
is intrusive igneous (27%), followed by sedimentary (21%) 
and high-grade metamorphic rock (18%) (Fig. 5a). Breeding 
sites are found most often on intrusive igneous rock (28%) 
and high-grade metamorphic rock (26%). Fewer sites are 
on sedimentary rock (17%) despite its relatively high avail-
ability (Fig. 5a). For the 222 breeding sites with population 
estimates, the number of breeding pairs on high-grade meta-
morphic rock (> 45000 pairs) outnumbers the total pairs on 
intrusive igneous rock (< 17000 pairs) or any other lithology.

Regional sea‑ice conditions

Sea-ice conditions in foraging areas accessible to breed-
ing snow petrels differed between regions and during the 
breeding months (Fig. 6). Breeding sites on Bouvet Island, 
the South Shetland Islands, South Orkney Islands, South 
Sandwich Islands, and South Georgia, are at or beyond the 
30-year average November ice edge contour (Fig. 6a). The 
likely foraging habitat is therefore very different to sites with 

Fig. 1   The updated breeding distribution of snow petrels [SNPE]. 
Each dot represents one breeding site. The breeding sites from Crox-
all et al. (1995) are shown in white, and the updated breeding distri-
bution in red (456 breeding sites). Regional insets for a South Geor-
gia, b Dronning Maud Land, c Inland Prince Charles Mountains, d 
and e East Antarctica, and f Adélie Land, show new breeding sites. 
Known absences shown by orange crosses. Coastline is combined 
data from the SCAR Antarctic Digital Database (accessed 2023, Ger-
rish et  al. 2022), and Thematic Mapping World Borders (accessed 
2023). Exposed rock is sourced from Cox et  al. (2023a); Antarctic 
Conservation Biogeographic Regions [ACBRs] are sourced from 
Terauds and Lee (2016); basemap from NPI/Quantarctica, and under-
lying imagery is Google Satellite. Map projection is Antarctic Polar 
Stereographic

◂
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accessible foraging areas within the MIZ. We have therefore 
quantified foraging-habitat use only for breeding sites where 
the birds likely feed within the MIZ (n = 333).

In November, when SIE is at its maximum during the 
breeding season, the median distance from breeding sites to 
the ice edge is 430 km (IQR = 295 to 694 km, range = 6 to 
1682 km), and to the 50% SIC contour is 136 km (IQR = 30 
to 282 km, range = 1 to 737 km) (Figs. 7a, b). These are 
generally within the mean foraging range (~ 700 km) and 
well within the maximum foraging range (1500 km). The 
15–50% SIC zone lies beyond the mean foraging range 
only for inland breeding sites in Dronning Maud Land, 
the Transantarctic Mountains, and Marie Byrd Land. The 
November 50% SIC contour only reached the coast adja-
cent to coastal-breeding sites east and west of Amery Ice 
Shelf, Adélie Land, and north of the Ross Ice Shelf (Fig. 6a). 
Within the assumed mean foraging range, the median area 
of sea ice between 15 and 50% SIC in November is 113000 
km2 (IQR = 42400 to 167000 km2, range = 4,520 to 237000 
km2). Within the maximum foraging range, the median for-
aging area is 396000 km2 (IQR = 325000 to 762000 km2, 
range = 19500 to 841000 km2).

Between November and February, the ice edge retreats 
towards the continent by hundreds of km (mean = 472 
km, standard deviation = 344 km, range = − 8 to 1248 
km). The greatest retreat is north of Dronning Maud 
Land (> 1000 km). By February, the most extensive and 
highest concentration remaining sea ice (> 90% SIC) is 
in the Weddell and Bellingshausen Seas, and adjacent 
to the coast of North Victoria Land; these are all areas 
with no or relatively few known snow petrel breeding 
sites (Fig. 6b). The median distance from breeding sites 
to the February ice edge is 47 km (IQR = 21 to 163 km, 
range = 0.3 to 564 km), and to the 50% SIC contour is 27 
km (IQR = 10 to 136 km, range = 0.1 to 535 km) (Figs. 7c, 
d). Within the assumed mean foraging range, the median 
area of sea ice between 15 and 50% SIC in February is 
60,900 km2 (IQR = 46700 to 67600 km2, range = 4,840 
to 174000 km2), and within the maximum foraging 
range, the median area of 15–50% SIC is 201,000 km2 
(IQR = 146000 to 265000 km2, range = 110000 to 398000 
km2).

Fig. 2   a Frequency distribu-
tion of distance from each 
breeding site to the coast, and 
b frequency distribution of the 
number of breeding pairs at 
each breeding site on a logarith-
mic scale
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Discussion

Geographic distribution

More snow petrel breeding sites are known within East 
Antarctica (69 breeding sites, between 76°E and 112°E), 
and the north-west Antarctic Peninsula (61 breeding sites, 
between 61°S and 69°S) than in other regions (Fig. 1). From 
available population estimates, East Antarctica has held the 
highest numbers of breeding pairs (at least 21160), followed 
by the South Orkney Islands (at least 20129 pairs, including 
20000 on Laurie Island) (Clarke 1906). As a loosely colo-
nial cavity-nesting species, defining the extent of a snow 
petrel breeding site and colony is difficult, and many popu-
lation sizes may be underestimated. However, the popula-
tion estimate for Laurie Island probably represents multiple 
colonies (Coria et al. 2011). The count data that we col-
lated were collected using a variety of methods, ranging 
from highly subjective estimates by non-specialists (e.g., 
Greenfield and Smellie 1992) to dedicated surveys (e.g., 
Johansson and Thor 2004; Olivier and Wotherspoon 2008; 
Pande et al. 2020). These data were collected over a period 
spanning 117 years, the majority between 1960 and 2020. 
During this period, there has been marked environmental 
change in some regions (e.g., Turner et al. 2016; Fogt et al. 
2022; González-Herrero et al. 2022). Furthermore, longitu-
dinal population data are available from very few sites (e.g., 

Chastel et al. 1993; Barbraud et al. 2000; Jenouvrier et al. 
2005). For these reasons, we cannot produce a reliable esti-
mate of the current size of the global snow petrel population.

The breeding distribution in relation to distance to the 
coast suggests that the furthest inland breeding site at Gree-
nall Glacier (440 km inland) is an outlier compared with the 
323 breeding sites that are ≤ 10 km from the coast. However, 
the distance from breeding sites to the MIZ, their main for-
aging habitat, is more biologically relevant. At “Skiltvakta” 
in the Shackleton Range (Transantarctic Mountains), breed-
ing is unconfirmed, but this is 1680 km and 740 km from the 
ice edge and 50% SIC contour, respectively, in November. 
Therefore this site, relative to accessible foraging habitat, is 
more remote. In total, 64 breeding sites in the Transantarctic 
Mountains and Dronning Maud Land are > 1000 km from 
the November sea-ice edge.

Regional absences

Our review of known breeding sites highlights that there are 
extensive regions of exposed bedrock where nesting has not 
been recorded. These gaps could be due to lack of search 
effort or true absences. Notably, no sites have been recorded 
on the eastern Antarctic Peninsula south of 69°05’S, adja-
cent to the western edge of the Weddell Sea (Fig. 1). This 
contrasts with the rest of the Antarctic Peninsula, a region 
of relatively high seabird abundance (Schrimpf et al. 2020), 

Fig. 3   Frequency distribution 
of the distance between exposed 
rock polygons and breeding 
sites, and the nearest research 
station. Stations sourced from 
CONMAP 2017, Quantarctica. 
Exposed rock polygons sourced 
from Cox et al. (2023a)
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with at least 89 snow petrel breeding sites and minimum 
of 1264 breeding pairs. Similarly, only 8 breeding sites are 
known in Victoria Land, one of continental Antarctica’s big-
gest ice-free regions. With a large proportion of exposed 
low-elevation coastal bedrock (Kim et al. 2015), the num-
ber of breeding sites here is thus unlikely to be limited by 
bedrock availability. Furthermore, the disparity between the 
estimated number of breeding pairs from land-based obser-
vations in Victoria Land and adjacent islands (~ 5300 pairs; 

this study) and the estimate of 1.97 million snow petrels in 
the Ross Sea region based on densities recorded at sea (Ain-
ley et al. 1984), seems likely to indicate there are numerous 
unknown breeding sites in this area.

Our results show there is a systematic decrease in the 
number of breeding sites in areas of bedrock with distance 
from the nearest research station, demonstrating a geo-
graphical bias in knowledge and survey effort that is clearly 
related to human presence, likely due to logistical constraints 

Fig. 4   Frequency distributions of mean seasonal climate variables at 
snow petrel breeding sites in 1992–2021, by region. a 2 m surface 
temperature ( °C), b total precipitation (mm), c wind speed (m/s), d 

wind direction (°). Climate data sourced from Muñoz Sabater (2019), 
accessed January 2023
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(Fig. 3). Though research stations are also located predomi-
nantly at coastal sites with exposed rock, snow petrels are 
confirmed to breed up to 440 km inland. Thus, the lack of 
breeding sites further from stations (and further inland) 
where bedrock remains available (Fig. 3), suggests it is 
highly likely that these more distant areas are under-sam-
pled, and that many remote sites remain undiscovered. This 
would explain obvious gaps in the circumpolar breeding dis-
tribution in North and South Victoria Land, where exposed 
bedrock is readily available and at-sea density distributions 
suggest there are millions of snow petrels, but only 8 breed-
ing sites are known.

From several surveys, snow petrel absence sites have been 
inferred with a varying degree of certainty. In East Antarc-
tica, 5 small unnamed islands within the Davis Islands, 10 
sites within the Larsemann Hills, and 6 sites within the Has-
well Archipelago were surveyed and no evidence of breeding 
was detected (Melick et al. 1996; Pande et al. 2020; Golubev 
2022). Similarly, snow petrels apparently do not breed at 
Jutulrora and Straumsvola in Dronning Maud Land (Ryan 
and Watkins 1988), nor Vesleskarvet (Steele and Hiller 
1997). In Adélie Land, surveys found no evidence of breed-
ing at 9 sites along the coast and 3 sites on inland moun-
tains (Barbraud et al. 1999). A partial survey of Southern 
Masson in the Framnes Mountains (inland Prince Charles 
Mountains) also found no snow petrel nests (Olivier and 
Wotherspoon 2008). These sites with no evidence of breed-
ing are close to regions where snow petrels do breed (e.g., 
12 known breeding sites in the Larsemann Hills, summing 
to > 470 breeding pairs). Hence the distribution of confirmed 
absences is insufficient to explain any large regional gaps in 
Fig. 1. The proximity of presences and absences suggests 

that regional sea-ice conditions are likely to be the same, 
so that distance to suitable foraging habitat is unlikely to be 
a limiting factor that would explain why breeding does not 
take place (Ainley et al. 1984). Instead, it is possible these 
local absences reflect nesting-habitat availability or prefer-
ences, as follows.

Potential environmental limits on breeding 
distribution

The selection of a suitable nest site is a critical decision for 
any bird (Stauffer and Best 1982). As central-place foragers 
breeding on land and foraging at sea, snow petrels face a 
distance-dependent cost of accessing food, and seabird pop-
ulations in general are regulated by bottom-up processes and 
food availability (Wakefield et al. 2014; Sauser et al. 2021b). 
Breeding sites may therefore be chosen based on the quality 
and proximity of foraging habitat (Bolton et al. 2019), as 
well as the suitability of local nest sites (Li and Martin 1991; 
Lõhmus and Remm 2005). Ainley et al. (1984) hypothesised 
that the snow petrel breeding distribution is affected by the 
existence of accessible pack ice during the breeding season. 
Our results support this hypothesis, given the distribution 
of distances from breeding sites to 15% SIC and 50% SIC 
in November (medians of 430 and 136 km, respectively). 
As such, the persistence of high SIC in the western Weddell 
Sea, which is highly variable in extent but survives summer 
melt (Fig. 6b; Turner et al. 2020), could explain the lack of 
breeding sites on the eastern Antarctic Peninsula.

At a local scale, snow petrels are constrained to pre-
existing cavities provided by the substrate (Ramos et al. 
1997). They are therefore subject to intraspecific, as well 

Table 1   Local climate variables 
at snow petrel breeding sites 
during the austral summer 
(November -February) in 
1992–2021

Mean Standard 
deviation

Range Median Interquartile range

All Sites (n = 247)
Mean seasonal air temperature (°C) − 8.3 6.7 − 23.8–2.9 − 6.9 − 12.8–− 4.2
Mean seasonal total precipitation (mm) 1.9 1.7 0.1–6.9 1.0 0.7–3.1
Mean seasonal wind speed (m/s) 3.8 2.0 0.5–10.0 3.5 2.5–4.9
Antarctic Continent (n = 150)
Mean seasonal air temperature (°C) − 12.0 5.5 − 23.8–− 4.1 − 10.8 − 17.2–− 6.7
Mean seasonal total precipitation (mm) 0.8 0.5 0.1–2.6 0.8 0.50–1.0
Mean seasonal wind speed (m/s) 4.6 1.8 1.1–10.0 4.3 3.2–5.7
Antarctic Peninsula (n = 54)
Mean seasonal air temperature (°C) − 5.4 2.4 − 11.0–− 0.6 − 5.4 − 7.1–− 3.5
Mean seasonal total precipitation (mm) 2.8 1.5 0.8–6.9 2.3 1.8–3.5
Mean seasonal wind speed (m/s) 1.7 1.1 0.5–5.9 1.3 0.9–1.9
South Georgia (n = 43)
Mean seasonal air temperature (°C) 1.0 1.1 − 1.5–2.9 1.1 0.2–1.7
Mean seasonal total precipitation (mm) 4.5 0.7 3.8–6.2 4.4 4.0–4.8
Mean seasonal wind speed (m/s) 3.5 0.8 2.4–4.8 3.7 2.7–4.3
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as interspecific competition for these resources with other 
seabirds that have a similar habitat preference (Lõhmus and 
Remm 2005; Wiebe 2011). The availability of suitable cavi-
ties is inherently linked to rock type, jointing, and weather-
ing. Our results demonstrate that snow petrels breed most 
frequently in cavities in high-grade metamorphic and intru-
sive igneous rocks (Fig. 5a). Estimated breeding population 
sizes (recent past and present) are highest on high-grade 
metamorphic rocks, despite the higher availability of igne-
ous intrusive and sedimentary rocks (Fig. 5), suggesting that 
metamorphic rocks are more likely to incorporate suitable 
cavities. Additionally, specific selection of lithologies by 
snow petrels at a local scale is implied at multiple localities. 
At Edisto Inlet in Cape Hallett, no suitable cavities were 

observed on the eastern cliffs composed of volcanic rocks, 
whereas over 6 miles of the western cliffs, composed of fine-
grained metamorphic rock, were occupied extensively by 
snow petrel nests (Maher 1962). Frequent strong winds and 
precipitation at this locality during the 1960/61 austral sum-
mer resulted in nesting cavities being buried by snow (Maher 
1962). Therefore, it is unlikely that nests on the western 
cliffs were selected due to favourable aspect, but that there 
were no suitable cavities in the eastern volcanic cliffs. By 
contrast, in the northern Prince Charles Mountains, rela-
tively few snow petrels nest in the high-grade metamorphic 
rock (Precambrian basement gneisses), despite it being the 
dominant exposed bedrock in the region. Instead, the major-
ity of known sites are in the Amery group sandstones, where 

Fig. 5   a Relative frequency distribution of lithology at snow pet-
rel breeding sites, compared to the relative frequency distribution of 
the lithology of exposed rock polygons across the Antarctic. b Total 

number of breeding pairs of snow petrels on each lithology. Litho-
logical data from Cox et al. (2023a)
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suitable cavities form through salt wedging (Heatwole et al. 
1991). Furthermore, Verkulich and Hiller (1994) suggest 
that snow petrels in the Bunger Hills select mainly meta-
morphic and igneous rocks for nesting, since they are least 
susceptible to weathering, but also highlight the importance 
of aspect for protection against strong winds and snow accu-
mulation. Therefore, we hypothesise that lithology, specifi-
cally the availability of high-grade metamorphic and intru-
sive igneous rocks, is an important local-scale control on 
snow petrel nesting-habitat selection, given its association 
with both cavity availability and durability.

In the predominantly high-grade metamorphic moun-
tains of Dronning Maud Land (Cox et al. 2023a), cavity 

availability is unlikely to be limiting the breeding distri-
bution. Here, observations report most breeding sites face 
north, which may provide shelter from katabatic winds and 
therefore a more favourable microclimate (Bowra et al. 
1966; Mehlum et al. 1988; Ryan and Watkins 1989; Johans-
son and Thor 2004). Nests with a favourable aspect have 
higher breeding success (Olivier et al. 2005). Therefore, 
where the availability of cavities is not limited, interplay 
between nest aspect and local climate may determine nest 
site selection (Olivier and Wotherspoon 2006).

Based on these results, breeding location and cavity 
selection by snow petrels is likely to be driven by a hier-
archy of regional and local environmental conditions, most 

Fig. 6   a Mean November sea-ice concentration [SIC] in 1992–2021 within foraging ranges of known snow petrel breeding sites. b Mean Febru-
ary SIC in 1992–2021 within foraging ranges of known snow petrel breeding sites
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importantly limited by suitable breeding substrate avail-
ability (bare rock) within a sustainable distance of suitable 
foraging habitat (MIZ) (Ainley et al. 1984). At locations 
within the foraging range of suitable foraging habitat, 
snow petrels may then select specific cavities based on 
availability (related to lithology), and local conditions 

such as cavity size (for predation protection) and aspect 
(Olivier and Wotherspoon 2006). Therefore, models of 
habitat selection that incorporate both distance to the MIZ 
and the availability of exposed high-grade metamorphic 
rock could be used to estimate the breeding distribution of 
snow petrels throughout their range.

Fig. 7   Foraging habitat of snow petrel at key months in the breeding 
season (November = arrival and laying; February = mid-late chick-
rearing) in 1992–2021. Frequency distribution of distance from 
breeding sites to 15% and 50% SIC contours in a November, and b 

February. Frequency distribution of the extent of foraging areas based 
on mean and maximum foraging ranges in c November, and d Febru-
ary. Foraging area is calculated as the total area of sea ice between 15 
and 50% concentration



Polar Biology            (2025) 48:9 	 Page 13 of 17      9 

Past and future breeding distribution

Radiocarbon dates from snow petrel stomach-oil depos-
its—thick, layered accumulations outside nests—demon-
strate discontinuous but persistent occupation of breeding 
sites throughout Dronning Maud Land, East Antarctica, 
the Shackleton Range and Prince Charles Mountains, since 
before the Last Glacial Maximum [LGM] and throughout 
the Holocene (Hiller et al. 1988; Thor and Low 2011; Berg 
et al. 2019a, b; McClymont et al. 2022). Conditions at these 
breeding sites and in foraging areas must have remained 
favourable during this period to facilitate nesting. However, 
the reconstructed LGM summer sea-ice edge was located 
beyond the modern foraging range, so it has been proposed 
that coastal polynyas within the sea ice, or at ice-shelf fronts, 
must have provided suitable foraging habitat (Thatje et al. 
2008; McClymont et al. 2022). Although these ice-free areas 
may have supported large population sizes during the LGM 
(Carrea et al. 2019), such populations are hypothesised to 
have been reproductively isolated, resulting in the evolution 
of two morphologically distinct snow petrel subspecies (Jou-
ventin and Viot 1985; Robert and Schön 2017; Carrea et al. 
2019). During our review of breeding records, presence of 
the lesser (P. n. nivea) vs greater (P. n. confusa/major) snow 
petrel was rarely distinguished, so their relative breeding 
distributions remain poorly quantified. A summary of the 
distribution of most known forms is given in Hobbs (2019), 
though that compilation omits known lesser snow petrels 
breeding on Cockburn Island (Cowan 1981).

Snow petrels respond to environmental factors operating 
both at breeding sites and in foraging areas, and, as high-
trophic-level predators, their breeding and foraging suc-
cess are potentially valuable indicators of ecosystem health 
(Sydeman et al. 2012; González-Zevallos et al. 2013). Cli-
mate-driven changes in either breeding or foraging habitats 
could drive changes in the snow petrel breeding distribu-
tion. Most commonly, the effects of climate on seabirds are 
indirect and bottom-up, driven by spatiotemporal changes 
in prey distributions resulting from climate-driven changes 
in the pelagic environment (González-Zevallos et al. 2013). 
Seabird distributions in the future could be limited or expand 
in association with changes in prey availability or meteoro-
logical conditions at breeding sites, which are likely to be 
regionally specific (Gonzalez et al. 2023). Snow petrel popu-
lation size is hypothesised to be negatively affected by a 
reduction in SIE (Jenouvrier et al. 2005). Winter sea ice is 
necessary to maintain Antarctic krill Euphausia superba and 
so its extent and duration affects abundance and food supply 
for snow petrels during the following summer (Loeb et al. 
1997). Greater than average winter SIE thus improves the 
survival and breeding performance of snow petrels (Bar-
braud et al. 2000; Barbraud and Weimerskirch 2001; Jenou-
vrier et al. 2005). Summer SIE also affects their breeding 

success, which is depressed if November SIE is lower, whilst 
fledgling body condition is higher when the November SIE 
is greater than average (Barbraud and Weimerskirch 2001). 
Despite the surprising stability overall of Antarctic SIE over 
the past decades, there have been major declines and record 
minima in both winter and summer SIE in recent years, and 
the trend of more extreme lows is predicted to continue 
(Fogt et al. 2022; Raphael and Handcock 2022). Depend-
ence of snow petrels on the proximity of the MIZ suggests 
that with the projected southwards retreat of SIE, they will 
lose substantial areas of foraging habitat. The small snow 
petrel population size at their northern limit on South Geor-
gia (~ 3000 breeding pairs) is suggested to result from lim-
ited sea ice nearby during the breeding season (Ainley et al. 
1984). Regional variability in future sea-ice trends (Purich 
and Doddridge 2023) may result in abandonment of breed-
ing sites in some regions as foraging habitat becomes unsuit-
able, resulting in a southwards contraction of the breeding 
distribution.

In contrast, new exposed coastal-breeding habitats may 
emerge as the climate warms. A high proportion (71%) of 
known snow petrel breeding sites are ≤ 10 km from the 
coast. As such, increased availability of ice-free rock may 
increase the options for snow petrels to expand in these 
areas, although they may also face competition for this habi-
tat from other seabirds.

Direct climate effects (extreme weather events) can also 
impact seabird distributions and breeding success at a local 
scale. Nesting cavities shelter snow petrels to some extent 
from extreme weather, but the timing and duration of local 
snow accumulation nevertheless influences breeding suc-
cess (Croxall et al. 2002; Einoder et al. 2014), breeding 
probability (Chastel et al. 1993), hatching success (Olivier 
et al. 2005), and fledging probability (Sauser et al. 2021b). 
Increased or prolonged snowfall can affect nest accessibility, 
and a simultaneous increase in local temperatures increases 
the risk of flooding (Chastel et al. 1993). Extreme storm 
activity (severe winds and high precipitation) in Dronning 
Maud Land during the 2021/22 austral summer caused near-
complete breeding failure and mass mortality of snow pet-
rels and conspecifics across multiple breeding sites extend-
ing over > 700 km (Descamps et al. 2023). Mass mortality 
events can have major lasting effects on long-lived seabirds 
which are slow to reproduce (Mitchell et al. 2020), with the 
distributions of some (e.g., black-legged kittiwakes Rissa 
tridactyla) known to change as a result of poor breeding 
performance in particular areas (Boulinier et al. 2008). How-
ever, the only long-term demographic studies of snow petrels 
are at the Pointe Géologie Archipelago (Adélie Land) and 
Reeve Hill, Casey Station (East Antarctica) (Fig. 1). Most 
long-term studies conclude intraspecific differences between 
sexes and neighbouring breeding sites in responses to local 
weather effects and larger scale climatic patterns (Sauser 
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et al. 2021a). Therefore, longer-term impacts of extreme 
breeding season weather, such as intensive storms, on the 
snow petrel breeding distribution remain uncertain. By 
quantifying average climatic conditions at breeding sites, 
we provide important baseline data against which future 
distributional shifts can be assessed. Our study highlights 
the need for much more widespread long-term monitoring 
of snow petrel colonies, including at least population trends 
and breeding success, and ideally, long-term demographic 
studies. In addition, tracking studies and the development 
of species distribution models of habitat suitability in forag-
ing areas would help in predicting the future distribution of 
snow petrels in relation to climate-driven change.
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