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Abstract

Let E and E ′ be elliptic curves over Q with complex multiplication by the ring of
integers of an imaginary quadratic field K and let Y = Kum(E × E ′) be the minimal
desingularisation of the quotient of E × E ′ by the action of −1. We study the Brauer
groups of such surfaces Y and use them to furnish new examples of transcendental
Brauer–Manin obstructions to weak approximation.
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1 Introduction
Let k be a number field and let Ak denote the adèles of k . Let X/k be a smooth, projective,
geometrically irreducible algebraic variety, let X̄ denote its base change to an algebraic
closure of k , and let Br(X) = H2

ét(X,Gm) denote the Brauer group of X . For v a place of k
andA ∈ Br(X), functoriality yields an evaluation map

evA,v : X(kv) → Br(kv)

xv �→ A(xv).

The Hasse invariant invv : Br(kv) → Q/Z is an isomorphism for v finite, and has image
1
2Z/Z for v real and zero for v complex. In [17], Manin defined what became known as
the Brauer–Manin pairing

X(Ak ) × Br(X) → Q/Z

((xv)v , A) �→
∑

v
invv(A(xv)) (1)

where the sum is over all places v of k . For B ⊂ Br(X), the subset of X(Ak ) consisting of all
elements that are orthogonal to B under the pairing (1) is denoted X(Ak )B. The Brauer–
Manin set is X(Ak )Br(X). Global class field theory (the Albert–Brauer–Hasse–Noether
Theorem), and continuity of evaluation maps, shows that X(Ak )Br(X) contains the closure
of X(k) in X(Ak ) = ∏

v X(kv) with respect to the product of the v-adic topologies. This
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shows that, in some cases, the emptiness of X(k) despite X having points in all comple-
tions can be explained by the emptiness of X(Ak )Br(X). This is known as a Brauer–Manin
obstruction to the Hasse principle. In cases where X(k) is non-empty, one would like to
understand more about the rational points on X : for example, does weak approximation
hold, i.e. is X(k) dense in X(Ak )? If X(Ak )B is not equal to X(Ak ) for some B ⊂ Br(X), we
say that B obstructs weak approximation on X .
Manin’s work initiated a great deal of activity, see [29] for a recent summary. Ini-

tially, most research focused on the algebraic part of the Brauer group, which by defi-
nition is Br1(X) = ker(Br(X) → Br(X̄)), and the more mysterious transcendental part
Br(X)/Br1(X) was rarely computed. In [12,14], the authors computed the odd order tor-
sion in the transcendental Brauer groups of diagonal quartic surfaces by relating these
surfaces to Kummer surfaces of products of elliptic curves over Q with complex multipli-
cation by Z[i]. In [12,13], Ieronymou and Skorobogatov went on to study the evaluation
maps for these elements of odd order and thus gave new examples of Brauer–Manin
obstructions to weak approximation coming from transcendental Brauer group elements.
In this paper, we replace Z[i] by the ring of integersOK of an imaginary quadratic field

K and study Brauer groups and Brauer–Manin obstructions to weak approximation for
Kummer surfaces of products of elliptic curves E, E′ over Q with complex multiplica-
tion by OK . Note that the assumption that OK is the endomorphism ring of an elliptic
curve over Q implies that K is an imaginary quadratic field of class number one (see e.g.
[25, Theorem II.4.1]), but this is the only restriction on K . Moreover, our assumptions
also imply that the elliptic curves E and E′ are geometrically isomorphic, see e.g. [25,
Proposition II.2.1].

Theorem 1.1 Let K be an imaginary quadratic field and let Y = Kum(E×E′) for elliptic
curves E, E′ over Q with End Ē = End Ē′ = OK . Suppose that Br(Y )/Br1(Y ) contains an
element of order n > 1. Then K ∈ {Q(ζ3),Q(i),Q(

√−7),Q(
√−2),Q(

√−11)} and n ≤ 10.

Remark 1.2 Similar results can be obtained in the more general setting where the elliptic
curves can have CM by non-maximal orders inOK , see Remark 3.2 below.

In Theorem 1.1 and throughout the paper, we write Kum(E × E′) to mean the minimal
desingularisation of the quotient of E × E′ by the action of −1, which sends (P,Q) to
(−P,−Q). Such Kummer surfaces are examples of so-called singular K3 surfaces, which
are defined to be K3 surfaces of maximal Picard rank.
The cases of Theorem1.1whereK isQ(i) orQ(ζ3) follow fromwork ofValloni onBrauer

groups of principal K3 surfaces withCM in [28]. In the case whereK = Q(i), the odd order
torsion in the Brauer group was computed by Ieronymou–Skorobogatov–Zarhin [14] and
Ieronymou–Skorobogatov [12] in their studyofBrauer groupsof diagonal quartic surfaces.
In particular, [12, Theorem 1.1] also applies to the Kummer surface Y = Kum(Em1 ×Em2 )
where Em has affine equation y2 = x3 − mx form ∈ Q×. It shows that

(Br(Y )/Br(Q))odd = (Br(Y )/Br1(Y ))odd ∼=

⎧
⎪⎪⎨

⎪⎪⎩

Z/3Z if − 3m1m2 ∈ 〈−4〉Q×4,

Z/5Z if 53m1m2 ∈ 〈−4〉Q×4,

0 otherwise.

(2)

Our next result handles all cases whereO×
K = {±1}.
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Theorem 1.3 Let K be an imaginary quadratic field with O×
K = {±1} and let Y =

Kum(E × E′) for elliptic curves E, E′ over Q with End Ē = End Ē′ = OK . Suppose that
Br(Y ) \ Br(Q) contains an element of odd order. Then

(1) K ∈ {Q(
√−2),Q(

√−11)};
(2) Br(Y )/Br1(Y ) = Br(Y )3/Br1(Y )3 ∼= Z/3Z;

(3) Br1(Y )/Br(Q) ∼=
⎧
⎨

⎩
(Z/2Z)2 if K = Q(

√−2),

Z/2Z if K = Q(
√−11);

(4) Y is the minimal desingularisation of the projective surface with affine equation
u2 = af (x)f (t) where

f (x) = x3 + 4x2 + 2x and a ∈ {−3, 6} if K = Q(
√−2),

f (x) = x3 − 25 · 33 · 11x + 24 · 33 · 7 · 112 and a ∈ {−3, 33} if K = Q(
√−11).

The remaining, andmost interesting, case isK = Q(ζ3). Any elliptic curve E overQwith
End Ē = Z[ζ3] has an affine equation of the form Ea : y2 = x3 + a for some a ∈ Q×. Let
c, d ∈ Q× and let Y = Kum(Ec × Ed). Then Br(Y ) can contain transcendental elements
of odd order n for n ≤ 9. Cases involving elements of order divisible by 3 require a more
delicate analysis, essentially because 3 ramifies in the CM field Q(ζ3), and will be explored
in future work. For elements of order 5 or 7, we have the following:

Theorem 1.4 For a ∈ Q×, let Ea be the elliptic curve over Q with affine equation y2 =
x3 + a. Let c, d ∈ Q× and let Y = Kum(Ec × Ed). Let � ∈ {5, 7} and let ε(�) = (−1)(�−1)/2.
Then

(Br(Y )/Br1(Y ))�∞ ∼=
⎧
⎨

⎩
Z/�Z if ε(�) · 24 · �ε(�) · cd ∈ 〈−33〉Q×6,

0 otherwise.

Furthermore, if ε(�) · 24 · �ε(�) · cd ∈ 〈−33〉Q×6 then

Br(Y )/Br1(Y ) = Br(Y )�/Br1(Y )�.

The reason for the focus on odd order torsion in Br(Y )/Br1(Y ) is a result of Sko-
robogatov and Zarhin (Theorem 2.1 below), which shows that odd order torsion in
Br(E × E′)/Br1(E × E′) descends to the transcendental Brauer group of Kum(E × E′).
This means that one can transfer many calculations concerning transcendental Brauer
classes to the realm of abelian varieties. In particular, the method of Skorobogatov and
Zarhin described in Sect. 2.2 enables one to compute Brauer–Manin pairings for tran-
scendental Brauer group elements of odd order without the need to find explicit Azumaya
algebras representing them.
However, it is important that we consider Kummer surfaces and not just abelian sur-

faces, for the following reason. For torsors under abelian varieties over number fields, any
Brauer–Manin obstruction to the Hasse principle or weak approximation can already be
explained by an algebraic element in the Brauer group, see [8,17]. In contrast, for K3 sur-
faces, it can happen that the algebraic part of the Brauer group consists only of constant
elements (and so does not contribute to any Brauer–Manin obstruction), while there is
an obstruction coming from a transcendental element in the Brauer group. Examples of
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this phenomenon were given in [11,19,21]. Our next two results yield a new source of
examples.

Theorem 1.5 Let K be an imaginary quadratic field and let Y = Kum(E×E′) for elliptic
curves E, E′ over Q with End Ē = End Ē′ = OK . Let � be an odd prime and if K = Q(ζ3)
assume that � > 3. Suppose that A ∈ Br(Y )� \ Br(Q). Then the evaluation map evA,� :
Y (Q�) → Br(Q�)� is surjective and hence

Y (AQ)A 
= Y (AQ),

i.e.A obstructs weak approximation on Y .

Theorem 1.6 Reinstate the notation and assumptions of Theorem 1.4. Suppose that ε(�) ·
24 · �ε(�) · cd ∈ 〈−33〉Q×6 and c /∈ 2 · �ε(�) · Q×3. Then

Br1(Y ) = Br(Q)

and hence the failure of weak approximation in Theorem 1.5 cannot be explained by any
algebraic element in the Brauer group of Y .

Remark 1.7 1. In Theorem 6.1 we prove a complement to Theorem 1.5, showing in
many cases that the evaluation maps evA,v for places v 
= � are constant, cf. [12,
Theorem 1.2(i)].

2. Creutz andViray showed in [9, Theorem1.7] that if there is a Brauer–Manin obstruc-
tion to theHasse principle on a Kummer variety, then there is an obstruction coming
from an element in the 2-primary part of the Brauer group. It was already known
(see e.g. [21]) that the analogous statement for Brauer–Manin obstructions to weak
approximation does not hold. Theorem 1.6 gives further illustration of this fact,
generalising the example given in [21, Theorem 1.3]. We note that the statement
of [21, Theorem 1.3] needs correcting: for A ∈ Br(X)3 \ Br(Q), the evaluation map
evA,v : X(Qv) → Br(Qv)3 is constant, but not necessarily zero, for all v 
= 3.However,
any suchA does give an obstruction to weak approximation and there is a choice of
A for which the theorem holds as stated – one takes A = B, where the notation is
as in the proof of Theorem 6.1. This choice ofA should be in force throughout [21,
Sect. 5], yielding corrections to the statements of [21, Proposition 5.1, Theorems 5.2,
5.3], see [22].

3. In the same way that Ieronymou, Skorobogatov and Zarhin used Kummer surfaces
of products of elliptic curves with CM by Z[i] to study Brauer groups and Brauer–
Manin obstructions on diagonal quartic surfaces in [12–14], the results of this paper
could be applied to the study of other families of quartic surfaces, e.g. those of
the form ax4 + cxy3 = bz4 + dzw3 with abcd ∈ Q×, in other words the family of
surfaces geometrically isomorphic to Schur’s quartic surface.Note that these surfaces
contain lines given by x = z = 0 so any Brauer–Manin obstructions arising would
be obstructions to weak approximation.

1.1 Outline of the paper

We begin by gathering some preliminary results on transcendental elements of Brauer
groups and their evaluations at local points in Sect. 2. In Sect. 3, for K an imaginary
quadratic field with O×

K = {±1}, we compute transcendental Brauer groups of products
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of elliptic curves over Q with CM by OK and prove Theorem 1.1. In Sect. 4 we perform
the same calculation in the case where K = Q(ζ3) and prove Theorem 1.4. In Sect. 5 we
compute the algebraic part of the Brauer group for each of the Kummer surfaces under
consideration and prove Theorem 1.6. Combining the results for the transcendental and
algebraic parts of the Brauer group allows us to prove Theorem 1.3. In Sect. 6 we consider
the evaluation of a Brauer group element of prime order � at p-adic points with p 
= � and
show in many cases that these evaluation maps are constant, providing a complement to
Theorem 1.5. Section 7 is devoted to the proof of Theorem 1.5.

1.2 Notation

If A is an abelian group and n a positive integer, then An and A/n denote the kernel and
cokernel, respectively, of multiplication by n on A. If � is prime, then A�∞ denotes the
�-power torsion subgroup of A.
If k is a field of characteristic zero, then k̄ denotes an algebraic closure of k and �k

denotes the absolute Galois group Gal(k̄/k). If X is an algebraic variety over k and l/k is a
field extension thenXl denotes the base changeX×k l. The base changeX×k k̄ is denoted
by X̄ .
The Brauer group ofX/k is denoted by Br(X) and its algebraic part ker(Br(X) → Br(X̄))

is denoted by Br1(X). The quotient Br(X)/Br1(X) is called the transcendental part of
Br(X), or the transcendental Brauer group of X .
For an elliptic curve E/k we denote by End Ē the full ring of endomorphisms defined

over k̄ .

2 Preliminaries
2.1 Transcendental Brauer groups

The following result of Skorobogatov and Zarhin allows us tomove between the transcen-
dental Brauer group of an abelian surface and that of the associated Kummer surface.

Theorem 2.1 ([26, Theorem 2.4]) Let A be an abelian surface, let Y = Kum(A) and let
n ∈ Z>0. There is a natural embedding

Br(Y )n/Br1(Y )n ↪→ Br(A)n/Br1(A)n (3)

which is an isomorphism if n is odd. The subgroups of elements of odd order of the tran-
scendental Brauer groups Br(Y )/Br1(Y ) and Br(A)/Br1(A) are isomorphic.

To calculate the transcendental part of the Brauer group for products of elliptic curves,
we use another result of Skorobogatov and Zarhin.

Proposition 2.2 ([26, Proposition 3.3]) Let E and E′ be elliptic curves over a field k of
characteristic zero. For n ∈ Z>0, we have a canonical isomorphism of abelian groups

Br(E × E′)n/Br1(E × E′)n = Hom�k (En, E
′
n)/(Hom(Ē, Ē′)/n)�k .

When the elliptic curves have complex multiplication, we can say more.

Definition 2.3 Let k be a field of characteristic zero and let E, E′ be elliptic curves over k
with Ē ∼= Ē′ and End Ē = End Ē′ = OK for an imaginary quadratic field K . For n ∈ Z>0,
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we define �k-submodules of Hom(En, E′
n), as follows:

Hom(En, E′
n)+ = {ϕ ∈ Hom(En, E′

n) | ϕ ◦ β = β ◦ ϕ ∀β ∈ OK };
Hom(En, E′

n)− = {ϕ ∈ Hom(En, E′
n) | ϕ ◦ β = β̄ ◦ ϕ ∀β ∈ OK },

where β̄ denotes the complex conjugate of β .

The following lemma and corollary are slight generalisations of some results from [12,
§3].

Lemma 2.4 Let k be a field of characteristic zero. Let d ∈ Z>0 be squarefree and let
K = Q(

√−d). Let E, E′ be elliptic curves over k with Ē ∼= Ē′ and End Ē = End Ē′ = OK .
For all n ∈ Z>0 coprime to 2d, we have equalities of �k -modules

Hom(En, E′
n) = Hom(En, E′

n)+ ⊕ Hom(En, E′
n)− (4)

and

Hom(Ē, Ē′)/n = Hom(En, E′
n)+. (5)

In the case d = 3, (4) and (5) hold for all n ∈ Z>0 coprime to 3.

Proof First suppose that n is coprime to 2d. Then multiplication by
√−d is invertible on

En and E′
n and we have

Hom(En, E′
n)+ = {ϕ ∈ Hom(En, E′

n) |
√

−d ◦ ϕ ◦
√

−d
−1 = ϕ};

Hom(En, E′
n)− = {ϕ ∈ Hom(En, E′

n) |
√

−d ◦ ϕ ◦
√

−d
−1 = −ϕ}.

Since n is odd, we can write any ϕ ∈ Hom(En, E′
n) as

ϕ = 1
2

(
ϕ +

√
−d ◦ ϕ ◦

√
−d

−1
)

+ 1
2

(
ϕ −

√
−d ◦ ϕ ◦

√
−d

−1
)

and thus prove (4).
The case d = 3 and n coprime to 3 is similar except that we consider conjugation by ζ3

instead of
√−d. Since ζ 3

3 = 1, we have

Hom(En, E′
n) = Hom(En, E′

n)0 ⊕ Hom(En, E′
n)1 ⊕ Hom(En, E′

n)2

where Hom(En, E′
n)j = {ϕ ∈ Hom(En, E′

n) | ζ3 ◦ϕ ◦ζ−1
3 = ζ

j
3 ◦ϕ}. But if ϕ ∈ Hom(En, E′

n)1

then 0 = ϕ ◦ (ζ−1
3 − 1), which implies that ϕ ◦ 3 = 0 and hence ϕ = 0, as n is coprime

to 3. Therefore, Hom(En, E′
n)1 = 0. Now observe that Hom(En, E′

n)0 = Hom(En, E′
n)+ and

Hom(En, E′
n)2 = Hom(En, E′

n)− to complete the proof of (4).
For (5), view End(Ē) and End(En) as O×

K -modules via the action of O×
K = Aut Ē on

the second factor in each case, so that α ∈ O×
K sends an endomorphism ϕ to αϕ. Since

Ē ∼= Ē′, the elliptic curve E′ is a twist of E by an element in H1(k,Aut Ē) = H1(k,O×
K ).

Thus, the �k-modules Hom(Ē, Ē′) and Hom(En, E′
n) are twists of End(Ē) and End(En),

respectively, by the same element of H1(k,O×
K ), acting on the second factor. Therefore,

it is enough to prove that End(Ē)/n = End(En)+. Since End(Ē) = OK , it is clear that
End(Ē)/n ⊂ End(En)+. Equality follows from the fact that both are isomorphic to (Z/nZ)2

as abelian groups. ��
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Corollary 2.5 Under the assumptions of Lemma 2.4, we have a canonical isomorphism of
abelian groups

Br(E × E′)n/Br1(E × E′)n = Hom�k (En, E
′
n)−.

Proof Follows immediately from Proposition 2.2 and Lemma 2.4. ��
In order to use Proposition 2.2 to calculate the whole of the transcendental part of the

Brauer group, we will need the following material from [21].

Definition 2.6 Fix a number field L, an imaginary quadratic field K and a prime number
� ∈ Z. Define n(�) to be the largest integer t such that the ring class fieldK�t corresponding
to the order Z + �tOK embeds into KL.

Theorem 2.7 Let L be a number field and let E/L be an elliptic curve such that End Ē =
OK for an imaginary quadratic field K . Then for all prime numbers � ∈ Z,

(
Br(E × E)
Br1(E × E)

)

�∞
= Br(E × E)�n(�)

Br1(E × E)�n(�)
.

Proof This is an immediate consequence of [21, Proposition 2.2, Theorems 2.5 and 2.9].
��

To aid us in our applications of Theorem 2.7, we will need the following well-known
formula for the degree of a ring class field (see [7, Theorem 7.24], for example). Let K be
an imaginary quadratic field with discriminant 
K and class number hK , let c ∈ Z>0 and
letOc = Z + cOK be the order of conductor c inOK . Then

[Kc : K ] = hK · c
[O×

K : O×
c ]

∏

p|c

(
1 −

(

K
p

)
1
p

)
. (6)

The symbol ( ·
p ) denotes theLegendre symbol for oddprimes. For theprime2, theLegendre

symbol is replaced by the Kronecker symbol ( ·
2 ), with

(

K
2

)
=

⎧
⎪⎪⎨

⎪⎪⎩

0 if 2 | 
K ,

1 if 
K ≡ 1 (mod 8),

−1 if 
K ≡ 5 (mod 8).

2.2 Evaluation maps

Let k be a number field. Let d ∈ Z>0 be squarefree and let K = Q(
√−d). Let E, E′ be

elliptic curves over k with Ē ∼= Ē′ and End Ē = End Ē′ = OK and let Y = Kum(E × E′).
Let n ∈ Z>0 be coprime to 2d and let ϕ ∈ Hom�k (E′

n, En)−. For the reader’s convenience,
following [12, §5.1], [26, §3], we summarise here the construction of an element of Br(Y )n
from ϕ, and describe its evaluation at a p-adic point of Y in terms of a cup-product map.
Multiplication by n on E turns E into an E-torsor with structure group En. Denote this

torsor by T and let [T ] denote its class in H1
ét(E, En). Similarly, let T ′ denote E′ considered

as an E′-torsor with structure group E′
n, and let [T ′] denote its class in H1

ét(E
′, E′

n). The
homomorphism ϕ : E′

n → En gives rise to the E′-torsor ϕ∗T ′ with structure group En,
with class [ϕ∗T ′] ∈ H1

ét(E
′, En).

Composing the cup-product map with the Weil pairing En × En → μn yields a pairing

H1
ét(E × E′, En) × H1

ét(E × E′, En) → Br(E × E′)n. (7)
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Let p : E × E′ → E and p′ : E × E′ → E′ be the natural projection maps. The pullbacks
p∗T1 and p′∗ϕ∗T ′ are E × E′-torsors with structure group En; let C ∈ Br(E × E′)n denote
the pairing of their classes in H1

ét(E × E′, En) via (7). By [26, Lemma 3.1, Proposition 3.3],
the natural map

Br(E × E′)n → Br(E × E′)n/Br1(E × E′)n = Hom�k (E
′
n, En)−

sends C to ϕ. Let ι denote the involution on Br(E × E′) induced by (P,Q) �→ (−P,−Q) on
E × E′. The proof of [26, Theorem 2.4] identifies Br(Y ) with the subgroup of Br(E × E′)
consisting of elements fixed by ι. By the functoriality and bilinearity of the cup product,
we find that ι(C) = C. Let B be the element of Br(Y ) corresponding to C.
Note that if we take quadratic twists of E and E′ by the same element a ∈ k× then

there is a natural isomorphismKum(Ea×E′a) → Y . Applying the construction described
above to the homomorphism of �k-modules E′a

n → Ea
n coming from ϕ, we obtain an

element of the Brauer group of Kum(Ea ×E′a) that is identified with B ∈ Br(Y ) under the
isomorphism Kum(Ea × E′a) → Y .
Let F be a field containing k (e.g. F could be the completion of k at some place v of k).

Let P ∈ E(F ) \E2, letQ ∈ E′(F ) \E2 and let [P,Q] ∈ Y (F ) denote the corresponding point
on the Kummer surface. Then

B([P,Q]) = C((P,Q)).

Let χP denote the image of P under the natural map χ : E(F ) → H1(F, En) and let χQ
denote the image of Q under the natural map χ : E′(F ) → H1(F, E′

n). The cup product
and the Weil pairing En × En → μn give a pairing

∪ : H1(F, En) × H1(F, En) → Br(F )n. (8)

Now the construction of C and the functoriality of the cup product show that

B([P,Q]) = C((P,Q)) = χP ∪ ϕ∗(χQ) ∈ Br(F )n. (9)

This description of the evaluation map, due to Skorobogatov and Zarhin in [26], is very
powerful because it enables one to evaluate transcendental elements of Br(Y ) at local
points (and thus compute the Brauer–Manin pairing) without the need to obtain explicit
Azumaya algebras representing these elements of the Brauer group.

Lemma 2.8 Let k be a number field and let kv be its completion at a place v. Let d ∈ Z>0
be squarefree and let K = Q(

√−d). Let E, E′ be elliptic curves over k with Ē ∼= Ē′ and
End Ē = End Ē′ = OK and let Y = Kum(E × E′). Let n ∈ Z>0 be coprime to 2d and
let ϕ ∈ Hom�k (E′

n, En)−. Let B ∈ Br(Y ) be constructed from ϕ as described above. If the
evaluation map

evB,v : Y (kv) → Br(kv)n
y �→ B(y)

is constant then it is zero.

Proof Let P ∈ E(kv) \ E4 (so that 2P /∈ E2) and let Q ∈ E′(kv) \ E2. If evB is constant then
B([2P,Q]) = B([P,Q]) and (9) gives

B([2P,Q]) = χ2P ∪ ϕ∗(χQ) = 2 · (χP ∪ ϕ∗(χQ)) = 2B([P,Q]).

Hence B([P,Q]) = 0, which suffices to prove the lemma. ��
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3 CM byOK withO×
K = {±1}: transcendental Brauer groups

If End Ē = OK for an imaginary quadratic field K with O×
K = {±1} (i.e. K is not Q(i) or

Q(ζ3)), then the only twists of E are quadratic twists. Theorem 3.1 below shows that in
this case the transcendental part of the Brauer group of E × E′ has exponent at most 6,
where E′ denotes a quadratic twist of E. The theorem is stated for elliptic curves over K ,
but the conclusion also holds for elliptic curves overQ, by definition of the transcendental
part of the Brauer group (cf. (10) below).

Theorem 3.1 Let K be an imaginary quadratic field with O×
K = {±1}. Let E/K be an

elliptic curve with End Ē = OK , let E′ be a quadratic twist of E and let T = Br(E ×
E′)/Br1(E × E′).

(i) If K = Q(
√−2) then T is killed by 6.

(ii) If K = Q(
√−7) then T is killed by 4.

(iii) If K = Q(
√−11) then T is killed by 3.

(iv) In all other cases, T = 0.

Proof Let E′ be the quadratic twist of E by some a ∈ K× and let L = K (
√
a). Write

A = E × E′ = E × Ea. Observe that AL is isomorphic to E × E over L and by definition
we have

Br(A)/Br1(A) ↪→ Br(AL)/Br1(AL). (10)

Applying [21, Theorem 1.1 and Proposition 2.2], we see that for any prime number �,

(Br(AL)/Br1(AL))�∞ = Br(AL)�n(�)/Br1(AL)�n(�) (11)

where n(�) is the largest integer t such that the ring class field K�t corresponding to the
order Z + �tOK embeds into L. Bounds on n(�) are easily obtained by noting that if K�t

embeds into L then [K�t : K ] divides [L : K ] ≤ 2. Furthermore, we can use the formula (6)
to calculate [K�t : K ], noting that the theory of complexmultiplication shows that hK = 1,
since the Hilbert class field HK is equal to K (j(E)) and E is defined over K . In this way,
we find that n(�) = 0 for all � ≥ 5. For � = 3, we find that n(3) ≤ 1, and n(3) = 0 unless
K is an imaginary quadratic field of class number one with

(

K
3

)
= 1, i.e. unless K ∈

{Q(
√−2),Q(

√−11)}. Similarly, we find that n(2) = 0 unless K ∈ {Q(
√−7),Q(

√−2)},
and furthermore n(2) ≤ 1 if K = Q(

√−2) and n(2) ≤ 2 if K = Q(
√−7). ��

Proof of Theorem 1.1 Asnoted in the introduction, the assumptions of Theorem1.1 imply
that the CMfieldK has class number one and the elliptic curves E and E′ are geometrically
isomorphic. IfO×

K = {±1}, then this means that E′ is a quadratic twist of E and the result
follows from Theorems 3.1 and 2.1. The remaining cases, where K ∈ {Q(i),Q(ζ3)}, follow
from [28, Examples 1 and 2, pp. 48–51] and Theorem 2.1. ��

Remark 3.2 If we relax the assumptions of Theorem 1.1 to allow E and E′ to have CM
by orders Of and Of′ in OK of conductors f and f′, respectively, we can obtain simi-
lar results using the existence of isogenies of degrees f and f′ from E and E′, respec-
tively, to elliptic curves with CM by OK . Since Kf = K (j(E)) = K = K (j(E′)) =
Kf′ (see e.g. [7, Theorem 11.1]), the formula (6) shows that f, f′ ≤ 3 and K ∈
{Q(ζ3),Q(i),Q(

√−7),Q(
√−2),Q(

√−11)}. Bounds on the order of a non-trivial class in
the transcendental Brauer group then follow from [2, Theorem 5.13] and Theorem 2.1.
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Thus, in the setting of Theorem 3.1, an element of odd order in Br(E × E′)/Br1(E × E′)
has order dividing 3. In Sect. 4, we will see that the situation is more interesting in
the case of elliptic curves with complex multiplication by Z[ζ3], where sextic twists can
occur. But first we will investigate the cases in Theorem 3.1 where non-trivial elements
of odd order can occur in the transcendental part of the Brauer group, namely when
K ∈ {Q(

√−2),Q(
√−11)}. Elements of odd order are of particular interest to us because

Theorem 2.1 shows that they descend to the transcendental part of the Brauer group of
the relevant Kummer surface, where there is a chance they may give obstructions to weak
approximation that cannot be explained by any algebraic element in the Brauer group.

Lemma 3.3 Let K ∈ {Q(
√−2),Q(

√−11)}, let F ∈ {Q, K }, let E/F be an elliptic curve
such that End Ē = OK and let a ∈ F×. Then

(
Br(E × Ea)
Br1(E × Ea)

)

3∞
= Br(E × Ea)3

Br1(E × Ea)3
.

Proof Let A = E × Ea. Since Br(A) is torsion (see [5, Lemma 3.5.3]),

(Br(A)/Br1(A))3∞ = Br(A)3∞/Br1(A)3∞ .

Let A ∈ Br(A)3∞ and let L = K (
√
a). Then (10), (11) and the fact that n(3) ≤ 1 (see the

proof of Theorem 3.1) give

(Br(A)/Br1(A))3∞ ↪→ Br(AL)3/Br1(AL)3. (12)

Hence, ResL/F A = B + C where B ∈ Br(AL)3 and C ∈ Br1(AL)3∞ . Applying corestriction
yields

[L : F ] · A = CorL/F B + CorL/F C,

where CorL/F B ∈ Br(A)3 and CorL/F C ∈ Br1(A)3∞ , by [4, Lemme 1.4]. Since [L : F ] is
coprime to 3, we can invert [L : F ] modulo the order of A to see that the class of A in
Br(A)3∞/Br1(A)3∞ lies in Br(A)3/Br1(A)3. ��

Proposition 3.4 Let K ∈ {Q(
√−2),Q(

√−11)}, let E/K be an elliptic curve with CM by
OK , let a ∈ K× and let Ea denote the quadratic twist of E by a. Suppose that Br(E ×
Ea)/Br1(E × Ea) contains an element of order 3. Then K (

√
a) = K (

√−3) and hence
a ∈ −3 · K×2.

Proof Theproof ofTheorem3.1 shows that if the 3-primarypart ofBr(E×Ea)/Br1(E×Ea)
is non-trivial (so necessarily n(3) > 0) then K (

√
a) = K3. It is easily checked that K3 =

K (
√−3). ��

Theorem 3.5 Let K ∈ {Q(
√−2),Q(

√−11)}, let F ∈ {Q, K } and let E/F be an elliptic
curve such that End Ē = OK . Furthermore, let a ∈ F× ∩ −3 · K×2. Then

Br(E × Ea)/Br1(E × Ea) = Br(E × Ea)3
Br1(E × Ea)3

= Hom�F (E3, E
a
3 )

−

∼=
⎧
⎨

⎩
(Z/3Z)2 if F = K ;

Z/3Z if F = Q.
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Remark 3.6 In Theorem 3.5, if F = K then one may assume a = −3 since multiplying
a by an element of F×2 does not change Ea. Likewise, if F = Q then one may assume
a ∈ {−3, 6} ifK = Q(

√−2), and a ∈ {−3, 33} ifK = Q(
√−11). Proposition 3.4 shows that

these are the only quadratic twists for which Br(E ×Ea)/Br1(E ×Ea) contains non-trivial
elements of odd order.

Proof of Theorem 3.5 Webegin by computingHom�F (E3, Ea
3 )−. SinceK has class number

one, the theory of complex multiplication shows that any two elliptic curves over F with
CM by OK are geometrically isomorphic and hence quadratic twists of each other, in
this case. Therefore, we can select a chosen elliptic curve E/F with CM by OK and write
E = Eδ for some δ ∈ F×. Thus, Ea = Eδa and Hom(E3, Ea

3 ) = Hom(Eδ
3 , Eaδ

3 ). Now �F
acts on Hom(Eδ

3 , Eaδ
3 ) by conjugation and the two quadratic twists by δ cancel each other

out so that Hom(Eδ
3 , Eaδ

3 ) = Hom(E3, Ea
3 ) as a �F -module. Furthermore, the �F -module

Hom(E3, Ea
3 )− is the quadratic twist of End(E3)− by the quadratic character corresponding

to F (
√
a)/F . In other words, we identify Hom(E3, Ea

3 )− with the group End(E3)− equipped
with an action of �F such that σ ∈ �F sends ϕ ∈ End(E3)− to σ (

√
a)√
a σϕσ−1.

•K = Q(
√−2):We take E to be the elliptic curve with affine equation y2 = x3+4x2+2x,

which has complex multiplication by Z[
√−2] by [25, Proposition II.2.3.1(ii)]. One com-

putes that Hom�K (E3, E−3
3 )− ∼= (Z/3Z)2 and Hom�Q

(E3, E−3
3 )− ∼= Hom�Q

(E3, E6
3 )− ∼=

Z/3Z. This can be done by calculating the 3-torsion points of E and using the fact that the
�F -module Hom(E3, E−3

3 )− is the quadratic twist of End(E3)− by the quadratic character
corresponding toF (

√−3)/F . Alternatively, for an explicit computationof the�Q-modules
Hom(E3, Ea

3 ) for a ∈ {−3, 6}, see the proof of [1, Lemma 2.3.3].
Now Lemma 3.3 and Corollary 2.5 show that

(
Br(E × Ea)
Br1(E × Ea)

)

3∞
= Br(E × Ea)3

Br1(E × Ea)3
= Hom�F (E3, Ea

3 )
−.

By Theorem 3.1(i), it only remains to show that the 2-primary part of Br(E×Ea)/Br1(E×
Ea) is trivial. Write A = E × Ea and L = K (

√
a). By (10), (11) and the computation of

n(2) in the proof of Theorem 3.1, it is enough to show that Br(AL)2/Br1(AL)2 = 0. Now
Proposition 2.2 shows that

Br(AL)2/Br1(AL)2 = End�L (E2)/(End Ē/2)�L .

One computes that this quotient is trivial. As before, one can take E = E and compute
the 2-torsion explicitly. For the details, see the proof of [1, Lemma 2.3.6].
• K = Q(

√−11): We take E to be the elliptic curve with LMFDB label 121.b2, which has
affine equation y2+y = x3−x2−7x+10. This is themodular curveX+

ns(11). It has complex
multiplication by Z[ 1+

√−11
2 ] by [27]. One computes that Hom�K (E3, E−3

3 )− ∼= (Z/3Z)2

and Hom�Q
(E3, E−3

3 )− ∼= Hom�Q
(E3, E33

3 )− ∼= Z/3Z. Explicit calculations can be found
in the proof of [1, Theorem 2.4.1]. Now Theorem 3.1(ii), Lemma 3.3 and Corollary 2.5
show that

Br(E × Ea)
Br1(E × Ea)

= Br(E × Ea)3
Br1(E × Ea)3

= Hom�F (E3, Ea
3 )

−.

��
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4 CM by Z[ζ3]: transcendental Brauer groups
Throughout this section, for c ∈ Q×, let Ec denote the elliptic curve over Q with affine
equation

Ec : y2 = x3 + c.

The curve Ec has complex multiplication by Z[ζ3], where ζ3 denotes a primitive 3rd root
of unity. Multiplication by ζ3 sends

(x, y) �→ (ζ3x, y).

The curve Ec is the sextic twist of y2 = x3 + 1 by the class of c−1 in H1(Q,μ6). Since Q(ζ3)
has class number one, any elliptic curve over Q with complex multiplication by Z[ζ3] is of
the form Ec for some c ∈ Q×.
In this section, we study the transcendental Brauer groups of Ec ×Ed and Kum(Ec ×Ed)

for c, d ∈ Q×.

Lemma 4.1 Let c, d ∈ Q×. For every prime number � > 7,

(Br(Ec × Ed)/Br1(Ec × Ed))�∞ = 0.

For � ∈ {5, 7},
(Br(Ec × Ed)/Br1(Ec × Ed))�∞ = Br(Ec × Ed)�/Br1(Ec × Ed)�.

For � ∈ {2, 3},
(Br(Ec × Ed)/Br1(Ec × Ed))�∞ = (Br(Ec × Ed)/Br1(Ec × Ed))�2 .

Proof Let A = Ec × Ed and let Y = KumA. By definition of Br1(Y ), we have an injection

Br(Y )/Br1(Y ) ↪→ Br(Ȳ )�Q(ζ3) .

Since Y is a K3 surface with CM by Z[ζ3], we can apply [28, Example 2, pp. 50–51] to Y
to see that, for all primes � > 7, Br(Ȳ )

�Q(ζ3)
�∞ = 0 and hence (Br(Y )/Br1(Y ))�∞ = 0. Since

Br(Y ) is a torsion group, (Br(Y )/Br1(Y ))�∞ = Br(Y )�∞/Br1(Y )�∞ . The first statement
now follows easily from Theorem 2.1.
Let L = Q

(
ζ3, 6

√
c/d

)
so that AL ∼= Ec × Ec. By definition,

Br(A)n/Br1(A)n ↪→ Br(AL)n/Br1(AL)n (13)

for all n ∈ Z>0. By Theorem 2.7, for any prime number �,

(Br(AL)/Br1(AL))�∞ = Br(AL)�n(�)/Br1(AL)�n(�) (14)

where n(�) is as defined in Definition 2.6.
Observe that [L : Q(ζ3)] | 6. By (6), we have [K8 : Q(ζ3)] = 4 and [K27 : Q(ζ3)] = 9,

whencen(2), n(3) ≤ 2.This, togetherwith (13) and (14), proves the statement for � ∈ {2, 3}.
Now suppose that � ∈ {5, 7}. By (6), [K�2 : Q(ζ3)] = 2� > 6, so n(�) ≤ 1. Our discussion

above shows that

(Br(AL)/Br1(AL))�∞ = (Br(AL))�/(Br1(AL))�. (15)

Now an argument using restriction and corestriction similar to the one used in the proof
of Lemma 3.3 shows that (Br(A)/Br1(A))�∞ = Br(A)�/Br1(A)�. ��
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In this paper, we will focus on the cases with CMbyZ[ζ3] where the transcendental part
of the Brauer group contains an element of order 5 or 7. The other cases will be discussed
in future work.

Lemma 4.2 Let c, d ∈ Q× and let Y = Kum(Ec × Ed). Let � ∈ {5, 7} and suppose that
(Br(Y )/Br1(Y ))� 
= 0. Then (3) yields an isomorphism

Br(Y )/Br1(Y ) ∼= Br(Ec × Ed)�/Br1(Ec × Ed)�.

Proof This follows from [28, Example 2, pp. 50–51] and Lemma 4.1. ��

We now calculate Br(Ec × Ed)�/Br1(Ec × Ed)� for � ∈ {5, 7}, using Corollary 2.5. To
compute Hom�Q

(Ed
� , E

c
�)

− for � ∈ {5, 7}, we will use Eisenstein’s sextic reciprocity law, as
stated in [16, Theorem 7.10].

Definition 4.3 An element a + bζ3 ∈ Z[ζ3] is called E-primary if b ≡ 0 mod 3 and

a + b ≡ 1 mod 4, if 2 | b,
b ≡ 1 mod 4, if 2 | a,
a ≡ 3 mod 4, if 2 � ab.

Let N denote the norm map NQ(ζ3)/Q : Q(ζ3) → Q. Recall the definition of the sextic
residue symbol: for λ,π ∈ Z[ζ3] with π prime,

(
λ
π

)
6 is the unique 6th root of unity

satisfying

λ
N (π )−1

6 ≡
(

λ

π

)

6
(mod π ).

Theorem 4.4 (Eisenstein) If β , γ ∈ Z[ζ3] are E-primary and relatively prime, then
(

β

γ

)

6
= (−1)

N (β)−1
2

N (γ )−1
2

(
γ

β

)

6
.

Definition 4.5 Let α = 6
√
c/d and let φα : Ēd → Ēc be the isomorphism defined over

Q(α) given by (x, y) �→ (α2x,α3y).

We use 〈−33〉Q×6 to denote Q×6 ∪ −33 · Q×6.

Proposition 4.6 View �Q(α) and �Q(ζ3) as subgroups of �Q, so that the set difference
�Q(α) \ �Q(ζ3) is defined.

(i) If 24 · 5 · cd ∈ 〈−33〉Q×6 then, for τ ∈ �Q(α) \ �Q(ζ3), abusing notation and viewing
τ ◦ φα as an element of Hom(Ed

5 , E
c
5),

Br(Ec × Ed)5/Br1(Ec × Ed)5 = Hom�Q
(Ed

5 , E
c
5)

− = (Z/5Z) · τ ◦ φα
∼= Z/5Z.

Otherwise, Br(Ec × Ed)5/Br1(Ec × Ed)5 = 0.
(ii) If−24 ·7−1 ·cd ∈ 〈−33〉Q×6 then, for τ ∈ �Q(α)\�Q(ζ3), abusing notation and viewing

τ ◦ φα as an element of Hom(Ed
7 , E

c
7),

Br(Ec × Ed)7/Br1(Ec × Ed)7 = Hom�Q
(Ed

7 , E
c
7)

− = (Z/7Z) · τ ◦ φα
∼= Z/7Z.

Otherwise, Br(Ec × Ed)7/Br1(Ec × Ed)7 = 0.
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Proof Multiplying by 6th powers if necessary, we may assume that c, d ∈ Z. By Corol-
lary 2.5 it suffices to compute Hom�Q

(Ed
� , E

c
�)

− for � ∈ {5, 7}. Let ε(�) = (−1)(�−1)/2. First,
we will show that

Hom�Q(ζ3)
(Ed

� , E
c
�)

− =
⎧
⎨

⎩
Hom(Ed

� , E
c
�)

− if ε(�) · 24�ε(�) · cd ∈ 〈−33〉Q×6;

0 otherwise.

To prove this claim, we will determine the action of �Q(ζ3) on Hom(Ed
� , E

c
�)

− via a study
of the actions of Frobenius elements for sufficiently many primes in Z[ζ3]. The action of
�Q(ζ3) factors through Gal(Q(ζ3, Ec

� , E
d
� )/Q(ζ3)). Let π ∈ Z[ζ3] be an E-primary prime that

is coprime to 6cd� and unramified in Q(ζ3, Ec
� , E

d
� )/Q(ζ3). The prime ideals generated by

suchπ comprise all butfinitelymanyprime ideals ofZ[ζ3], as everyprime ideal ofZ[ζ3] that
is coprime to 6 has an E-primary generator. Furthermore, Chebotarev’s density theorem
shows thatGal(Q(ζ3, Ec

� , E
d
� )/Q(ζ3)) is generated by Frobenius elements associated to such

primes π . We require π to be E-primary so that we can apply sextic reciprocity later on
in the proof. In particular, we have π ≡ ±1 (mod 3).
For a ∈ {c, d}, let ψEa/Q(ζ3) be the Grössencharakter attached to Ea/Q(ζ3). We write

ψEa/Q(ζ3)(π ) for the image under ψEa/Q(ζ3) of the idèle (1, . . . , 1,π , 1, 1, . . .) with entry π

at the place (π ) and entry 1 at every other place. Then Frobπ ∈ Gal(Q(ζ3, Ec
� , E

d
� )/Q(ζ3))

acts on Ea
� as multiplication byψEa/Q(ζ3)(π ) ∈ Z[ζ3], see [15, Corollary 4.1.3], for example.

By [25, Example II.10.6],

ψEa/Q(ζ3)(π ) = ±
(
4a
π

)

6
π = ±

(
4a
π

)−1

6
π . (16)

The ±1 here comes from the fact that [25, Example II.10.6] is stated for primes that are
congruent to −1 (mod 3), whereas our E-primary prime π maybe congruent to either
1 or −1 (mod 3). In any case, the ±1 in (16) is independent of a and is therefore of no
consequence for the action on Hom(Ed

� , E
c
�)

− by conjugation, as the ±1 for the actions on
Ec and Ed cancel out. Thus, for ϕ ∈ Hom(Ed

� , E
c
�)

−, we have

Frobπ ·ϕ =
(
4c
π

)−1

6
πϕ

(
4d
π

)

6
π−1

=
(
24cd
π

)−1

6
ππ̄−1ϕ. (17)

• For � = 5, sextic reciprocity gives
(
5
π

)

6
=

(π

5

)

6
≡ π4 (mod 5).

Furthermore, π̄ ≡ π5 (mod 5), whereby ππ̄−1 ≡
(
5
π

)−1

6
(mod 5). Substituting this

into (17) gives

Frobπ ·ϕ =
(
24 · 5 · cd

π

)−1

6
ϕ (18)

for all E-primary primes π ∈ Z[ζ3] that are coprime to 30cd and unramified in
Q(ζ3, Ec

5, E
d
5 )/Q(ζ3). Since z − 1 is invertible modulo 5 for all z ∈ μ6 \ {1}, we deduce

that Frobπ ·ϕ = ϕ if and only if either ϕ = 0 or
(
24 ·5·cd

π

)

6
= 1 for all E-primary primes
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π ∈ Z[ζ3] that are coprime to 30cd and unramified in Q(ζ3, Ec
5, E

d
5 )/Q(ζ3). The latter con-

dition holds if and only if 24 ·5·cd ∈ Q×∩Q(ζ3)×6 = 〈−33〉Q×6 (see [20, Theorem9.1.11]).
Hence, if Hom�Q(ζ3)

(Ed
5 , E

c
5)

− 
= 0 then 24 · 5 · cd ∈ Q× ∩ Q(ζ3)×6, whereby (18) shows
that Hom�Q(ζ3)

(Ed
5 , E

c
5)

− = Hom(Ed
5 , E

c
5)

−, as required.
• For � = 7, factorise 7 in Z[ζ3] as 7 = ��̄ with � = −1 − 3ζ3. Then � and −�̄ are

both E-primary and sextic reciprocity gives
(−7

π

)

6
=

(�

π

)

6

(−�̄

π

)

6
=

( π

�

)

6

( π

�̄

)

6
≡ ππ̄−1 (mod � ). (19)

Taking complex conjugates and then inverting both sides of (19) gives
(−7

π

)
6 ≡ ππ̄−1

(mod �̄ ) and hence
(−7

π

)
6 ≡ ππ̄−1 (mod 7). Substituting this into (17) gives

Frobπ ·ϕ =
(−24 · 7−1 · cd

π

)−1

6
ϕ (20)

for all E-primary primes π ∈ Z[ζ3] that are coprime to 42cd and unramified in
Q(ζ3, Ec

7, E
d
7 )/Q(ζ3). As before, we deduce that if Hom�Q(ζ3)

(Ed
7 , E

c
7)− 
= 0 then −24 · 7−1 ·

cd ∈ Q× ∩ Q(ζ3)×6 = 〈−33〉Q×6 and Hom�Q(ζ3)
(Ed

7 , E
c
7)− = Hom(Ed

7 , E
c
7)−, completing

the proof of our claim.
To complete the proof of Proposition 4.6, it remains to compute Hom�Q

(Ed
� , E

c
�)

− for
� ∈ {5, 7} in the casewhere ε(�)·24�ε(�) ·cd ∈ 〈−33〉Q×6. It is easy to see that the conditions
on cd ensure that Q(ζ3) 
⊂ Q(α) and hence there exists some τ ∈ �Q(α) \ �Q(ζ3). Now
observe that

Hom�Q(ζ3)
(Ed

� , E
c
�)

− = Hom(Ed
� , E

c
�)

− = {(a + bζ3)τ ◦ φα | a, b ∈ Z/�Z}.
Indeed, it is clear that {(a + bζ3)τ ◦ φα | a, b ∈ Z/�Z} ⊂ Hom(Ed

� , E
c
�)

− and both are
isomorphic to (Z/�Z)2 as abelian groups.
Furthermore, since the image of τ generates Gal(Q(ζ3)/Q), an element of Hom�Q(ζ3)

(Ed
� ,

Ec
�)

− is fixed by the action of �Q if and only if it commutes with τ . Therefore,
Hom�Q

(Ed
� , E

c
�)

− = (Z/�Z) · τ ◦ φα , as claimed. ��

Proof of Theorem 1.4 Thisnow follows fromTheorem2.1, Proposition4.6 andLemma4.2.
��

5 Algebraic Brauer groups
Let E and E′ be elliptic curves over Q and let Y = Kum(E × E′). Since Y (Q) 
= ∅, the
Hochschild–Serre spectral sequence gives a short exact sequence

0 → Br(Q) → Br1(Y ) → H1(Q,Pic(Ȳ )) → 0. (21)

Since Y is a K3 surface, Pic(Ȳ ) = NS(Ȳ ). Furthermore, [26, Proposition 1.4(i)] gives a
short exact sequence

0 → N� ⊕ N� → NS(Ȳ ) → Hom(Ē, Ē′) → 0, (22)

where N� and N� are permutation �Q modules and hence H1(Q, N�) = H1(Q, N�) = 0.
Therefore, the long exact sequenceofGalois cohomology attached to (22) canbe combined
with (21) to yield

Br1(Y )/Br(Q) = H1(Q,Pic(Ȳ )) = H1(Q,Hom(Ē, Ē′)). (23)
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Now suppose that End Ē = OK for an imaginary quadratic field K and suppose that
there exists a finite extension L/K such that L/Q is Galois and EL ∼= E′

L. Then inflation-
restriction gives an exact sequence

0 → H1(Gal(L/Q),Hom(Ē, Ē′)) → H1(Q,Hom(Ē, Ē′)) → H1(L,Hom(Ē, Ē′)), (24)

where we view Hom(Ē, Ē′) as a twist ofOK defined over L. But then H1(L,Hom(Ē, Ē′)) ∼=
Homcts(�L,Z2) = 0.Thus, (24) gives a canonical isomorphism fromH1(Gal(L/Q),Hom(Ē,
Ē′)) to H1(Q,Hom(Ē, Ē′)). Plugging this into (23) gives

Br1(Y )/Br(Q) = H1(Q,Hom(Ē, Ē′)) = H1(Gal(L/Q),Hom(Ē, Ē′)). (25)

Theorem 5.1 Let d ∈ Z>0 be squarefree so that K = Q(
√−d) is an imaginary quadratic

field. Let E/Q be an elliptic curve with End Ē = OK , let E′/Q be the quadratic twist of E
by a ∈ Q× and let Y = Kum(E × E′). Then

Br1(Y )/Br(Q) ∼=

⎧
⎪⎪⎨

⎪⎪⎩

0 if Q(
√
a) ⊂ K and − d ≡ 1 mod 4;

(Z/2Z)2 if Q(
√
a) 
⊂ K and − d ≡ 2, 3 mod 4;

Z/2Z otherwise.

Proof Let L = K (
√
a). Then (25) gives

Br1(Y )/Br(Q) = H1(Gal(L/Q),Hom(Ē, Ē′))

where the �Q-module Hom(Ē, Ē′) is the twist of End Ē = OK by the quadratic character
corresponding to Q(

√
a)/Q.

If Q(
√
a) ⊂ K then Gal(L/Q) = Gal(K/Q) is cyclic and a Tate cohomology calculation

gives

H1(Gal(L/Q),Hom(Ē, Ē′)) ∼=
⎧
⎨

⎩
0 if − d ≡ 1 mod 4;

Z/2Z if − d ≡ 2, 3 mod 4.

If Q(
√
a) 
⊂ K then letting G = Gal(L/Q), N = Gal(L/K ) and M = Hom(Ē, Ē′),

inflation-restriction gives an exact sequence

0 → H1(G/N,MN ) → H1(G,M) → H1(N,M)G/N → H2(G/N,MN ).

Since M is the twist of OK by the character corresponding to Q(
√
a)/Q, the generator

of N acts as multiplication by −1 on M, whereby MN = 0 and the inflation-restriction
sequence yields an isomorphism fromH1(G,M) toH1(N,M)G/N . Now aTate cohomology
calculation gives H1(N,M) = M/2M. One checks that

(M/2M)G/N ∼=
⎧
⎨

⎩
Z/2Z if − d ≡ 1 mod 4

(Z/2Z)2 if − d ≡ 2, 3 mod 4.

��
We now have all the necessary ingredients for the proof of Theorem 1.3.

Proof of Theorem 1.3 By Theorem 5.1, Br1(Y ) \Br(Q) contains no elements of odd order.
Therefore, the assumption that Br(Y ) \ Br(Q) contains an element of odd order implies
that Br(Y )/Br1(Y ) 
= 0. Therefore, by Theorems 2.1 and 3.1, Br(Y )/Br1(Y ) contains an
element of order 3 and K ∈ {Q(

√−2),Q(
√−11)}, proving (1). Hence, Y = Kum(E × Ea)
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with a ∈ −3K×2 ∩ Q×, by Proposition 3.4. Now (2) follows from Theorems 2.1 and 3.5,
and (3) follows from Theorem 5.1. To prove (4), note that K has class number one and
therefore E is a quadratic twist of any chosen elliptic curve E/Q with End Ē = OK . We
take E with affine equation y2 = f (x), where f (x) is as stated in Theorem 1.3. Thus, E has
equation λy2 = f (x) for some λ ∈ Q× and Kum(E × Ea) is the minimal desingularisation
of the projective surface with affine equation λ2u2 = af (x)f (t). Replacing u by λu and
computing (−3K×2 ∩ Q×)/Q×2 completes the proof. ��

Theorem 5.2 For a ∈ Q, let Ea/Q be the elliptic curve with affine equation y2 = x3 + a.
Let c, d ∈ Z \ {0}, let Y = Kum(Ec × Ed) and let α = 6

√
c/d. We have

Br1(Y )/Br(Q) ∼=

⎧
⎪⎪⎨

⎪⎪⎩

Z/3Z if Q(ζ3) ⊂ Q(α) and [Q(α) : Q(ζ3)] = 3;

Z/2Z if [Q(α) : Q] = 2 and Q(α) 
= Q(ζ3);

0 otherwise.

Proof If [Q(α) : Q] ≤ 2 then Ed is a quadratic twist of Ec and the result follows from
Theorem 5.1. So henceforth we may assume that [Q(α) : Q] ∈ {3, 6}.
Let φα : Ēd → Ēc be the isomorphism defined over Q(α) given by (x, y) �→ (α2x,α3y),

whereby

Hom(Ēd , Ēc) = End(Ēc) ◦ φα = Z[ζ3] ◦ φα

so (25) gives

Br1(Y )/Br(Q) = H1(Gal(L/Q),Z[ζ3] ◦ φα) (26)

where L = Q(ζ3,α). It remains to calculate H1(Gal(L/Q),Z[ζ3] ◦ φα).
Inflation-restriction gives an exact sequence

0 → H1(Gal(Q(ζ3)/Q), (Z[ζ3] ◦ φα)Gal(L/Q(ζ3))) → H1(Gal(L/Q),Z[ζ3] ◦ φα)

→ H1(Gal(L/Q(ζ3)),Z[ζ3] ◦ φα)Gal(Q(ζ3)/Q) → H2(Gal(Q(ζ3)/Q), (Z[ζ3] ◦ φα)Gal(L/Q(ζ3))).
(27)

SinceQ(α) 
⊂ Q(ζ3), the Galois groupGal(L/Q(ζ3)) acts non-trivially on α and therefore
on φα , and we have (Z[ζ3] ◦ φα)Gal(L/Q(ζ3)) = 0. Thus, (27) yields

H1(Gal(L/Q),Z[ζ3] ◦ φα) = H1(Gal(L/Q(ζ3)),Z[ζ3] ◦ φα)Gal(Q(ζ3)/Q). (28)

Since Gal(L/Q(ζ3)) is cyclic, we can use Tate cohomology to compute H1(Gal(L/Q(ζ3)),
Z[ζ3] ◦ φα).
First suppose that Gal(L/Q(ζ3)) ∼= Z/3Z. Then we can choose a generator σ of

Gal(L/Q(ζ3)) that sends φα to ζ3φα . Therefore,

H1(Gal(L/Q(ζ3)),Z[ζ3] ◦ φα) ∼= (Z[ζ3] ◦ φα)/(ζ3 − 1)(Z[ζ3] ◦ φα)
∼= (Z/3Z) · φα . (29)

The first isomorphism in (29) is induced by sending a 1-cocycle to its value at σ . Let
f : Gal(L/Q(ζ3)) → Z[ζ3] ◦ φα be the 1-cocycle sending σ to φα . To determine whether
H1(Gal(L/Q(ζ3)),Z[ζ3] ◦ φα)Gal(Q(ζ3)/Q) is trivial or isomorphic to Z/3Z, we just have to
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check whether the class of f in H1(Gal(L/Q(ζ3)),Z[ζ3] ◦ φα) is fixed by the action of
Gal(Q(ζ3)/Q). Let τ ∈ Gal(L/Q) be such that its image in Gal(Q(ζ3)/Q) is non-trivial.
Then τστ−1 = σ−1 and the 1-cocycle property gives

f (τ−1στ ) = f (σ−1) = −σ−1(f (σ )) = −ζ 2
3 φα .

Therefore,

f τ (σ ) = τ · f (τ−1στ ) = τ · (−ζ 2
3 φα) = −ζ3τ · φα , (30)

by definition of the action of τ on H1(Gal(L/Q(ζ3)),Z[ζ3] ◦ φα) in terms of its actions on
Gal(L/Q(ζ3)) and on Z[ζ3] ◦ φα = Hom(Ēd , Ēc).
If [Q(α) : Q] = 3 then we may assume that τ acts trivially on φα , whereby (30) gives

f τ (σ ) = −ζ3φα . Hence, f τ and f are not cohomologous (as can be seen using (29), for
example). Therefore, H1(Gal(L/Q(ζ3)),Z[ζ3] ◦ φα)Gal(Q(ζ3)/Q) = 0 and (26) and (28) give

Br1(Y )/Br(Q) = H1(Gal(L/Q(ζ3)),Z[ζ3] ◦ φα)Gal(Q(ζ3)/Q) = 0.

On the other hand, if [Q(α) : Q] = 6 then Q(ζ3) ⊂ Q(α) = L and in fact Q(ζ3) = Q(α3).
In this case wemay assume that τ (α) = −α and hence τ ·φα = −φα . Therefore, (30) gives
f τ (σ ) = ζ3φα and hence f τ is cohomologous to f (as can be seen using (29), for example).
Therefore, H1(Gal(L/Q(ζ3)),Z[ζ3] ◦ φα)Gal(Q(ζ3)/Q) ∼= (Z/3Z) · φα and the result follows
from (26) and (28).
Finally, suppose that Gal(L/Q(ζ3)) ∼= Z/6Z. Then we can choose a generator of

Gal(L/Q(ζ3)) that sends φα to −ζ3φα . Therefore,

H1(Gal(L/Q(ζ3)),Z[ζ3] ◦ φα) ∼= (Z[ζ3] ◦ φα)/(ζ3 + 1)(Z[ζ3] ◦ φα) = 0.

By (26) and (28), our proof is complete. ��

Theorem 1.6 now follows easily from Theorem 5.2.

Proof of Theorem 1.6 We have ε(�) · 24 · �ε(�) · cd = (−3)3n · t6 for some n ∈ {0, 1} and
t ∈ Q× so

c
d

= ε(�) · 24 · �ε(�) · c2
(−3)3n · t6 .

Suppose for contradiction that Q(ζ3) ⊂ Q( 6
√
c/d). Then Q(ζ3) = Q(

√
c/d) and hence

c/d ∈ −3 · Q×2, which is evidently not the case. Furthermore, [Q( 6
√
c/d) : Q] = 2 if

and only if c/d lies in Q×3, if and only if c ∈ 2 · �ε(�) · Q×3. Now the result follows from
Theorem 5.2. ��

For completeness, we also include the calculation of the algebraic part of the Brauer
group in the case of CM by Z[i].

Theorem 5.3 For a ∈ Q, let Ea/Q be the elliptic curve with affine equation y2 = x3 − ax.
Let c, d ∈ Z \ {0}, let Y = Kum(Ec × Ed) and let α = 4

√
c/d. We have

Br1(Y )/Br(Q) ∼=
⎧
⎨

⎩
(Z/2Z)2 if [Q(α) : Q] = 2 and Q(α) 
= Q(i);

Z/2Z otherwise.
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Proof The proof is very similar to that of Theorem 5.2 so we shall be brief. Given Theo-
rem 5.1, our concern is the case [Q(α) : Q] = 4. Let φα : Ēd → Ēc be the isomorphism
defined over Q(α) given by (x, y) �→ (α2x,α3y), whereby

Br1(Y )/Br(Q) = H1(Gal(L/Q),Z[i] ◦ φα)

where L = Q(i,α). Inflation-restriction gives

H1(Gal(L/Q),Z[i] ◦ φα) = H1(Gal(L/Q(i)),Z[i] ◦ φα)Gal(Q(i)/Q) ∼= Z/2Z.

��

6 Constant evaluationmaps
In this section, we prove the following analogue of [12, Theorem 1.2(i)].

Theorem 6.1 Let K 
= Q(
√−11) be an imaginary quadratic field and let Y = Kum(E ×

E′) for elliptic curves E, E′ over Q with End Ē = End Ē′ = OK . Let � be an odd prime and
if K = Q(ζ3) assume that � > 3. Suppose that A ∈ Br(Y )� and let v 
= � be a place of Q.
Then the evaluation map evA,v : Y (Qv) → Br(Qv)� is constant.

The statement for odd primes of good reduction for Y follows immediately from [3,
Theorem D, Remark 1.6.2], and in the remaining cases the proof boils down to showing
�-divisibility for the sets of local points of certain elliptic curves with bad reduction. We
will need the following elementary lemmas.

Lemma 6.2 Let K be an imaginary quadratic field and let Y = Kum(E × E′) for elliptic
curves E, E′ over Q with End Ē = End Ē′ = OK . Let � be an odd prime and if K =
Q(ζ3) assume that � > 3. Suppose that A ∈ Br(Y )� \ Br(Q). Then � ≤ 7, K is one of
Q(ζ3),Q(i),Q(

√−2),Q(
√−11) and

Br(Y )�/Br(Q)� = Br(Y )�/Br1(Y )� = Hom�Q
(E′

�, E�)− ∼= Z/�Z. (31)

Furthermore, if ϕ ∈ Hom�Q
(E′

�, E�)− is non-zero then it is an isomorphism.

Proof Suppose for contradiction thatA ∈ Br1(Y ). Then Theorems 5.1, 5.2 and 5.3 show
that K = Q(ζ3) and � = 3, contradicting our assumptions. Consequently, A ∈ Br(Y )� \
Br1(Y ) and Theorem 1.1 shows that K ∈ {Q(ζ3),Q(i),Q(

√−7),Q(
√−2),Q(

√−11)} and
� ≤ 7. Since � is odd, Theorem 1.3 shows that K 
= Q(

√−7).
For K = Q(ζ3), (31) follows from Theorems 5.2, 2.1 and Proposition 4.6. For K =

Q(i), (31) follows from (2) and [12, Sect. 4]. For K equal to Q(
√−2) or Q(

√−11), (31)
follows from Theorems 1.3, 2.1 and Corollary 2.5 (note that � must equal 3 in this case).
Now let 0 
= ϕ ∈ Hom�Q

(E′
�, E�)−. We claim that ϕ is an isomorphism. For K = Q(ζ3),

this follows from the explicit generator given in Proposition 4.6. ForK = Q(i), it is proved
in [12, Sect. 5.1], and we adapt the argument therein for K equal to Q(

√−2) or Q(
√−11),

observing that 3 splits in K/Q as 3 = λλ̄ and we can write E′
3 = E′

λ ⊕E ′̄
λ
but neither factor

is a �Q-submodule of E′
3 and therefore neither factor can be the kernel of ϕ. Thus, the

restrictions of ϕ to E′
λ and E ′̄

λ
are isomorphisms E′

λ → Eλ̄ and E ′̄
λ

→ Eλ. Hence, ϕ is an
isomorphism. ��



   16 Page 20 of 32 M. Alaa Tawfik, R. Newton Res. Number Theory          (2025) 11:16 

Lemma 6.3 Let E/Q be an elliptic curve with End Ē = Z[
√−2]. Then 2 is a prime of

bad reduction for E. Furthermore, if p 
= 3 is a prime of bad reduction for E then E(Qp) is
3-divisible.

Proof Since Q(
√−2) has class number one, E is a quadratic twist of y2 = x3 + 4x2 + 2x

by some squarefree a ∈ Z \ {0}. Hence E has an affine equation y2 = x3 + 4ax2 + 2a2x.
One checks that this equation is minimal and that 2 is a prime of bad reduction. Running
Tate’s algorithm (see [25, IV.9], for example) shows that if p is a prime of bad reduction for
E then the reduction type is additive and the Tamagawa number |E(Qp)/E0(Qp)| is either
2 or 4, so it suffices to show that E0(Qp) is 3-divisible. This follows from the description
of E0(Qp) given in [23, Theorem 1]. ��

Remark 6.4 The analogue of Lemma 6.3 for elliptic curves with complex multiplication
by Z[ 1+

√−11
2 ] is false. For example, the elliptic curve E/Q with LMFDB label 121.b2,

which has affine equation y2 + y = x3 − x2 − 7x+ 10, has good (supersingular) reduction
at 2 and E(Q2)/E1(Q2) ∼= Z/3Z, so E(Q2) is not 3-divisible. This is why Q(

√−11) was
excluded from Theorem 6.1; further investigation would be needed to determine whether
the statement still holds in that case.

Lemma 6.5 Let p and � be distinct primes with � > 3. Let a ∈ Q×
p , let Ea denote the

elliptic curve with affine equation y2 = x3 + a and if p is odd suppose that Ea/Qp has bad
reduction. Then Ea(Qp) is �-divisible.

Proof First suppose that Ea/Qp has bad reduction. An examination of Tate’s algorithm
(see [25, IV.9], for example) shows that Ea has additive reduction at p and the Tamagawa
number [Ea(Qp) : Ea

0 (Qp)] is at most 4. In particular, the Tamagawa number is coprime
to � and thus the claim is proved once we have shown that Ea

0 (Qp) is �-divisible. The �-
divisibility of Ea

0 (Qp) follows from the description of this group given in [23, Theorem 1].
Now suppose that p = 2 and Ea/Q2 has good reduction. Tate’s algorithm shows that

this can only happen if ord2(a) = 4 and Ea has a minimal Weierstrass equation of the
form y2 + y = x3 + b for some b ∈ Z2. The standard filtration on the Q2 points of Ea is

Ea(Q2) ⊃ Ea
1 (Q2) ⊃ Ea

2 (Q2) ⊃ . . .

where Ea
1 (Q2) denotes the kernel of the reduction map. The theory of formal groups

(see [24, IV, VII], for example) shows that Ea
2 (Q2) ∼= 4Z2, which is �-divisible, and

Ea
1 (Q2)/Ea

2 (Q2) ∼= Z/2Z. Therefore, Ea
1 (Q2) is �-divisible. Finally, Ea(Q2)/Ea

1 (Q2) ∼=
Ẽ(F2) ∼= Z/3Z, whence it follows that Ea(Q2) is �-divisible, as required. ��
Proof of Theorem 6.1 The statement for the infinite place is clear, since Br(R) = Z/2 has
trivial �-torsion. The statement for odd primes of good reduction for Y follows from [3,
Theorem D, Remark 1.6.2].
If A ∈ Br(Q) then there is nothing to prove, so henceforth we will assume that A ∈

Br(Y )� \ Br(Q). Thus, by Lemma 6.2, K is one of Q(ζ3),Q(i),Q(
√−2) and � ≤ 7.

For K = Q(i), we have (Br(Y )/Br1(Y ))odd ∼= Z/�Z by (2). For K = Q(
√−2), Theo-

rem 1.3 shows that � = 3 and Br(Y )/Br1(Y ) ∼= Z/3Z. For K = Q(ζ3), we are assuming
that � > 3, and Theorem 1.4 gives Br(Y )/Br1(Y ) ∼= Z/�Z. So from now on let p 
= � be a
finite prime and if p is odd assume that Y has bad reduction at p. Our task is to show that
evA,p is constant.
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Let 0 
= ϕ ∈ Hom�Q
(E′

�, E�)− and letB be the element of Br(Y )� constructed fromϕ as in
Sect. 2.2. By construction, andLemma6.2,B generatesBr(Y )�/Br1(Y )� = Br(Y )�/Br(Q)�.
Therefore, it suffices to prove that evB : Y (Qp) → Br(Qp)� is the zero map.
Let E and E′ have affine equations E : y2 = f (x) and E′ : y2 = g(x), respectively. Then

Y is the minimal desingularisation of the projective surface with affine equation

u2 = f (x)g(t). (32)

Note that if E and E′ are both replaced by their quadratic twists by some λ ∈ Q×, with
affine equations Eλ : λy2 = f (x) and E′λ : λy2 = g(x), respectively, then the resulting
Kummer surface has affine equation

λ2u2 = f (x)g(t)

and themap (x, t, u) �→ (x, t, λu) gives an isomorphismback to the originalmodel, showing
that the Kummer surface remains the same.
We adapt the arguments given in [12, Sect. 5] to our setting. Since the evaluation map

evB,p : Y (Qp) → Br(Qp)� is locally constant, it is enough to show that it is zero on all
Qp-points R = (x0, t0, u0) satisfying (32). Let δR = g(t0). Again by local constancy, we
are free to use the implicit function theorem to replace R by a point R′ = (x1, t1, u1)
satisfying (32), sufficiently close to R, such that δ = δR′ ∈ Q× and u1 
= 0. Now R′

gives rise to points P = (x1, u1/δ) ∈ Eδ(Qp) \ Eδ
2 and Q = (t1, 1) ∈ E′δ(Qp) \ E′δ

2 . Note
that Kum(Eδ × E′δ) is the minimal desingularisation of the projective surface with affine
equation δ2u2 = f (x)g(t) and the map (x, t, u) �→ (x, t, δu) gives a Q-isomorphism from
Kum(Eδ × E′δ) to Y that sends the point corresponding to (P,Q) ∈ Eδ(Qp) × E′δ(Qp) to
R′. Let ϕδ ∈ Hom�Q

(E′δ
� , E

δ
� )

− denote the isomorphism E′δ
� → Eδ

� coming from ϕ. Now (9)
shows that

B(R′) = χP ∪ ϕδ∗(χQ) ∈ Br(Qp)� ∼= �−1Z/Z (33)

where χP is the image of P under χ : Eδ(Qp) → H1(Qp, Eδ
� ) and χQ is the image of Q

under χ : E′δ(Qp) → H1(Qp, E′δ
� ). The maps denoted by χ factor through the quotients

Eδ(Qp)/� and E′δ(Qp)/�, respectively.
Recall that p is either equal to 2 or a prime of bad reduction for Y . By [18, Lemma 4.2],

odd primes of good reduction for an abelian surface are primes of good reduction for the
corresponding Kummer surface. Therefore, switching Eδ and E′δ if necessary, if p is odd
then we may assume that p is a prime of bad reduction for Eδ . Now Lemmas 6.3, 6.5 and
[12, Sect. 5.2] show that Eδ(Qp)/� = 0 and hence (33) shows that B(R′) = 0, as required.

��

7 Surjective evaluationmaps
In this section, we prove Theorem 1.5. The notation and assumptions of that theoremwill
be in force throughout this section. Furthermore, henceforth let ϕ be a non-zero element
of Hom�Q

(E′
�, E�)−.

Proposition 7.1 To prove Theorem 1.5, it suffices to prove the existence of P ∈ E(Q�) and
Q ∈ E′(Q�) such that

χP ∪ ϕ∗(χQ) 
= 0

where χP is the image of P under χ : E(Q�) → H1(Q�, E�) and χQ is the image of Q under
χ : E′(Q�) → H1(Q�, E′

�).
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Proof Lemma 6.2 shows that ϕ is an isomorphism. Let B ∈ Br(Y )� be the element
constructed from ϕ as in Sect. 2.2. By construction, and Lemma 6.2, B generates
Br(Y )�/Br1(Y )� = Br(Y )�/Br(Q)�. Therefore, it suffices to prove Theorem 1.5 with
A = B. By continuity, we may assume that P and Q are not 2-torsion points (replac-
ing them with nearby points if necessary). Let [P,Q] ∈ Y (Q�) denote the point of Y
coming from (P,Q). Then (9) shows that

0 
= χP ∪ ϕ∗(χQ) = B([P,Q]) ∈ Br(Q�)� ∼= �−1Z/Z.

Furthermore, for allm ∈ Z such thatmP /∈ E2, we have

B([mP,Q]) = χmP ∪ ϕ∗(χQ) = m(χP ∪ ϕ∗(χQ)).

Therefore, taking scalar multiples of P gives the desired surjectivity. (Again, we can always
substitute a sufficiently close point to avoid any issues with 2-torsion points.)
Finally, it is well known and easy to verify that having a non-constant evaluation map

evB,� : Y (Q�) → Br(Q�)� implies the existence of an adelic point on Y that does not pair
to zero with B under the Brauer–Manin pairing (1). ��

Therefore, our task is to find P ∈ E(Q�) and Q ∈ E′(Q�) such that χP ∪ ϕ∗(χQ) 
= 0, as
in Proposition 7.1. We begin by treating the easier case where the order � of our Brauer
group element splits in the CM field K .

7.1 The case of � split in K/Q

This sectionmimics [12, §5.3]. Let � be an odd prime number that splits inK/Q, so � = λλ̄

for some λ ∈ OK . This splitting will allow us to replace the cup-product pairing that gives
the evaluation map (see (9)) with a non-degenerate pairing H1(Q�, Eλ) × H1(Q�, E′

λ) →
Br(Q�)� (see (35) below). The proof of Theorem 1.5 in this setting will then come down to
showing that the images of E(Q�) and E′(Q�) in H1(Q�, Eλ) and H1(Q�, E′

λ), respectively,
are sufficiently large.
Choose an embedding of K into Q� such that λ is a uniformiser of Z� and λ̄ ∈ Z×

� . Now
E� = Eλ ⊕Eλ̄ as �Q�

-modules and therefore H1(Q�, E�) = H1(Q�, Eλ)⊕H1(Q�, Eλ̄). Since
the restriction of the skew-symmetric Weil pairing to each of the one-dimensional F�-
subspaces Eλ and Eλ̄ is trivial, each of the subspaces H1(Q�, Eλ) andH1(Q�, Eλ̄) is isotropic
for the pairing

∪ : H1(Q�, E�) × H1(Q�, E�) → Br(Q�)� ∼= �−1Z/Z

described in (8). By the non-degeneracy of the cup product, these subspaces are maximal
isotropic subspaces of H1(Q�, E�), each of dimension 1

2 dimH1(Q�, E�). Thus, (8) induces
a non-degenerate pairing

∪ : H1(Q�, Eλ) × H1(Q�, Eλ̄) → Br(Q�)� ∼= �−1Z/Z. (34)

Recall that we have

0 
= ϕ ∈ Hom�Q
(E′

�, E�)− = {ψ ∈ Hom�Q
(E′

�, E�) | ψγ = γ̄ ψ ∀ γ ∈ OK }.
Then ϕ = ϕ′ + ϕ′′ where ϕ′ is an isomorphism of �Q�

-modules E′
λ → Eλ̄ and ϕ′′ is

an isomorphism of �Q�
-modules E ′̄

λ
→ Eλ. Consequently, the induced isomorphism

ϕ∗ : H1(Q�, E′
�) → H1(Q�, E�) is a sum of ϕ′∗ : H1(Q�, E′

λ) → H1(Q�, Eλ̄) and ϕ′′∗ :
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H1(Q�, E ′̄
λ
) → H1(Q�, Eλ). In conclusion, (34) together with ϕ′∗ induces a non-degenerate

pairing

H1(Q�, Eλ) × H1(Q�, E′
λ) → Br(Q�)� ∼= �−1Z/Z. (35)

We will use the non-degeneracy of the pairing (35) to prove Theorem 1.5 via Propo-
sition 7.1 in the case where � splits in K/Q. For this to work, we will need to show that
the images of E(Q�) and E′(Q�) in H1(Q�, Eλ) and H1(Q�, E′

λ), respectively, are sufficiently
large. We will frequently use that H1(Q�, Eλ) and E(Q�)/� are both maximal isotropic
subspaces of H1(Q�, E�). Moreover,

E(Q�)/λ ⊂ H1(Q�, Eλ)

and E(Q�)/� = E(Q�)/λ ⊕ E(Q�)/λ̄.
We need to treat four cases as delineated in Lemma 6.2: the CM field K is one of

Q(ζ3),Q(i),Q(
√−2),Q(

√−11).
We begin with the case K = Q(

√−2). In this case, Theorem 1.3 shows that � = 3 and
Y = Kum(E×Ea) where E/Q is the elliptic curve with affine equation y2 = x3+4x2+2x,
a ∈ {−3, 6} and Ea denotes the quadratic twist of E by a.

Proposition 7.2 Let E/Q have affine equation y2 = x3 + 4x2 + 2x and let Ea denote its
quadratic twist by a ∈ Q×. Choose an embedding of Q(

√−2) in Q3 such that
√−2 ≡

1 mod 3, whereby λ = 1 − √−2 is a uniformiser for Z3 and λ̄ = 1 + √−2 ∈ Z×
3 . Then

E(Q3)/λ ∼= E(Q3)/λ̄ ∼= Z/3Z

and for a ∈ {−3, 6} we have Ea(Q3)/λ̄ = 0 and

H1(Q3, Ea
λ) = Ea(Q3)/λ = Ea(Q3)/3 ∼= (Z/3Z)2.

Proof First, we prove the statement for E. This elliptic curve has good reduction at 3 and
we have

E(Q3)/E1(Q3) ∼= Ẽ(F3) = {O, (0, 0), (1, 1), (1,−1), (−1, 1), (−1,−1)}.
Let Ê denote the formal group associated to E. We have isomorphisms of topological
groups

E1(Q3)
(x,y) �→ −x

y−−−−−→ Ê(3Z3)
log−→ 3Z3 (36)

where log denotes the formal logarithm, which is given by a power series T +∑
n≥2

bn
n T

n

for some bn ∈ Z, see [24, Proposition IV.5.5]. These isomorphisms respect the action
of

√−2. This means that λ̄ = 1 + √−2 acts as a multiplication by a unit in Z3 and
λ = 1 − √−2 acts as multiplication by a uniformiser and hence

E1(Q3)/λ = E1(Q3)/3 ∼= Z/3. (37)

Now one checks that λ induces an automorphism of E(Q3)/E1(Q3) ∼= Ẽ(F3). Thus,

E(Q3) = λE(Q3) + E1(Q3) (38)

and

E(Q3)/λ = E1(Q3)/λ ∼= Z/3
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by (37). Furthermore, (38) gives

λ̄E(Q3) = 3E(Q3) + λ̄E1(Q3) = 3E(Q3) + E1(Q3)

since λ̄ acts as an automorphism on E1(Q3) by our discussion above. Therefore,

E(Q3)/λ̄ = E(Q3)/(3E(Q3) + E1(Q3)) ∼= Ẽ(F3)/3 ∼= Z/3.

Nowwedeal withEa for a ∈ {−3, 6}. In fact, since−2 ∈ Q×2
3 ,E−3 andE6 are isomorphic

over Q3 and we may take a = −3 in what follows. The elliptic curve E−3 has additive
reduction at 3 and the Tamagawa number |E−3(Q3)/E−3

0 (Q3)| is 2, so we can replace
E−3(Q3) by E−3

0 (Q3) in our calculations. As above, we find that

E−3
1 (Q3)/λ = E−3

1 (Q3)/3 ∼= Z/3 (39)

and

E−3
1 (Q3)/λ̄ = 0. (40)

Furthermore, E−3
0 (Q3)/E−3

1 (Q3) ∼= Ẽ−3
ns (F3) = {O, (1, 1), (1,−1)} and

√−2 acts as the
identity on Ẽ−3

ns (F3), whereby

E−3
0 (Q3) = λ̄E−3

0 (Q3) + E−3
1 (Q3) (41)

and hence

E−3
0 (Q3)/λ̄ = E−3

1 (Q3)/λ̄ = 0

by (40). Moreover, (41) and (39) give

λE−3
0 (Q3) = 3E−3

0 (Q3) + λE−3
1 (Q3) = 3E−3

0 (Q3).

Now [23, Theorem 1] shows that E−3
0 (Q3) ∼= 3Z3 × Z/3Z and hence

E−3
0 (Q3)/λ = E−3

0 (Q3)/3 ∼= (Z/3Z)2.

Now since E−3(Q3)/3 = E−3(Q3)/λ ⊂ H1(Q3, E−3
λ ), and E−3(Q3)/3 and H1(Q3, E−3

λ ) are
both maximal isotropic subspaces of H1(Q3, E−3

3 ), they must be equal. ��

Corollary 7.3 Let E/Q have affine equation y2 = x3 + 4x2 + 2x and let Ea denote its
quadratic twist by a ∈ Q×. Then for a ∈ {−3, 6}, there exist P ∈ E(Q3) and Q ∈ Ea(Q3)
such that χP ∪ ϕ∗(χQ) is non-zero.

Proof This follows from the non-degeneracy of (35), with � = 3 and λ = 1 − √−2, and
Proposition 7.2. ��
Next, we treat the case whereK = Q(

√−11). In this case, Theorem 1.3 shows that � = 3
andY = Kum(E×Ea) where E/Q has affine equation y2 = x3−25 ·33 ·11x+24 ·33 ·7 ·112,
a ∈ {−3, 33} and Ea denotes the quadratic twist of E by a. AminimalWeierstrass equation
for E is given by y2 + y = x3 − x2 − 7x + 10, see [27].

Proposition 7.4 Let E/Q have affine equation y2+y = x3−x2−7x+10 and let Ea denote
its quadratic twist by a ∈ Q×. Choose an embedding ofQ(

√−11) inQ3 such that
√−11 ≡

1 mod 3, whereby λ = (1−√−11)/2 is a uniformiser forZ3 and λ̄ = (1+√−11)/2 ∈ Z×
3 .

Then for a ∈ {1,−3, 33} we have Ea(Q3)/λ̄ = 0 and

H1(Q3, Ea
λ) = Ea(Q3)/λ = Ea(Q3)/3 ∼= Z/3Z.
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Proof Standard calculations similar to those in the proof of Proposition 7.2 show that

E(Q3)/λ̄ = 0 and E(Q3)/λ = E(Q3)/3 ∼= Z/3.

Now since E(Q3)/3 = E(Q3)/λ ⊂ H1(Q3, Eλ) and both are maximal isotropic subspaces
of H1(Q3, E3), they must be equal. This completes the proof of the statement for E.
Now we deal with Ea for a ∈ {−3, 33}. Since −11 ∈ Q×2

3 , it suffices to take a = −3.
Using [6, §4.3] and Tate’s algorithm, we find that E−3(Q3) = E−3

0 (Q3). Moreover, the
isomorphism (36) respects complex multiplication. Therefore,

E−3
1 (Q3)/λ̄ = 0 and E−3

1 (Q3)/λ = E−3
1 (Q3)/3 ∼= Z/3.

By [23, Definition 10 and Proposition 11], the map (x, y) �→ −x/y extends to an iso-
morphism of topological groups E−3

0 (Q3) → Ê−3(Z3). Furthermore, [23, Proposition 18]
gives an isomorphism of topological groups Ê−3(Z3) → Z3 extending the isomorphism
Ê−3(3Z3) → 3Z3 given by the formal logarithm. Transporting the action of complexmul-
tiplication by λ along these isomorphisms gives an endomorphism of Z3 that coincides
with multiplication by λ on 3Z3. But this endomorphism must then be multiplication by
λ. The same argument applies to λ̄ and hence we have

E−3
0 (Q3)/λ̄ = 0 and E−3

0 (Q3)/λ = E−3
0 (Q3)/3 ∼= Z/3. (42)

The usual argument about maximal isotropic subspaces of H1(Q3, E−3
3 ) completes the

proof. ��

Corollary 7.5 Let E/Q have affine equation y2 = x3 − x2 − 7x + 10 and let Ea denote its
quadratic twist by a ∈ Q×. Then for a ∈ {−3, 33}, there exist P ∈ E(Q3) and Q ∈ Ea(Q3)
such that χP ∪ ϕ∗(χQ) is non-zero.

Proof This follows from the non-degeneracy of (35), with � = 3 and λ = (1 − √−11)/2,
and Proposition 7.4. ��
Now we treat the case where K = Q(ζ3). By Lemma 6.2, we have � ≤ 7. In this section,

our focus is on the case where � splits in K/Q, so we take � = 7. For a ∈ Q×, let Ea denote
the ellliptic curve over Q with affine equation y2 = x3 + a. Now Theorems 1.4 and 5.2
give Y = Kum(Ec × Ed) where c, d ∈ Q× satisfy −24 · 7−1 · cd ∈ 〈−33〉Q×6.

Proposition 7.6 For any a ∈ Q×
7 , let E be the elliptic curve with affine equation y2 =

x3 + a. Choose an embedding of Q(ζ3) in Q3 such that ζ3 ≡ 2 mod 7, whereby λ =
1 − 2ζ 2

3 = 3 + 2ζ3 is a uniformiser for Z7 and λ̄ = 1 − 2ζ3 ∈ Z×
7 .

(1) If a ∈ 2 · 7 · Q×6
7 then Ea(Q7)/λ̄ = 0 and

H1(Q7, Ea
λ) = Ea(Q7)/λ = Ea(Q7)/7 ∼= (Z/7Z)2.

(2) If a ∈ −2 · Q×6
7 then Ea(Q7)/λ ∼= Ea(Q7)/λ̄ ∼= Z/7Z.

(3) In all other cases, Ea(Q7)/λ̄ = 0 and

H1(Q7, Ea
λ) = Ea(Q7)/λ = Ea(Q7)/7 ∼= Z/7Z.

Proof Recall that Ea(Q7)/7 and H1(Q7, Ea
λ) are both maximal isotropic subspaces of

H1(Q7, Ea
7 ), and Ea(Q7)/λ ⊂ H1(Q7, Ea

λ). Therefore, in cases where we show that
Ea(Q7)/7 = Ea(Q7)/λ, it will follow that this group is also equal to H1(Q7, Ea

λ).
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Since the Q7-isomorphism class of Ea only depends on the class of a in Q×
7 /Q×6

7 , we
may assume that 0 ≤ ord7(a) ≤ 5. The reduction type of Ea is either good or additive.
The Tamagawa number |Ea(Q7)/Ea

0 (Q7)| is coprime to 7, so we can replace Ea(Q7) by
Ea
0 (Q7) in our calculations. Standard calculations give

λ̄Ea
1 (Q7) = Ea

1 (Q7) and λEa
1 (Q7) = 7Ea

1 (Q7). (43)

If a ≡ 14 (mod 49), then [23, Proposition 18] shows that the extension 0 → Ea
1 (Q7) →

Ea
0 (Q7) → Ẽa

ns(F7) → 0 is split. Computing the action of ζ3 on Ẽa
ns(F7) shows that

it coincides with multiplication by 2. Therefore, λ̄Ẽa
ns(F7) = Ẽa

ns(F7) and λẼa
ns(F7) =

7Ẽa
ns(F7) = 0. When combined with (43), this proves part (1) of the proposition.
In the case where Ea has additive reduction and a 
≡ 14 (mod 49), we use [23, Defini-

tion 10, Propositions 11 and 18] to obtain an isomorphism Ea
0 (Q7) ∼= Z7 respecting the

action of ζ3, and hence show that λ̄Ea
0 (Q7) = Ea

0 (Q7) and λEa
0 (Q7) = 7Ea

0 (Q7), proving
the proposition in this case.
Now suppose that Ea has good reduction so Ea(Q7)/Ea

1 (Q7) ∼= Ẽa(F7). Elementary
calculations show that |Ẽa(F7)| is coprime to 7, unless a ∈ −2 · Q×6

7 when Ẽa(F7) =
Ẽ−2(F7) ∼= Z/7Z. Thus, (43) proves the proposition for a /∈ −2 · Q×6

7 .
Our final task is to prove part (2). Taking a = −2, we have

Ẽ−2(F7) = {O, (3, 2), (3,−2), (−2, 2), (−2,−2), (−1, 2), (−1,−2)}
and multiplication by ζ3 sends (x, y) to (2x, y), which coincides with multiplication by 4
on Ẽ−2(F7) ∼= Z/7Z. Therefore, λ̄Ẽ−2(F7) = 0 and hence λ̄E−2(Q7) ⊂ E−2

1 (Q7). By (43),
this containment is an equality and hence

E−2(Q7)/λ̄ = E−2(Q7)/E−2
1 (Q7) ∼= Ẽ−2(F7) ∼= Z/7Z.

Moreover, λẼ−2(F7) = Ẽ−2(F7) and hence

E−2(Q7) = λE−2(Q7) + E−2
1 (Q7),

whereby (43) gives

E−2(Q7)/λ = E−2
1 (Q7)/λ ∼= Z/7Z.

��

Corollary 7.7 For a ∈ Q×, let Ea denote the ellliptic curve over Q with affine equation
y2 = x3 + a. Let c, d ∈ Q× satisfy −24 · 7−1 · cd ∈ 〈−33〉Q×6. Then there exist P ∈ Ec(Q7)
and Q ∈ Ed(Q7) such that χP ∪ ϕ∗(χQ) is non-zero.

Proof First note that the relation −24 · 7−1 · cd ∈ 〈−33〉Q×6 implies that c ∈ 2 · 7 · Q×6
7

if and only if d ∈ −2 · Q×6
7 . Suppose that c ∈ 2 · 7 · Q×6

7 . Then d ∈ −2 · Q×6
7 and

the result follows from the non-degeneracy of (35), with � = 7 and λ = 1 − 2ζ 2
3 , and

Proposition 7.6(1) and (2). The proof in the case where c ∈ −2 · Q×6
7 follows by symmetry

in c and d. In the remaining case, where c and d are in neither 2 · 7 · Q×6
7 nor −2 · Q×6

7 ,
the result follows from the non-degeneracy of (35) and Proposition 7.6(3). ��
The remaining case is where K = Q(i) and (2) together with the splitting condition

gives � = 5 and Y = Kum(Em1 × Em2 ) where m1, m2 ∈ Q× satisfy 53m1m2 ∈ 〈−4〉Q×4

and Em/Q is the elliptic curve with affine equation y2 = x3 − mx. This case was tackled
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by Ieronymou and Skorobogatov in [12], en route to their treatment of diagonal quartic
surfaces. In particular, [12, Proposition 5.7 and Corollary 5.8] shows that ifm1 andm2 are
not in (1 ± 2i)Q×4

5 then there exist P ∈ Em1 (Q5) and Q ∈ Em2 (Q5) such that χP ∪ ϕ∗(χQ)
is non-zero. If m1 or m2 is in (1 ± 2i)Q×4

5 then replace m1 and m2 by 52m1 and 52m2,
respectively. Now the relation 53m1m2 ∈ 〈−4〉Q×4 implies that 52m1 and 52m2 are
not in (1 ± 2i)Q×4

5 and one can apply [12, Proposition 5.7 and Corollary 5.8] as before.
The Kummer surface Y is unchanged when we replace m1 and m2 by 52m1 and 52m2,
respectively, because this simply amounts to replacing each of Em1 and Em2 by their
quadratic twists by 5 ∈ Q×/Q×2. We have seen previously (in the proof of Theorem 6.1)
that this does not change the Kummer surface.
At this stage, thanks to Proposition 7.1, Corollaries 7.3, 7.5, 7.7 and the above discussion

for K = Q(i) and � = 5, we have proved Theorem 1.5 in all cases where � splits in K .

7.2 The case of � inert in K/Q

This is the hardest case. We will follow the work of Ieronymou and Skorobogatov in
[13] and use a result of Harpaz and Skorobogatov (Proposition 7.10 below) to reduce the
proof of Theorem 1.5 in this case to the task of showing that the function fields of torsors
associated to certain elements of H1(Q5, E5) are not isomorphic. We will avoid difficult
calculations with these totally wildly ramified extensions of degree 25 by using quadratic
twists to obtain function fields with distinct discriminants.
By Lemma 6.2 and our assumptions in the statement of Theorem 1.5 that � is odd, and if

K = Q(ζ3) then � > 3, we have excluded all cases where � ramifies inK/Q. ForK = Q(ζ3),
the evaluations at 3-adic points of Brauer group elements of orders 3 and 9 will be studied
in future work.
By Lemma 6.2 and Theorems 1.3, 1.4 and (2), the only cases where the order � of our

Brauer group element is inert in the CM field K are when � = 5 and K = Q(ζ3), and when
� = 3 and K = Q(i).
The case where K = Q(i) and � = 3 was tackled by Ieronymou and Skorobogatov in

[13]. In this case, (2) gives Y = Kum(Em1 × Em2 ) wherem1, m2 ∈ Q× satisfy −3m1m2 ∈
〈−4〉Q×4 and Em/Q is the elliptic curve with affine equation y2 = x3 − mx. By [13,
Proposition 2.2], if the 3-adic valuations ofm1 andm2 are both non-zero modulo 4, then
there exist P ∈ Em1 (Q3) and Q ∈ Em2 (Q3) such that χP ∪ ϕ∗(χQ) 
= 0. If the 3-adic
valuation of m1 or m2 is zero modulo 4, then we can replace m1 and m2 by 32m1 and
32m2, respectively, which does not change the Kummer surface Y , and then apply [13,
Proposition 2.2]. Now applying Proposition 7.1 completes the proof of Theorem 1.5 in
this case.
Note the qualitative difference in behaviour between the Kummer surfaces Y and the

closely related diagonal quartic surfaces studied by Ieronymou and Skorobogatov. In [13,
Theorem 2.3], the authors show that for some diagonal quartic surfaces, a Brauer group
element of order 3 has constant evaluation on 3-adic points, while for others it attains all
three possible values.
The remainder of this section is devoted to proving the last remaining case of Theo-

rem 1.5, wherein K = Q(ζ3) and � = 5. Henceforth, for a ∈ Q×, we use Ea to denote
the elliptic curve over Q with affine equation y2 = x3 + a. Theorems 1.4 and 5.2 give
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Y = Kum(Ec × Ed) where c, d ∈ Q× satisfy 24 · 5 · cd ∈ 〈−33〉Q×6. The work below
should be compared to [13].
We begin by showing that the image ofEa(Q5) inH1(Q5, Ea

5 ) is a one-dimensional vector
space over F5.

Lemma 7.8 Let a ∈ Q×
5 . Then Ea(Q5)/5 ∼= Z/5Z as abelian groups.

Proof An inspection of Tate’s algorithm shows that Ea/Q5 has either good or additive
reduction and in all cases the Tamagawa number |Ea(Q5)/Ea

0 (Q5)| is coprime to 5. So it
is enough to show that Ea

0 (Q5)/5 ∼= Z/5. In the case of additive reduction, this follows
from [23, Theorem 1]. Now suppose that Ea/Q5 has good reduction. Then we compute
Ea(Q5)/Ea

1 (Q5) ∼= Ẽa(F5) ∼= Z/6Z, so it suffices to show that Ea
1 (Q5)/5 ∼= Z/5Z. The

theory of formal groups gives Ea
1 (Q5) ∼= 5Z5. ��

Proposition 7.9 Let c, d ∈ Q× be such that 24 · 5 · cd ∈ 〈−33〉Q×6. Let P and Q gen-
erate Ec(Q5)/5 and Ed(Q5)/5, and let χP and χQ denote their images in H1(Q5, Ec

5) and
H1(Q5, Ed

5 ), respectively. To prove Theorem 1.5 for Y = Kum(Ec×Ed) and � = 5, it suffices
to show that ϕ∗(χQ) is not a scalar multiple of χP.

Proof This follows from Proposition 7.1, Lemma 7.8 and the fact that the image of
Ea(Q5)/5 in H1(Q5, Ea

5 ) is a maximal isotropic subspace for the pairing (8). ��
To prove that ϕ∗(χQ) is not a scalarmultiple of χP (with the notation of Proposition 7.9),

we wish to apply the following special case of a result of Harpaz and Skorobogatov.

Proposition 7.10 ([10, Corollary 3.7]) Let k be a field of characteristic zero and letM be a
finite simple �k -module, identified with the group of k̄-points of a finite étale commutative
group k-scheme GM. Let K be the smallest extension of k such that �K acts trivially on M,
let G = Gal(K/k) and suppose that H1(G,M) = 0. Let α,β ∈ H1(k,M) be non-zero. Then
the associated torsors Zα and Zβ for GM are integral k-schemes. Furthermore, the following
conditions are equivalent:

(1) there exists r ∈ R := EndG(M) such that rα = β ;
(2) Rα = Rβ ⊂ H1(k,M);
(3) Zα and Zβ are isomorphic as abstract k-schemes.

Lemmas 7.11 and 7.12 below are used to show that the hypotheses relevant for our
application of Proposition 7.10 are satisfied.

Lemma 7.11 Let a ∈ Q× and let G and H be the images of �Q and �Q5 in Aut(Ea
5 ),

respectively. Then [G : H ] divides 3.

Proof We adapt the strategy of the proof of [13, Lemma 2.1]. Multiplying by a 6th power,
we may assume that a ∈ Z \ {0}. Let L = Q(Ea

5 ), so G = Gal(L/Q). For any E-primary
prime π ∈ Z[ζ3] that is coprime to 2 · 3 · 5 · a and unramified in L/Q(ζ3), the action of
Frobπ ∈ �Q(ζ3) on Ea

5 is given by multiplication by (the reduction modulo 5 of)

±
(
4a
π

)

6
π , (44)

see [25, Example II.10.6]. Thus, the action of �Q(ζ3) on Ea
5 factors through a homomor-

phism to F5[ζ3]× = F×
25.
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Let F ⊂ L be the fixed field of the kernel of the action of �Q on End(Ea
5 ). The natural

map GL(Ea
5 ) → PGL(Ea

5 ) restricts to a surjective homomorphism � : G → Gal(F/Q)
with kernel F×

5 . By Lemma 2.4, End(Ea
5 ) = (Z[ζ3]/5) ⊕ End(Ea

5 )
−. Therefore, Q(ζ3) ⊂ F .

The proof of Proposition 4.6 shows that Frobπ ∈ Gal(L/Q(ζ3)) acts on End(Ea
5 )

− as

left-multiplication by
(
24 ·5·a2

π

)−1

6
. By the definition of the sextic residue symbol and the

fact that these Frobenius elements generate Gal(L/Q(ζ3)), this means that the action of
Gal(L/Q(ζ3)) on End(Ea

5 )
− is given by the sextic character attached to (24 ·5 ·a2)−1, which

sends σ ∈ �Q(ζ3) to
6√24·5·a2

σ ( 6
√
24 ·5·a2) . Therefore, F = Q(ζ3,

6√24 · 5 · a2).
Now fix an inclusion �Q5 ⊂ �Q. Let K = Q5(Ea

5 ), so H = Gal(K/Q5). Let F5 =
Q5(ζ3,

6√24 · 5 · a2) be the fixed field of the kernel of the action of �Q5 on End(Ea
5 ). Write

a = 5ru for u ∈ Z×
5 and use that every unit inZ×

5 is a cube to see that F5 = Q5(ζ3,
6√52r+1).

Therefore, [F5 : Q5(ζ3)] is either 2 or 6 depending on whether r ≡ 1 mod 3. Thus,
�(H ) = Gal(F5/Q5) has index dividing 3 in �(G) = Gal(F/Q). To complete the proof, it
remains to show that F×

5 = ker(�) ⊂ H .
Consider the restriction of � to G′ := Gal(L/Q(ζ3)). This is a cyclic group of order

dividing |F×
25| = 24, which contains F×

5 as its unique subgroup of order 4, and � : G′ →
Gal(F/Q(ζ3)) is the quotient by F×

5 . It suffices to show that F×
5 ⊂ H ′ := Gal(K/Q5(ζ3)).

We have

H ′/(H ′ ∩ F×
5 ) ∼= �(H ′) = Gal(F5/Q5(ζ3)).

Therefore, [F5 : Q5(ζ3)] divides |H ′| (wherebyH ′ has even order) andH ′ 
⊂ F×
5 . SinceH

′ is
a subgroup of the cyclic groupG′ of order dividing 24, we can now conclude that F×

5 ⊂ H ′

unless H ′ has order 6. Suppose for contradiction that |H ′| = 6. Then |H ′ ∩ F×
5 | = 2 and

[F5 : Q5(ζ3)] = |H ′/(H ′ ∩ F×
5 )| = 3, a contradiction. ��

Lemma 7.12 Let a ∈ Q×
5 and let H denote the image of �Q5 in Aut(Ea

5 ). Then

1. H1(H, Ea
5 ) = 0;

2. Ea
5 is a simple �Q5-module;

3. EndH (Ea
5 ) = F5.

Proof Multiplying by a 6th power inQ×
5 , wemay assume that a ∈ Z\{0}. LetG denote the

image of �Q in Aut(Ea
5 ). Recall from the proof of Lemma 7.11 that the action of �Q(ζ3) on

Ea
5 factors through a homomorphism to F5[ζ3]× = F×

25. Therefore, G has order dividing
2 · 24. Now (1) is immediate since H ⊂ G is a finite group of order coprime to 5 and
H1(H, Ea

5 ) is killed by |H | and by 5.
The strategy of the rest of the proof is to use Lemma 7.11 tomove from the action of�Q5

onEa
5 to that of�Q, and from there to the action of�Q(ζ3), wherewehave the explicit action

of Frobenius elements on Ea
5 given by (44). Henceforth, let π ∈ Z[ζ3] be an E-primary

prime lying above a rational prime p that is coprime to 2 · 3 · 5 · a and completely split in
Q(ζ3, 3√4a)/Q. Then (44) shows that the action of Frobπ on Ea

5 is given by multiplication
by the reduction modulo 5 of ±π = x + yζ3 for some x, y ∈ Z. Assume in addition that p
is inert in Q(

√
5)/Q. Then, writing p = ππ̄ = x2 − xy + y2, we see that if y ≡ 0 (mod 5)

then p ≡ x2 mod 5 and hence quadratic reciprocity gives
(
5
p

)
= ( p

5
) = 1, contradicting

the fact that p is inert in Q(
√
5)/Q. Therefore, y 
≡ 0 (mod 5). Similarly, x(x − y) 
≡ 0

(mod 5). By Lemma 7.11, the image of Frob3π in Aut(Ea
5 ) is contained in H . It acts on Ea

5
as multiplication by the reduction modulo 5 of (x+ yζ3)3 = x3 + y3 −3xy2 +3xy(x− y)ζ3.
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LetM be a �Q5 -submodule of Ea
5 and suppose T ∈ M is non-zero.We have Frob3π ·T =

(x3 + y3 − 3xy2 + 3xy(x − y)ζ3) ·T ∈ M. Since 3xy(x − y) 
≡ 0 (mod 5), T and (x3 + y3 −
3xy2 + 3xy(x − y)ζ3) · T form an F5-basis of Ea

5 and henceM = Ea
5 , proving (2).

For (3), Propositions 2.2 and 4.6 show that

End�Q
(Ea

5 ) = (End(Ēa)/5)�Q = (Z[ζ3]/5)�Q = F5.

Thus, it suffices to show that EndH (Ea
5 ) = End�Q

(Ea
5 ). Clearly,

End�Q
(Ea

5 ) = EndG(Ea
5 ) ⊂ EndH (Ea

5 )

so it suffices to show the reverse inclusion. Let ϕ ∈ EndH (Ea
5 ). Then for π as above, ϕ

commutes with the image of Frob3π in Aut(Ea
5 ), which implies that ϕ commutes with the

image of ζ3 in Aut(Ea
5 ). Therefore, ϕ commutes with the image of �Q(ζ3) in Aut(Ea

5 ). Let
τ ∈ �Q denote complex conjugation, which generates �Q/�Q(ζ3). Since τ has order 2,
Lemma 7.11 shows that the image of τ in Aut(Ea

5 ) lies in H . Therefore, ϕ commutes with
τ and hence with the whole image of �Q in Aut(Ea

5 ), as required. ��
For χ ∈ H1(Q5, Ec

5), write K (χ ) for the function field of the Q5-torsor for the group
Q5-scheme Ec

5 corresponding to χ . Note that K (χ ) is a finite extension of Q5.

Proposition 7.13 Let c, d,χP,χQ be as in Proposition 7.9. To prove Theorem 1.5 for Y =
Kum(Ec × Ed) and � = 5, it suffices to show that K (χP) is not isomorphic to K (χQ). In
particular, it suffices to show that disc(K (χP)) is not equal to disc(K (χQ)).

Proof Proposition 7.9 tells us that it suffices to show that ϕ∗(χQ) is not a scalar multiple of
χP . By Lemma 7.12, we can apply Proposition 7.10 to see that this is equivalent to showing
that the Q5-torsor for the group Q5-scheme Ec

5 determined by ϕ∗(χQ) is not isomorphic
(as an abstract Q5-scheme) to that determined by χP . For this, it suffices to show that
the function fields of the torsors are not isomorphic as extensions of Q5. Since ϕ is an
isomorphism (by Lemma 6.2), it follows from the construction of the pushforward that
χQ and φ∗(χQ) are isomorphic as Q5-schemes. ��
Note that if we prove Theorem 1.5 with � = 5 and Y = Kum(Ec × Ed) for a given pair

of rational numbers c and d, then it also holds for all multiples of c and d by elements in
Q× ∩Q×6

5 , since the relevant elliptic curves are isomorphic overQ5. Hence, we can reduce
to considering c, d ∈ {2i · 5j | 0 ≤ i ≤ 1, 0 ≤ j ≤ 5}, since these elements represent all
cosets in Q×

5 /Q×6
5 . For a ∈ {2i · 5j | 0 ≤ i ≤ 1, 0 ≤ j ≤ 5}, Table 1 records a generator Pa

for Ea(Q5)/5 and the discriminant of the function field of the torsor χPa , which we denote
by disc(K (χPa )).
Note that in all cases disc(K (χPa )) = disc(K (χP2a )).
We are now ready to prove the last remaining case of Theorem 1.5, in which Y =

Kum(Ec × Ed) for c, d ∈ Q× with 24 · 5 · cd ∈ 〈−33〉Q×6, and � = 5.

Proof (Completion of the proof of Theorem 1.5) Since 24 · 5 · cd ∈ 〈−33〉 · Q×6, 2 ∈ Q×3
5

and −3 · Q×6
5 = 2 · Q×6

5 , Table 1 and the preceding discussion show that disc(K (χPd )) =
disc(K (χP55c5 )), where we can take 55c5 modulo Q×6

5 .
Let S = Q×6

5 ∪ 2 · Q×6
5 ∪ 55 · Q×6

5 ∪ 2 · 55 · Q×6
5 . An inspection of Table 1 shows that

disc(K (χPc )) is not equal to disc(K (χP55c5 )) unless c ∈ S. Thus, by Proposition 7.13, we
have provedTheorem 1.5 for c /∈ S. Now suppose that c ∈ S. Then 53c /∈ S so Theorem 1.5
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Table 1 .

a Pa disc(K (χPa ))

1 ( 1
52
,
√

1+56

53
) 525

5 (1,
√
1 + 5) 545

52 (1,
√
1 + 52) 541

53 (1,
√
1 + 53) 537

54 (1,
√
1 + 54) 533

55 (1,
√
1 + 55) 525

2 ( 1
52
,
√

1+2·56
53

) 525

2 · 5 (1,
√
1 + 2 · 5) 545

2 · 52 (1,
√
1 + 2 · 52) 541

2 · 53 (1,
√
1 + 2 · 53) 537

2 · 54 (1,
√
1 + 2 · 54) 533

2 · 55 (1,
√
1 + 2 · 55) 525

holds for Kum(E53c × E53d). Now recall that Kum(Ec × Ed) ∼= Kum(E53c × E53d), so the
proof of Theorem 1.5 is complete. ��
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