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Global Gridded Crop Production 
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The global gridded crop production dataset at 10 km resolution from 2010 to 2020 (GGCP10) for maize, 
wheat, rice, and soybean was developed to address limitations of existing datasets characterized by 
coarse resolution and discontinuous time spans. GGCP10 was generated using a series of adaptively 
trained data-driven crop production spatial estimation models integrating multiple data sources, 
including statistical data, gridded production data, agroclimatic indicator data, agronomic indicator 
data, global land surface satellite products, and ground data. These models were trained based 
on agroecological zones to accurately estimate crop production in different agricultural regions. 
The estimates were then calibrated with regional statistics for consistency. Cross-validation results 
demonstrated the models’ performance. GGCP10’s accuracy and reliability were evaluated using 
gridded, survey, and statistical data. This dataset reveals spatiotemporal distribution patterns of global 
crop production and contributes to understanding mechanisms driving changes in crop production. 
GGCP10 provides crucial data support for research on global food security and sustainable agricultural 
development.

Background & Summary
Information on crop production plays a critical role in global food security and sustainable agricultural devel-
opment1,2. Four major crops, namely maize, wheat, rice, and soybean, contribute to over 64% of the world’s 
caloric intake2. The increased demand for food, coupled with global climate change and population growth, puts 
immense pressure on countries to secure food supplies3,4. Thus, there is a growing need to gain insights into the 
distribution of food production for sustainable agriculture5–7. Therefore, it is critical to develop a time-series, 
high-precision dataset of the global crop production distribution for research on food production and con-
sumption, policymaking, optimization of resource use, and planning for sustainable agricultural development8.

Currently available global crop production datasets, while valuable, have limitations in temporal and spatial 
resolution (Table 1). The Spatial Production Allocation Model (SPAM)9 covers only three years (2000, 2005, and 
2010) at a 5 arc-minute resolution. M3-Crops10, while offering data for 175 crops, is limited to the year 2000. The 
global dataset of historical yields for major crops (GDHY)11, covering 1981–2016, provides annual data but at a 
coarse 30 arc-minute resolution. The Global Gridded Crop Model Intercomparison (GGCMI) phase 1 dataset12 
spans 1901–2012 but only at 10-year intervals. The Global Agro-Ecological Zones (GAEZ) dataset13,14 offers data 
for 2000, 2010, and 2015 at 5 arc-minutes resolution. Additionally, these datasets primarily rely on statistical dis-
aggregation or model simulations, which may not fully account for spatial heterogeneity and intra-annual envi-
ronmental variations. Consequently, the different research purposes and technical limitations of these datasets 
result in insufficient temporal and spatial resolution and coverage. Furthermore, the lack of temporal continuity 
and timeliness of the data have failed to capture the effects of drastic global climate changes that have occurred in 
the past decade15,16. Therefore, there is a global shortage of temporally continuous, high-resolution, and gridded 
crop production datasets.

The era of remote-sensing big data has produced a wealth of global observational data, which offer new 
opportunities to address the spatial distribution of crop production. These massive and diverse remote sensing 
datasets contain rich information related to crop production, such as climate, land cover, and vegetation growth 
conditions17,18. Additionally, ground information, such as soil characteristics and topographic conditions, serves 
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as an essential reference for estimating crop production. Machine learning techniques have exhibited good 
performance in predicting crop yields and production19–21, thereby revealing deep correlations between crop 
production and various observation indicators in recent years. Hence, integrating information from multiple 
sources and using machine learning models to uncover the intrinsic relationships between crop production 
and observation indicators to obtain accurate spatial distributions of crop production is a feasible approach22,23.

A global gridded dataset of maize, wheat, rice, and soybean production was constructed at a 10 km resolution 
from 2010 to 202024. The development of the GGCP10 dataset involved a comprehensive process integrating 
multiple data sources and employing advanced machine learning techniques to estimate crop production at 
the grid-cell level. The overall workflow consisted of four main steps: harvested area calculation, multi-source 
feature extraction, data-driven model training, and production estimation, as shown in Fig. 1. This data-driven 
production estimate model incorporated multiple source datasets, including statistical data, gridded production 
data, agroclimatic indicator data, agronomic indicator data, global land surface satellite products, and ground 
data. Importantly, this approach utilized time-series data of environmental factors and crop growth indicators, 
allowing to capture intra-annual variations in climate and crop conditions that significantly influence crop pro-
duction. A set of data-driven models was developed based on agroecological zones and multiple factors, capable 
of capturing the inherent correlations between crop production, harvested area, and other indicators to achieve 
high prediction accuracy. The dataset underwent rigorous examination through preprocessing and consistency 
checks to ensure data accuracy and reliability.

With its unique spatiotemporal continuity and high-resolution characteristics, the GGCP10 dataset offers 
broad application prospects in fields such as agricultural production monitoring, food security analysis, and 
agricultural policy formulation at regional to global scales. These applications were previously constrained by 
aggregated, limited, and inconsistent agricultural statistical data9,25. Moreover, integrating GGCP10 with other 
global gridded datasets (e.g., population and GDP) enables a more comprehensive analysis of the interactions 
between agricultural production and socioeconomic development, thereby providing crucial support for achiev-
ing sustainable development goals.

Methods
Here we present a comprehensive description of the multi-source data and data-driven methods used to gener-
ate the GGCP10 dataset.

input data. To construct the spatial production estimation model, we collected data from multiple sources, 
including Food and Agriculture Organization of the United Nations (FAO) statistical data, GAEZ+ 2015 annual 
crop data, CropWatch crop phenology data, CropWatch global eco-agricultural zoning, SoilGrids soil texture 
data, CropWatch irrigated land distribution data, latitude and longitude, topographic data, CropWatch agrocli-
matic indicators, CropWatch agronomic indicators, and Global Land Surface Satellite (GLASS) remote sensing 
data products.

 (1) FAO Statistical Data. This study employed crop-harvested areas and production data for various countries 
from FAOSTAT (https://www.fao.org/faostat/en/#data). The data included the harvested area and produc-
tion information for four major crops (maize, wheat, rice, and soybean), with country as the statistical unit. 
The data were measured in tons and hectares from 1961 to 2022, with this study utilizing the data from 
2010 to 2020.
The primary role of these data in the study is consistency processing, ensuring that the sum of the estimat-
ed harvested areas within each country matches the FAO statistical data, and that the sum of the allocated 
crop production equals the FAO statistical data. The FAO data offer distinct advantages for constructing 
a global long time-series crop production dataset: the data sources are authoritative, the time series is 
lengthy, and official statistics from various countries have been systematically aggregated and verified. 
Therefore, this study uses FAO national statistical data to calibrate global-scale production estimation 
results to achieve better cross-regional comparability based on the existing data foundation.

Dataset name Time coverage Spatial resolution Crop type coverage Method description

SPAM9
2000
2005
2010

5 arc-minutes 42 crops
Disaggregates national/subnational crop statistics to grid cells using a 
cross-entropy approach, incorporating data on cropland, irrigation, crop 
suitability, population, and market access.

M3-Crops10 2000 5 arc-minutes 175 crops
Distributes national and subnational crop statistics to grid cells 
proportionally based on satellite-derived cropland data and crop-specific 
suitability.

GDHY11 1981–2016 
(annual) 30 arc-minutes 4 crops

Combines census statistics with satellite-derived NPP to estimate 
grid-cell yields, using crop calendars and multi-cropping information to 
differentiate cropping seasons.

GGCMI phase 112 1901–2012 (10-
year intervals) 30 arc-minutes 15 crops (4 crops in priority 

1 and 11 crops in priority 2)
Global gridded crop model simulations using harmonized inputs, 
producing crop yields and other variables for multiple crops, 
management scenarios, and climate datasets.

GAEZ13,14
2000
2010
2015

5 arc-minutes 26 crops
Apply optimization techniques to downscale national crop statistics to 
grid cells based on land suitability, irrigation potential, and agro-climatic 
conditions, considering multiple cropping and management levels.

Table 1. Overview of currently available global crop production datasets.
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 (2) GAEZ+ 2015 Annual Crop Data. The 2015 GAEZ gridded crop production dataset and gridded crop har-
vested area dataset14 were used as training data for the production estimation model. This choice was based 
on several factors: its comprehensive global coverage, high spatial resolution, and demonstrated accuracy, 
all of which align well with our research objectives. Additionally, as our target period is 2010–2020, the 
2015 dataset serves as a reliable midpoint reference, allowing us to model both backward and forward from 
this central year.
These data are presented in a gridded format with a grid size of 10 km × 10 km. The pixel values in the 
production and harvested area datasets represent the crop production and harvested areas within each 
grid. The data were used for four types of crops: maize, wheat, rice, and soybean. The GAEZ+ 2015 dataset 
has been validated against FAOSTAT reported harvested area, showing high consistency for major crops. 
For instance, the world’s four staple crops (maize, wheat, rice, and soybean) all have less than 0.5% 
difference in crop harvested area between FAOSTAT and GAEZ+ 2015. Additionally, when compared with 
other global gridded datasets, GAEZ+ 2015 demonstrates strong agreement in spatial distribution 
patterns, particularly for cropland physical area (Coefficient of determination R² ≥ 0.9 when aggregated 
spatially).

 (3) CropWatch Crop Phenology Data. To capture key information on crop growth in different regions more 
accurately, this study adopted a phenology-based time-window extraction strategy. By delineating the 
critical time windows of crop growth for different regions and performing time-series feature extraction, 

Fig. 1 Methodological framework for generating the GGCP10 global gridded crop production dataset. 
(R: Reference year; T: Target year; CA: Cropping Area; HA: Harvested Area; AU: Administrative Unit; AEZ: 
Agro-Ecological Zone).
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the interference of nongrowing season information can be effectively reduced, thereby improving the 
accuracy of production estimation. Crop phenological data were obtained from the CropWatch System26. 
This dataset, based on extensive field observations and scientific experiments, provides information on the 
growing and harvesting periods of major crops in major countries at a temporal resolution of 10 days27. 
It is worth noting that although the phenological data used in this study were not updated annually, our 
goal was to ensure that the extracted features covered the main crop growth time windows rather than 
obtaining precise phenological timing. Therefore, the temporal resolution and annual representativeness 
of the existing data are sufficient to meet the research requirements. Using CropWatch phenology data to 
guide time-series feature extraction, this study can more specifically characterize the crop growth process, 
which provides important support for improving the explanatory power and generalization ability of the 
production estimation model.

 (4) CropWatch Agro-Ecological Zones. In this study, we used agroecological zone (AEZs) data from the 
CropWatch system26, which covers 228 agro-ecological zones in 45 countries worldwide, as shown in 
Fig. 2. These data are based on multiple factors, such as climate, soil, and topography, in different parts of 
the world, and they comprehensively divide the different agricultural ecological zones. These ecological 
zones represent regions with similar agricultural production conditions, crop planting patterns, and man-
agement patterns and are of great value in understanding and predicting the global distribution of crop 
production.
One crucial reason for modeling at the agro-ecological zone scale is our aspiration to enable the model to 
characterize the spatial variation of production within each ecological zone by leveraging the differences 
in multiple variables within the zone. Diverse ecological conditions often correspond to distinct planting 
systems and management patterns, and modeling at the AEZ scale allows us to capture these variations 
more effectively.
In this study, we used the divided ecological zones as the smallest modelling scale and built corresponding 
production spatial allocation models for each ecological zone. For countries or regions without subdivided 
agroecological zones, modelling was performed using the country or region as a homogeneous area.

 (5) SoilGrids Soil Texture Data. This study utilized soil texture data from SoilGrids 2.0 (https://soilgrids.org), 
a system for global digital soil mapping that employs state-of-the-art machine learning methods to map the 
spatial distribution of soil properties worldwide28. SoilGrids provides soil data at 250 m resolution for six 
standard depth intervals (0–5 cm, 1–15 cm, 15–30 cm, 30–60 cm, 60–100 cm, 100–200 cm).
In this study, we specifically used the proportions of silt, sand, and clay in the 0–5 cm soil layer. Soil texture, 
defined by these proportions, is a key factor influencing the ability of the soil to retain moisture and nu-
trients, which directly affects crop growth and yield. For example, sandy soils generally have high aeration 
and drainage, but poor water and nutrient retention, whereas clayey soils have strong water and nutrient 
adsorption capacities, but relatively poor aeration and drainage. Different crops vary in their adaptability 
to soil texture. For instance, wheat and soybean are better suited for growing in well-drained sandy loam 
and loam soils, whereas rice is more suitable for planting in clayey soils with better water retention.
We incorporated the soil texture data as one of the input features for the model to characterize the potential 
impact of different regional soil environments on crop growth. By combining soil texture data with other 
environmental and management factors, the model can learn and infer the spatial distribution patterns of 
crop production more comprehensively. This is crucial for improving the accuracy of production estima-
tions and understanding the causes of regional production variations.

 (6) Global Maximum Irrigation Extent Data (GMIE). Irrigation data reflects differences in irrigation 

Fig. 2 Distribution of 228 agro-ecological zones. Each zone represents the smallest unit for constructing data-
driven crop production estimation models.
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management inputs, which greatly influence crop growth and production. Incorporating irrigation 
information into the spatial production estimation model can help characterize the impact of water 
management measures on regional crop yields, thereby improving the explanatory power of the model for 
production spatial distribution patterns29.
In this study, we used global irrigated cropland data from GMIE30, which is derived from the irrigation 
performance during water stress31, as one kind input features. These data provide information on the types 
of irrigation across the world’s croplands, including irrigated and rainfed cropland. Irrigation plays a key 
role in ensuring stable and high crop production, particularly in arid and water-scarce regions. In our 
model, the irrigation type data (irrigated, rainfed and unknown) were uniquely coded and transformed 
into a three-dimensional feature for modelling.

 (7) Location Data. We used latitude and longitude data to represent the geographical location of each sample. 
Latitude and longitude data are crucial for capturing the influence of geographical location on crop 
production, such as solar radiation conditions at different latitudes and climatic zone characteristics at 
different longitudes. However, in the model construction, the latitude and longitude coordinates differ 
from the Cartesian coordinates. Cartesian coordinates have smooth and uniform variations, whereas 
latitude and longitude, as polar coordinates, have uneven numerical changes and are unsuitable for the 
direct expression or measurement of positional or relational changes. Therefore, in this study, we overcome 
this problem by converting the latitude and longitude polar coordinates into coordinate features in 
three-dimensional Cartesian coordinates through geospatial encoding. For point i, the following formula 
was used to convert its latitude and longitude coordinates into geospatial encoding features:
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where gi is the geospatial encoding feature of the sample i, i∅  is the longitude, iθ  is the latitude, and R is the 
radius of the Earth. In modeling, we directly set the value of R to 1.
It should be noted that location features are not used to characterize the production differences between 
agroecological zones but to represent the spatial association of different pixels within the agroecological 
zones. In the existing gridded analysis framework, if location information is not introduced, the model 
treats each pixel as an independent individual and ignores the correlation between adjacent pixels in the 
production composition. By introducing location features, the model can better learn and utilize the spatial 
autocorrelation between pixels, thereby improving production estimation accuracy. Recent studies have 
also shown that tree-based ensemble learning algorithms (such as XGBoost) can effectively capture spatial 
association information contained in location features21,32,33.

 (8) Terrain Data. In this study, we incorporated global terrain data including elevation and terrain variation 
coefficients as essential environmental features to train a crop production prediction model. Topographical 
factors significantly influence climatic conditions and water flow, which in turn affect crop growth and 
production. To obtain these terrain data, we utilized the Shuttle Radar Topography Mission (SRTM) digital 
elevation model (DEM) provided by the United States Geological Survey (USGS)34. The SRTM DEM offers 
near-global coverage at a spatial resolution of approximately 30 m.
To calculate the terrain variation coefficient (TVC), we first defined a 10 km square kernel, equivalent to 
approximately 166 pixels, to compute the neighborhood statistics. We then calculated the mean elevation 
and standard deviation within each 10 km neighborhood. The TVC was derived by dividing the standard 
deviation by the mean elevation.
Considering that open water bodies may introduce noise into TVC data, we applied a masking procedure 
to remove ocean pixels. We utilized the GlobCover35 land-cover dataset to identify open-water areas. By 
converting the open-water class to a binary mask and applying it to the TVC image, we effectively excluded 
ocean pixels from the analysis.
All topographic data were standardized to reduce the influence of dimensions and improve the generaliza-
bility of the model.

 (9) Agroclimatic Indicator Data. We used agroclimatic indicator data from the CropWatch system, including 
cumulative precipitation (RAIN), average air temperature (TEMP), photosynthetically active radiation 
(PAR), and cumulative potential biomass (BIOMASS). These indicators are time-series data, with RAIN, 
TEMP, and PAR available 36 times a year and BIOMASS available four times a year. The data covers the 
entire globe and has been continuously updated since 2007, with this study utilizing the data from 2010 to 
2020.
Among these indicators, BIOMASS is a derived indicator calculated by integration of three models, namely 
Lieth’s “Miami model”36 based on RAIN and TEMP, Chikugo model37 based on RAIN and PAR and 
temperature limited NPP model. BIOMASS model is a well-established empirical model that estimates the 
net primary productivity (NPP) of vegetation on a global scale. It is assumed that vegetation productivity 
is limited by different climate variables at different regions across the global. For example, it is commonly 
limited by temperature in cold regions, by radiation in tropical regions and by precipitation in arid regions. 
The model used the mean annual temperature, annual PAR and annual precipitation as input variables to 
calculate the potential biomass.
In this study, the BIOMASS indicator represented the cumulative potential biomass over a reference period 
(dekad from i to n), expressed as the combined effect of rainfall and temperature during that period. The 
unit of BIOMASS is grams of dry matter per square meter over the study period.
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These indicators reflect the energy and moisture conditions of agricultural ecosystems. To effectively utilize 
these data in our model, we used crop phenology data to slice the agro-meteorological indicators into time 
windows. Within each time window, we calculated the maximum, minimum, standard deviation, and total 
sum of the indicators as feature inputs for the model. This approach allowed us to characterize the tempo-
ral dynamics of the agroclimatic conditions throughout the crop-growing season.

 (10) Agronomic Indicator Data. In this study we used the agronomic indicator data from CropWatch system, 
including the cropped arable land fraction (CALF) and the maximum vegetation condition index (VCIx). 
These data are not publicly available and must be obtained through calculations based on time-series 
normalized difference vegetation index (NDVI) data. These data provide time-series information with 
four periods per year, covering the entire globe with continuous updates since 2007. We utilized the data 
spanning from 2010 to 2020, aligning with our study period.
CALF is the ratio of cropping area to total cultivated area, calculated based on the NDVI. Based on the 
NDVI peak value of the pixels, the multi-year mean (NDVIm), and the standard deviation (NDVIstd) of the 
NDVI peaks, a threshold method was used to distinguish between cropped and uncropped arable land38. It 
is worth noting that CALF is not only used as an input feature for data-driven model construction but also 
plays an important role in characterizing the dynamic changes in cropping areas in harvested area calcula-
tion. CALF data is employed to characterize the dynamic changes of cropping area in each grid cell, which 
helps improve the temporal accuracy of harvested area calculation.
VCIx was used to describe the historical level of vegetation conditions during the observation period. 
Based on the Vegetation Condition Index (VCI) proposed by Kogan39, the maximum VCI (VCIx) was 
adopted to describe the optimal crop condition of the current period compared to the historical maximum 
crop condition using the following equation:

VCIx
NDVI NDVI
NDVI NDVI

c h

h h

max_ min_

max_ min_
=

−

−

where NDVI _cmax  is the maximum NDVI of a fixed period, and NDVI _hmax  and NDVI _hmin  are the historical 
maximum and minimum NDVI of the same period, respectively, using long-term time-series NDVI 
datasets. Considering that the minimum crop NDVI may be contaminated by clouds or non-vegetation 
pixels, an empirical minimum vegetation NDVI value (0.15) was introduced to calculate NDVI _hmin  using 
the following equation:

NDVI NDVImax(0 15, )h hmin_ min_ 0= .

where NDVI _hmin 0 is the original minimum NDVI of the study period from the time-series NDVI dataset. 
The VCIx values ranged from zero to 1. A value of 0 indicates that the vegetation condition corresponded 
to the worst level in recent decades, 1 indicates that the vegetation condition corresponded to the best level 
in recent decades, and a value greater than 1 indicates that the vegetation condition during the current 
observation period exceeded the historical optimum level.
These indicators reflect the crop growth conditions and area. To process these data, we used crop phe-
nology data to divide the crop condition indicators into time windows that served as feature inputs to the 
model.

 (11) GLASS Remote Sensing Data Products. In this study, we used GLASS remote sensing data products40 
including net primary productivity (NPP) and leaf area index (LAI). The GLASS products are derived from 
multiple satellite observations and provide consistent and reliable information on vegetation dynamics. 
NPP represents the net amount of carbon assimilated by vegetation through photosynthesis, whereas LAI 
refers to the total one-sided area of leaf tissue per unit ground surface area. These data comprehensively 
and accurately reflect the growth status of vegetation and the intensity of photosynthetic activity.

NPP is provided as annual data, whereas LAI is provided as time-series data with a frequency of every nine 
days. These MODIS-derived products offer global coverage with multiple spatial resolution options. The NPP 
dataset covers the period from 2000 to 2020, while the LAI dataset spans from 2000 to 2021. For our study, we 
specifically utilized data from 2010 to 2020, aligning with our research timeframe. To process the LAI data, we 
divided the crop phenology data into time windows and calculated the maximum, minimum, standard devia-
tion, and sum of the data within each time window, which served as the feature inputs for the model.

Data-driven approach. We employed a comprehensive data-driven approach to generate the GGCP10 
dataset. The methodology centers on a series of adaptively trained machine learning models, tailored to capture 
the unique characteristics of crop production in different agroecological zones. The approach encompasses four 
key stages: harvested area calculation, multi-source feature extraction, data-driven model training, and produc-
tion estimation.

 (1) Harvested Area Calculation
Harvested area is a crucial foundation for estimating crop production. Harvested area data contain rich agri-

cultural production information, such as multiple cropping indices and rotation patterns, which are key factors 
in assessing regional agricultural planting structure and land use intensity and have important research value. 
However, production is the product of harvested area and yield, and estimating harvested area separately helps 
us to better understand the relative contributions of these two factors to production changes and deepen our 
understanding of the production composition mechanism.

https://doi.org/10.1038/s41597-024-04248-2
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This study proposes a dynamic harvested area calculation algorithm at an annual scale to accurately estimate 
the harvested area of each grid cell in the target year. The key innovation of this method lies in the introduction 
of seasonal CALF data to reflect dynamic changes in cropland utilization intensity, which are deeply integrated 
with statistical and spatial distribution data from the reference year to estimate the harvested area at the pixel 
scale for the target year. The CALF data reflect the agricultural planting intensity of each grid cell in different 
seasons, characterizing the spatial and temporal differences in agricultural planting across different regions. In 
contrast, the traditional fixed-proportion method14 calculates the harvested area of each grid cell in the target 
year based on statistical and gridded harvested area data from a reference year using proportional allocation, 
ignoring the changes in cropping conditions between different grid cells within a region.

Specifically, to calculate a country’s harvested area in the target year, the method is divided into three steps: 
(1) Cropping area calculation at the national scale. Based on phenological data, seasonal CALF data, and the 
spatial distribution of the harvested area in the reference year, the crop-specific cropping area of each country 
in different seasons was estimated at the pixel scale, ultimately obtaining the annual crop-specific cropping area. 
(2) Harvested area allocation at the AEZ scale. By analyzing the interannual changes in the cropping area within 
each AEZ, this step allocates national-level harvested area statistics to each AEZ to obtain the total harvested 
area for each subregion. (3) Harvested area mapping at the pixel scale. Within each AEZ, considering the density 
and interannual changes in the cropping area, this step constructs a spatial allocation model at the pixel scale 
to further decompose the total harvested area of each AEZ into each pixel, ultimately generating the gridded 
harvested area data.

Step 1: Gridded cropping area calculation for the target year

Input data:

 1) Phenological information for country c
 2) Harvested area of country c in the reference year (2015, from the GAEZ dataset)
 3) CALF data for country c in four growing seasons of the target year

Output data:

 1) Crop-specific cropping area of each pixel in country c for the target year

① Temporal scale conversion of phenological data. According to the 10-day resolution phenological infor-
mation, aggregate it into 4 growing seasons to obtain phenological information at the seasonal time resolution. 
Let Cj t,  denote the phenological value (0 or 1) of crop j in growing season t, where 0 indicates no planting of the 
crop in that season and 1 indicates planting.
② Calculate the total cropping area for each season. Using the CALF data of the four growing seasons and 

the cropland mask data, calculate the total cropping area of each grid cell in each season by multiplying the 
cropland area by the cropland planting ratio. Let CAi t,  denote the total cropping area of grid cell i in season t.

= ×CA CroplandArea CALFi t i i t, ,

where CroplandAreai represents the cropland area of grid cell i, and CALFi t,  represents the cropland planting 
ratio of grid cell i in season t.
③ Allocate cropping area based on phenological information. For each growing season t, determine the 

set of crop types St according to the phenological information. Then, for crop j in grid cell i, calculate its cropping 
area CAi j t, ,  in season t using the following formula:

= ×
∑

×
∈

CA CA
HA

HA
Ci j t i t

i j

k S i k
j t, , ,

,

,
,

t

where CAi j t, ,  represents the cropping area of crop j in grid cell i in season t, Cj t,  represents the phenological value 
(0 or 1) of crop j in season t, with 0 indicating no planting and 1 indicating planting, CAi t,  represents the total 
cropping area of grid cell i in season t, HAi j,  represents the harvested area of crop j in grid cell i in the reference 
year (i.e., 2015, from the GAEZ + 2015 dataset), and St represents the set of all planted crops in season t.
④ Calculate the annual cropping area. By summing the cropping areas of each season, obtain the annual 

cropping area CAi j,  of crop j in grid cell i:

∑=
=

CA CAi j
t

i j t,
1

4

, ,

Step 2: Harvested area allocation at the AEZ scale

Input data:

 1) Crop-specific cropping area of each grid cell in the target year (output from Stage 1)
 2) Gridded harvested area data in the reference year (2015) (from the GAEZ + 2015 dataset)

https://doi.org/10.1038/s41597-024-04248-2
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 3) Crop-specific cropping area of each grid cell in the reference year
 4) Statistical data of crop-specific harvested area in the target year (from the FAO database)
 5) Agro-ecological zoning (AEZ) data

Output data:

 1) Statistical values of harvested area for each AEZ within country c

① Calculate the initial harvested area proportion of each AEZ. For crop j, AEZ k, and country c, calculate 
the initial harvested area proportion wj k c

init
, ,  of AEZ k within country c in the reference year:

w
HA

HA
j k c
init m k m j k

ref

n c n j c
ref, ,

, ,

, ,

=
∑

∑

∈

∈

where HAm k m j k
ref

, ,∑ ∈  represents the sum of harvested areas of crop j in all grid cells within AEZ k in the reference 
year, and ∑ ∈ HAn c n j c

ref
, ,  represents the sum of harvested areas of crop j in all grid cells within country c in the 

reference year.
② Adjust the harvested area proportion of each AEZ. According to the ratio of crop-specific cropping area 

within each AEZ between the target year and the reference year, adjust the harvested area proportion of each 
AEZ to obtain the harvested area proportion wj k c, ,  of each AEZ in the target year:

= ×
∑ ∑

∑ ∑

∈ ∈

∈ ∈

w w
CA CA

CA CA

/

/
j k c j k c

init m k m j k
tar

m k m j k
ref

n c n j c
tar

n c n j c
ref, , , ,

, , , ,

, , , ,

where ∑ ∈ CAm k m j k
tar

, ,  and ∑ ∈ CAm k m j k
ref

, ,  represent the sum of cropping areas of crop j in all grid cells within AEZ 
k in the target year and the reference year, respectively, and CAn c n j c

tar
, ,∑ ∈  and CAn c n j c

ref
, ,∑ ∈  represent the sum of 

cropping areas of crop j in all grid cells within country c in the target year and the reference year, respectively.
③ Calculate the total harvested area of each AEZ. Using the FAO statistical data of national crop-specific 

harvested area and the harvested area proportion of each AEZ, calculate the total harvested area HAj k c
tar
, ,  of each 

AEZ for crop j in the target year:

HA HA wj k c
tar

j c
tar

j k c, , , , ,= ×

where HAj c
tar
,  represents the total harvested area of crop j within country c in the target year, which can be 

directly obtained from the FAO database.

Step 3: Calculate the harvested area of grid cells within each AEZ

Input data:

 1) Crop-specific cropping area of each grid cell in the target year (output from Stage 1)
 2) Gridded harvested area data in the reference year (2015) (from the GAEZ + 2015 dataset)
 3) Crop-specific cropping area of each grid cell in the reference year (output from Stage 1)
 4) Statistical values of harvested area for each AEZ within country c (output from Stage 2)

Output data:

 1) Gridded harvested area data of crop j in the target year

① Calculate the spatial weight of grid cells within each AEZ. For each AEZ, calculate the proportion of the 
harvested area of each grid cell in the total harvested area of the AEZ in the reference year as the spatial weight 
within the AEZ. For grid cell i, crop j, and AEZ k, the spatial weight wi j k

ref
, ,  is calculated as:

w
HA

HAi j k
ref i j k

ref

m k m j k
ref, ,

, ,

, ,

=
∑ ∈

where HAi j k
ref
, ,  represents the harvested area of crop j in grid cell i within AEZ k in the reference year, 

and HAm k m j k
ref

, ,∑ ∈  represents the sum of harvested areas of crop j in all grid cells within AEZ k in the reference 
year.
② Adjust the spatial weight of grid cells within each AEZ. Using the cropping area change information 

calculated in the last step, adjust the spatial weight within each AEZ in the reference year to obtain the spatial 
weight wi j k

tar
, ,  within each AEZ in the target year:
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= ×w w
r

ri j k
tar

i j k
ref i j k

j k
, , , ,

, ,

,

where ri j k, ,  represents the change rate of cropping area of crop j in grid cell i within AEZ k, and rj k,  represents the 
change rate of total cropping area of crop j within AEZ k. Their calculation formulas are:

=r
CA

CA
i j k

i j k
tar

i j k
ref, ,
, ,

, ,

r
CA

CA
j k

m k m j k
tar

m k m j k
ref,

, ,

, ,

=
∑

∑

∈

∈

where CAi j k
tar
, ,  and CAi j k

ref
, ,  represent the cropping area of crop j in grid cell i within AEZ k in the target year and the 

reference year, respectively.
③ Calculate the harvested area of grid cells within each AEZ. Using the total harvested area HAj k c

tar
, ,  of each 

AEZ calculated in ③ of Step 2 and the spatial weight wi j k
tar
, ,  within each AEZ, calculate the harvested area HAi j k

tar
, ,  

of crop j in grid cell i within AEZ k in the target year:

HA HA wi j k
tar

j k c
tar

i j k
tar

, , , , , ,= ×

④ Data consistency validation. At the national scale, aggregate the gridded harvested area data and com-
pare it with the FAO statistical data. If there is a discrepancy between the two, uniformly adjust the gridded data 
according to the discrepancy ratio to make its total equal to the statistical data.

Using this three-step algorithm, we calculated gridded harvested areas for the target year. This method 
comprehensively utilizes multisource data, including CALF data, spatial distribution data from the reference 
year, agricultural statistical data, and crop phenological information. Compared with traditional methods, this 
method provides significant improvements in the spatiotemporal continuity of data sources. Second, in terms of 
the calculation strategy, this method adopts a subregional and multistage approach. By dividing the estimation 
process into three scales–national, AEZ, and pixel–and conducting estimations for cropping and harvested areas 
separately, the spatiotemporal distribution pattern of the harvested area in the target year can be accurately char-
acterized, providing important data support for subsequent production estimation.
 (2) Multi-Source Feature Extraction

To comprehensively characterize the key factors influencing crop growth and development, we considered 
natural factors such as meteorology, soil, and terrain, as well as human management factors such as irrigation 
and cultivation, when selecting features. At the same time, to capture the dynamic process of crop growth, 
we fully utilized multi-source time-series data and extracted environmental condition information at differ-
ent growth stages. Therefore, we adopted a phenology-based feature extraction method to transform the orig-
inal spatiotemporal data into structured feature vectors to form a multidimensional representation of the crop 
growth conditions.

Specifically, we extracted features from multi-source data using the following steps.

Step 1: Determine key growth periods. We first determined the time ranges of the main growth stages (from 
sowing to harvest) for each crop type, based on crop phenological information. The crop phenological data had 
an original temporal resolution of 10 d. We processed the phenological data to match the temporal resolutions 
of the different data sources. For example, for input data with a quarterly resolution (e.g., four quarters in one 
year), we aggregated the original 10 d phenological data and sampled them into four quarters, thereby achieving 
the temporal synchronization of phenological information with other data.

Step 2: Time-series features extraction. After determining the key growth periods, we extracted 
multi-source time-series data, such as remote sensing, meteorological, and soil data, within the corresponding 
time windows according to the phenological rhythm of each crop. For continuous variables (e.g., precipitation 
and temperature), we calculated a series of statistical features within key growth periods, including:

 1) Cumulative amount: reflecting the overall resource input or environmental pressure during the growth 
period

 2) Mean value: characterizing the average condition during the growth period
 3) Maximum and minimum values: reflecting the extreme conditions during the growth period
 4) Standard deviation: measuring the variability during the growth period

Using the above statistical features, we can comprehensively characterize the overall characteristics and 
dynamic changes in environmental factors during each growth period, providing rich information dimensions 
for subsequent production estimation.

Step 3: Process categorical variables. We used One-Hot Encoding to transform the categorical variables (e.g., 
irrigation type). One-Hot Encoding is a commonly used method for processing categorical variables. It converts 
each category into a binary vector, allowing categorical variables to be directly input into numerical models. 
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For example, for the irrigation type (irrigated, rainfed, or unknown), One-Hot Encoding generates three new 
binary variables, indicating whether the sample belongs to the corresponding irrigation type. Through One-Hot 
Encoding, we retained the information of categorical attributes while keeping them consistent in form with 
numerical variables, facilitating subsequent modeling and analysis.

Step 4: Construct a structured feature set. Through statistical feature extraction of continuous variables and 
One-Hot Encoding of categorical variables, we obtained a structured feature set (Table 2) covering the key 
spatiotemporal dimensions of crop growth. This feature set contained environmental and management fac-
tors from multiple data sources and various data types, with each factor integrated into one or more feature 
dimensions according to its spatiotemporal attributes. For example, precipitation data were extracted into four 
feature dimensions (cumulative amount, mean value, maximum value, and minimum value), whereas irriga-
tion type data were encoded into three feature dimensions (irrigated, rainfed, and unknown). Through this 
multi-dimensional and multiscale feature representation, we constructed a comprehensive and compact crop 
growth factor library, laying an important foundation for subsequent machine learning modeling.

Compared with traditional feature construction methods based on static indicators or a single timescale, the 
phenology-driven time-series feature extraction method adopted in this study has notable advantages. By organ-
ically combining the temporal dynamics and spatial differentiation of environmental factors, this method can 
comprehensively and accurately characterize the multidimensional influencing mechanisms of crop growth and 
development processes. For example, calculating the cumulative precipitation and average temperature during 
the growing season can reflect the water and heat conditions during the crop growth period, thereby affecting 
biomass accumulation and yield. By extracting remote-sensing vegetation indices (such as VCIx) at different 
growth stages, spatiotemporal changes in crop growth can be dynamically monitored, grasping the key stages 
and regional differences in yield formation.

Moreover, the feature vectors constructed in this study have clear physical meaning and ecological basis. For 
example, the absorption and utilization of photosynthetically active radiation (PAR) during crop growth are fun-
damental driving forces for yield. Therefore, incorporating the temporal features of PAR can help us understand 
the potential causes of yield variation from a mechanistic perspective. Similarly, environmental factors such 
as soil texture and terrain features influence crop growth by regulating the availability of water and nutrients. 
Including the spatial features of these factors contributes to explaining the regional differentiation patterns of 
yield. Through the above mechanistic feature selection, the feature vectors we constructed can not only support 
efficient production prediction but also uncover key factors or limiting factors of regional crop production.
 (3) Data-Driven Model Training

Crop production is a complex biophysical process influenced by numerous environmental factors in a non-
linear manner. Traditional parametric methods often struggle to capture these nonlinearities and multiscale 
effects fully, limiting the accuracy and reliability of production estimation. In contrast, machine learning meth-
ods have unique advantages in characterizing the response patterns of production to changes in environmental 
factors and exploring the key factors influencing production formation. By constructing complex nonlinear 
models, machine learning methods can better reveal the inherent mechanisms of the production formation pro-
cess, thereby providing new ideas for precise production prediction. This data-driven modeling paradigm has 
been successfully applied in the field of agricultural remote sensing21,41–44. Furthermore, the complex relation-
ships between production and environmental factors exhibit significant spatial regional differentiation, making 
regional modeling extremely necessary.

Input data Observations per year Name for features Name for Sub features Number of features

Harvested area 1 HA HA 1

Maximum vegetation condition index 4 VCIx VCIx_1, VCIx_2, VCIx_3, VCIx_4 4

Cropped arable land fraction 4 CALF CALF_1, CALF_2, CALF_3, CALF_4 4

Cumulative potential biomass 4 BIOMASS BIOMASS_1, BIOMASS_2, BIOMASS_3, 
BIOMASS_4 4

Cumulative precipitation 36 RAIN RAIN_Min, RAIN_Max, RAIN_Sum, 
RAIN_Std 4

Photosynthetically active 36 PAR PAR_Min, PAR_Max, PAR_Sum, PAR_Std 4

Average air temperature 36 TEMP TEMP_Min, TEMP_Max, TEMP_Mean, 
TEMP_Std 4

Net primary productivity 1 NPP NPP 1

Leaf area index 46 LAI LAI_Min, LAI_Max, LAI_Sum, LAI_Std 4

Location data Static Location Location_gx, Location_gy, Location_gz 3

Terrain data Static Terrain Terrain_Elevation, Terrain_Variation 2

Soil texture data Static Soil Soil_Clay, Soil_Sand, Soil_Silt 3

Irrigation Type Static Irrigation Type Irrigation Type_1, Irrigation Type_2, Irrigation 
Type_3 3

Total 41

Table 2. Input data and extracted features used for the crop production estimation model.
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To uncover the intrinsic relationships between crop production and multi-source influencing factors, this 
study adopted a data-driven modeling paradigm and employed an agroecological zoning modeling strategy. We 
constructed a set of targeted production estimation models for each crop type and agro-ecological zone (AEZ) 
to improve the accuracy and reliability of production mapping. The model uses the harvested area (HA) and 
multi-source indicators (XI) at the grid scale as inputs, and estimates the crop production (P) of the correspond-
ing grid cell. Its basic form can be expressed as:

P f HA XI( , )i j i j i j, , ,=

where the variables Pi j, , HAi j,  and XIi j,  respectively represent production, harvested area, and various 
multi-source indicators in grid cell i of crop type j. f is a machine-learning model customized for each AEZ and 
crop type to capture the unique relationship between production, harvested area, and indicators.

Considering the good performance and robustness of ensemble learning models, this study selected 
Random Forest45, XGBoost46, and CatBoost47 as candidate models for geospatial modeling of crop production. 
Among them, Random Forest is one of the most commonly used algorithms in ensemble learning; XGBoost 
has achieved excellent results in various data mining competitions and has been proven to have significant 
advantages in processing high-dimensional and nonlinear relationship data; CatBoost has shown outstanding 
performance in multiple data science competitions, and is considered a powerful tool for handling mixed data.

For each specific crop type, data-driven models were built independently for each AEZ based on its geo-
graphical subdivision. In other words, one model was trained for each crop in each AEZ. The model training and 
optimization were divided into two steps: (1) Best model selection and (2) Model training.

Step 1: Best model selection. In the first step, a nested cross-validation strategy was employed to perform 
hyperparameter optimization and performance evaluation of the three candidate models. Specifically,

 1) First, samples from the reference year were divided into a training set (90%) and a test set (10%).
 2) In the training set, five-fold cross-validation was used to perform grid search optimization of the model 

hyperparameters, such as the number of trees and maximum depth of the Random Forest, learning rate, 
and number of trees of XGBoost and CatBoost, to find the optimal hyperparameter configuration for each 
model.

 3) The models were retrained using the optimized hyperparameters and evaluated for their predictive perfor-
mance on a test set. The model performance evaluation metric was the coefficient of determination (R²), 
which measures the model’s ability to explain yield variation.

 4) The model with the highest R² value in the test set was selected as the optimal model for AEZ.

It should be emphasized that the above hyperparameter optimization and model evaluation processes were 
performed independently within each AEZ to obtain the optimal model adapted to the characteristics of differ-
ent regions. While this strategy helps improve the model’s ability to characterize regional production variation 
patterns and enhances the accuracy of regional production estimations, it’s worth noting that for AEZs with very 
small sample sizes, the robustness of the results may be somewhat reduced. The optimal model selection results 
are presented in the Performance Evaluation of Data-Driven Models of Technical Validation.

Step 2: Model training. In the second stage, considering the limited data resources and importance of these 
data for prediction, we made full use of all the data from the reference year. Therefore, the optimal model and 
corresponding optimal parameters selected in the first stage were combined with all reference year data to 
retrain the model and improve its stability and prediction accuracy, thus obtaining the production prediction 
model for each AEZ.

In summary, this study adopted a data-driven modeling strategy that fully utilized agroecological zoning 
information to construct a set of machine learning models for regionalized crop production estimation. Model 
hyperparameter optimization and performance evaluation were achieved through nested cross-validation, and 
the final predictive models were trained based on all reference year data. This method not only improves produc-
tion estimation accuracy but also characterizes the regional heterogeneity of production response mechanisms.
 (4) Production Estimation

Production calculation involves the conversion of multisource feature data into gridded production esti-
mates through the application of spatial production estimation models. This process was performed for each 
crop type and agro-ecological zone (AEZ) to generate initial production estimates, which were then calibrated 
using national-level statistics to ensure consistency. The detailed steps are as follows.

Step 1: Feature data preparation. For each crop type j and AEZ k in country c, the corresponding feature 
data (as described in Table 2) were extracted and organized into a structured dataset. This dataset included var-
ious indicators related to crop growth and production. The feature dataset serves as the input for the subsequent 
estimation of spatial production.

Step 2: Spatial production estimation. Based on the feature dataset prepared in Step 1, the trained spatial 
production estimation model for crop type j and AEZ k was applied to predict the production of each grid cell i 
within the AEZ. This process is expressed as follows:

=P f X HA( , )i j k
init

j k i j k i j k, , , , , , ,
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where Pi j k
init
, ,  represents the initial production estimate of grid cell i for crop type j in AEZ k; f j k,  denotes the trained 

production estimation model for crop type j and AEZ k; Xi j k, ,  represents the feature vector of grid cell i for crop 
type j in AEZ k; and HAi j k, ,

 represents the estimated harvested area of grid cell i for crop type j in AEZ k.
By applying the spatial production estimation model to all grid cells within each AEZ, we obtain a gridded 

dataset of initial production estimates Pi j k
init
, ,  for each crop type j in Country c.

Step 3: Production calibration. While spatial production estimation models provide a robust foundation 
for predicting crop production at the grid level, model-derived estimates may not always be perfectly consistent 
with established agricultural statistics because of various factors such as model limitations and data anomalies. 
To address this issue and ensure the consistency of our dataset with official statistics, we performed a calibration 
process using national-level production data from the FAO.

For each crop type j in country c, the calibration process involved the following steps:

 1) Calculate the total initial production estimate for country c by summing the initial production estimates of 
all grid cells within the country.

P Pj c
init

k c i k
i j k
init

, , ,∑∑=
∈ ∈

 2) Retrieve the official national production statistics Pj c
FAO
,  for crop type j in country c from the FAO database.

 3) Calculate the calibration coefficient α j c,  by dividing the FAO national production statistics by the total 
initial production estimate:

α =
P

Pj c
j c
FAO

j c
init,
,

,

 4) Apply the calibration coefficient to adjust the initial production estimate of each grid cell, obtaining the 
final calibrated production estimate:

P Pi j k
cal

j c i j k
init

, , , , ,= α ×

By performing this calibration process for each crop type and country, we ensured that the sum of the cali-
brated grid-level production estimates matched the FAO national statistics, thereby providing a consistent and 
harmonized dataset for agricultural production analysis.

It is important to note that although the calibration process ensures consistency with official statistics at the 
national level, it does not necessarily imply absolute accuracy at the grid scale. Official statistics may contain 
uncertainties and the calibration process inherits these uncertainties. However, maintaining consistency with 
official statistics provides a unified benchmark for comparative analysis of agricultural production across differ-
ent regions and years, thereby enhancing the reliability and utility of the GGCP10 dataset.

Data Records
Dataset structure and accessibility. The GGCP10 dataset is publicly available through the Harvard 
Dataverse repository24 and can be accessed at https://doi.org/10.7910/DVN/G1HBNK. This dataset provides 
annual crop production information for four major crops (maize, wheat, rice, and soybean) from 2010 to 2020. 
The dataset covers the entire globe and is organized in a gridded format with a spatial resolution of 10 km. The 
data are stored in GeoTIFF format, which is widely compatible with various geospatial analysis software.

Key characteristics of the GGCP10 dataset:

 1) Spatial coverage: Global (180°W to 180°E, 90°N to 90°S)
 2) Spatial resolution: 0.08333333 degrees (approximately 10 km at the equator)
 3) Temporal coverage: 2010 to 2020 (annual)
 4) Coordinate Reference System: EPSG:4326 - WGS 84
 5) File format: GeoTIFF
 6) Data type: 32-bit floating point
 7) Number of bands: 1 (single band per file)
 8) Unit: Kilotons per 100 square kilometers
 9) No data value: Oceans, open-water, and Antarctica in the GeoTIFF files have the no-data value of -9999.

The dataset is organized into separate files for each crop type and year, resulting in a total of 44 GeoTIFF 
files (11 years × 4 crop types). Each pixel value represents the estimated crop production for the corresponding 
10 km × 10 km grid cell in kilotons.

File naming convention: GGCP10_Production_[Year]_[Crop].tif. Where [Year] ranges from 2010 to 2020, 
and [Crop] is one of {Maize, Wheat, Rice, Soybean}.

Example: GGCP10_Production_2020_Maize.tif represents the global maize production for the year 2020.
Users can access and analyze this dataset using common GIS software or programming languages with geo-

spatial libraries such as GDAL, rasterio (Python), or terra (R).
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Spatial features of crop production in GGCP10. The GGCP10 dataset provides high-resolution gridded 
crop production data at a spatial resolution of 10 km × 10 km, covering a time span of 11 years from 2010 to 2020. 
The dataset includes four major crop types: maize, wheat, rice, and soybean. The pixel values in the GGCP10 
dataset represent the estimated crop production within each grid cell, with the unit being kilotons. To illustrate 
the spatial patterns of crop production, we selected the data from the year 2020 for visualization and analysis, as 
shown in Figs. 3, 4, 5 and 6.

technical Validation
We conducted a comprehensive two-part validation of the GGCP10 dataset to assess its reliability and accuracy. 
First, we evaluated the performance of our crop production estimation models across different agroecological 
zones, analyzing both model selection results and regional variations in model accuracy. Second, we performed 
extensive comparisons between GGCP10 and multiple reference datasets, including global gridded products, 
regional gridded datasets, and subnational statistics from diverse geographical contexts spanning 43 countries.

Performance evaluation of data-driven models. 

 (1) Results of model selection. In the first stage of data-driven model training, we selected the optimal model for 
each modeling unit through cross-validation. In this section, we use Gaussian kernel probability density plots 
of R² to illustrate the accuracy distribution of the three types of machine learning models among these opti-
mal models. The horizontal coordinate represents the R² value, and the vertical coordinate shows the Gaussi-
an kernel probability density of R². Additionally, we spatially display the type of optimal model corresponding 
to each modeling unit, using different colors to denote the optimal machine learning model for each unit.
For maize, a total of 303 regional models were trained, comprising 199 XGBoost models, 79 CatBoost 
models, and 25 RF models. It is important to note that the number of models constructed equals the num-
ber of modeling units, as modeling is only performed for units with maize production. Thus, for maize, 
we selected 303 modeling units globally. As shown in Fig. 7(a), from the accuracy distribution perspec-
tive, XGBoost and CatBoost exhibit higher accuracy, with XGBoost models having an average R² of 0.93, 
CatBoost models an average R² of 0.91, and RF models an average R² of 0.86. Figure 7(b) illustrates the 
spatial distribution perspective, revealing that the XGBoost model performs best in most regions of North 
America, South America, Europe, Asia, and parts of Africa, while Random Forest and CatBoost dominate 

Fig. 3 Global distribution of maize production in 2020 based on the GGCP10 dataset. High-production regions 
are predominantly located in the U.S. Corn Belt, northeastern and northern China, southern Brazil, the Pampas 
of Argentina, and the northwestern Black Sea regions of Ukraine and Romania. Latitudinally, production is 
concentrated between 30°N and 45°N. Longitudinally, peak production is observed near 90°W, 60°W, 30°E, and 
120°E, corresponding to major agricultural zones in North and South America, Europe, and East Asia.
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in a few regions of Africa, Europe, and Asia.
For wheat, a total of 237 regional models were trained, including 138 XGBoost models, 82 CatBoost 
models, and 17 RF models. As shown in Fig. 8(a), CatBoost achieved the highest R² values among the three 
models, with an average of 0.93. The XGBoost models also exhibited high R² values, with an average of 0.92 
and a more concentrated accuracy distribution. The average R² value of RF models is 0.90. From the spatial 
distribution perspective (Fig. 8(b)), CatBoost shows better performance in the main wheat-planting areas 
of North America and Asia, while XGBoost dominates in the main planting areas of Europe and South 
America. Wheat planting areas in Africa and Oceania are relatively few, and the model selection results are 
more dispersed.
For rice, out of 202 models, XGBoost, CatBoost, and RF models accounted for 145, 37, and 20 models, 
respectively. As shown in Fig. 9(a) and Fig. 9(b), XGBoost accounts for the majority and has the highest av-
erage R² of 0.94. However, for the major rice-producing regions globally (South Asia and Southeast Asia), 
CatBoost is the optimal model for most regions, with an average R² of 0.90, slightly lower than XGBoost. 
This indicates that for these major rice-producing regions, the modeling difficulty is relatively high due to 
their complex cropping systems, diverse environmental conditions, and relatively fragmented rice paddies. 
The number of random forest models is small, with an average R² of 0.90.
For soybean, out of the 155 models, 84 were XGBoost, 54 were CatBoost, and 17 were RF. As shown in 
Fig. 10(a) and Fig. 10(b), CatBoost dominates the main producing areas in South America, North America, 
and South Asia, with an average R² value of 0.88, while XGBoost is mainly distributed in Europe, southern 
Africa, and other regions, with an average R² value of 0.86. Although the average R² of random forest is not 
low, the variation range is large, and the corresponding regions are not the main soybean-producing areas
Overall, the probability density plots indicate that for all four crops, the R² values of XGBoost, CatBoost, 
and RF are high, with narrow ranges, demonstrating good model accuracy and stability. For all four 
crops, the number of XGBoost models is significantly higher than that of CatBoost or RF, suggesting that 
XGBoost exhibits the best model performance in most regions, consistent with the conclusions from our 
previous study21. From the spatial distribution perspective, there is a certain degree of geographical differ-
entiation in the applicability of different models. For example, XGBoost has more advantageous regions 
in Africa, Asia, and Europe, while CatBoost performs prominently in some parts of the Americas and 
Oceania. This differentiation pattern may be related to differences in regional agricultural planting systems 
and ecological environmental conditions.

Fig. 4 Global distribution of wheat production in 2020 based on the GGCP10 dataset. Major wheat-producing 
regions include northern China, northern India, Europe, the Nile River Delta, southern Canada, and Argentina. 
Latitudinally, production is concentrated between 60°N and 20°N, encompassing the primary wheat-growing 
belts. Longitudinally, production peaks are observed in three main zones: 0°–50°E (Europe and Western Asia), 
70°–85°E (South Asia), and 110°–120°E (East Asia), reflecting the global diversity of wheat cultivation areas.
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These results demonstrate the necessity of adaptively selecting optimal models and parameters to train rel-
atively accurate models for various crops and regions. In-depth analysis of the correlation between model 
selection results and regional characteristics (such as climate, soil, topography, etc.) will help understand 
the geographical differentiation patterns of model applicability and provide references for optimizing mod-
els and algorithms according to local conditions.

 (2) Evaluation of Model Performance in Different Regions. The previous section introduced the results of 
optimal model selection in different regions worldwide, demonstrating the differences in model appli-
cability across regions. Building on this foundation, this section further evaluates model performance at 
the continental scale, aiming to reveal regional variation patterns in crop production estimation model 
performance and explore the relationship between production estimation difficulty and regional agricul-
tural characteristics. To this end, we grouped regional models according to continents and used violin 
plots to display the distribution characteristics of model performance (R²) for four crops in each continent, 
as shown in Fig. 11. Violin plots show the overall distribution of model performance and present statisti-
cal information such as maximum, minimum, median, and quartiles of model performance in different 
regions, facilitating comparative analysis between regions.

Comparing the continents, we found that crop model performance in Europe and South America is generally 
the best. Particularly in South America, the model performance for all four crops is relatively stable, with a small 
variation range. In contrast, the performance in Africa and Oceania is relatively poor, which may reflect the 
influence of different agricultural models and agricultural stability on the difficulty of modeling. For example, 
the large-farm model in Europe and South America may be more conducive to remote sensing data capturing 
crop growth information, thereby improving model performance. Meanwhile, the scattered and limited maize 
cultivation area in Oceania results in low R² due to the low spatial resolution and mixture of different crop types. 
In Africa, smallholder agriculture is dominant, and agricultural production is greatly affected by natural con-
ditions. The unstable agricultural conditions in Africa make modeling difficult, so the R² variation range of the 
models for all four crops is relatively large.

Model performance for the same crop also varies across continents. For instance, wheat models perform best 
in Europe (average R² up to 0.96) and relatively lower in North America (average R² of 0.81). One reason is that 
the spatial scale of modeling units in Europe is much smaller than in North America, so the models can more 
easily capture crop growth conditions and yield changes within the modeling units, thus improving estimation 

Fig. 5 Global distribution of rice production in 2020 based on the GGCP10 dataset. Regions with high 
rice production are predominantly located in South China, Southeast Asia, and South Asia. Latitudinally, 
production is concentrated between 35°N and 10°N, encompassing the primary rice-growing tropical 
and subtropical zones. Longitudinally, the majority of production is observed between 75°E and 120°E, 
corresponding to the rice-intensive areas of South and East Asia.
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accuracy. For rice, the R² variation range is the largest in Asia, which may be due to the complex cropping sys-
tems, diverse environmental conditions, and relatively fragmented planting areas in Asian rice-growing regions 
all increase the difficulty of modeling.

Overall, the performance of models for different crops in all continents is relatively good, with most models 
having an R² above 0.8, indicating that the models trained in this study have high accuracy and reliability in dif-
ferent regions. These analyses also reflect some patterns, i.e., modeling difficulty is significantly associated with 
regional agricultural characteristics (such as agricultural models, cropping systems, natural conditions, etc.). The 
more stable the agricultural conditions, the more standardized the planting patterns, and the lower the fragmen-
tation of planting areas, the easier it is for remote sensing data to accurately capture crop growth status, and the 
better the performance of crop production estimation models. In regions with unstable agricultural conditions, 

Fig. 6 Global distribution of soybean production in 2020 based on the GGCP10 dataset. High-production 
areas are primarily concentrated in the eastern Great Plains of the United States, southern Brazil, and northern 
Argentina, with additional significant production zones in Northeast China and central India. The latitudinal 
distribution exhibits a bimodal pattern, with production peaks between 15°S and 35°S in the Southern 
Hemisphere and between 30°N and 50°N in the Northern Hemisphere. Longitudinally, production also shows 
a bimodal distribution, with major peaks around 90°W and 65°W, corresponding to the primary soybean-
growing regions in North and South America.

Fig. 7 Model selection results for maize production estimation. (a) Gaussian kernel density of R² values; 
(b) Global spatial distribution of optimal models.
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diverse planting patterns, and high degrees of planting area fragmentation, yield variability is large, and the dif-
ficulty of extracting remote sensing information is high, resulting in relatively poor model performance.

In the future, for regions with relatively lower performance, we can consider introducing more influencing 
factors that reflect regional agricultural characteristics and optimizing model algorithms to improve the regional 
adaptability of crop production estimation models. At the same time, obtaining more detailed regional cropping 
system information will also help improve the performance of regionalized models.

Comparing with existing datasets. To comprehensively validate the GGCP10 dataset, we conducted sys-
tematic comparisons against multiple reference sources: global gridded datasets, regional gridded products, and 
extensive subnational statistics. This multi-tiered validation approach encompasses different spatial scales and 
geographical contexts, providing a robust assessment of GGCP10’s reliability and accuracy.

Our validation framework consists of three components. First, we compared GGCP10 with two estab-
lished gridded datasets: the global SPAM 2010 dataset and the regional AsiaRiceYield4KM dataset, enabling 
pixel-by-pixel evaluation of spatial patterns. Second, we assembled an extensive collection of subnational statis-
tics from eight diverse sources worldwide, including data from Africa, Europe, North America, South America, 

Fig. 8 Model selection results for wheat production estimation. (a) Gaussian kernel density of R² values; (b) 
Global spatial distribution of optimal models.

Fig. 9 Model selection results for rice production estimation. (a) Gaussian kernel density of R² values; 
(b) Global spatial distribution of optimal models.

Fig. 10 Model selection results for soybean production estimation. (a) Gaussian kernel density of R² values; 
(b) Global spatial distribution of optimal models.
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Asia, and Australia, covering various administrative levels from county to province. This comprehensive sub-
national validation spans 2,823 administrative units across 43 countries. Third, we performed detailed spatial 
analysis using county-level USDA survey data to examine local-scale accuracy in a major agricultural region.

While acknowledging that reference datasets may contain their own uncertainties and limitations in tem-
poral coverage or spatial resolution, this comprehensive validation approach allows us to evaluate GGCP10’s 
performance across different scales, regions, and agricultural systems. The consistency analysis includes both 
quantitative metrics (correlation coefficient (Corr), coefficient of determination (R²), and root mean square 
error (RMSE)) and detailed spatial pattern comparisons, providing users with clear understanding of the data-
set’s strengths and limitations across different geographical contexts and production scales.

 (1) Comparison with SPAM 2010. To assess the reliability of GGCP10, we compared it with the widely used 
global agricultural production dataset SPAM 20109 for four major crops: maize, wheat, rice, and soybean. 
Because SPAM 2010 and GGCP10 use different units (tons and kilotons, respectively), we converted the 
SPAM 2010 data to kilotons for consistent comparison. We generated overlapping density curves and 
calculated the key statistics to evaluate the agreement between the two datasets, as shown in Fig. 12.
Figure 12 shows the density distributions of the differences between GGCP10 and SPAM 2010 for each 
crop. The curves were centered around zero, indicating overall consistency. Soybean shows the highest 
agreement, with 78.2% of pixels having differences between -1 and 1 kiloton, and only 2.5% of pixels with 
differences less than -5 or greater than 5 kilotons. Maize and wheat also demonstrate good alignment, with 
around 65% of pixels having differences within ± 1 kiloton. Rice exhibits relatively lower consistency, with 
60.3% of pixels within ± 1 kiloton difference and 13.2% of pixels showing differences beyond ± 5 kilotons. 
The mean differences for all crops are close to zero (-0.01 to -0.18 kilotons), further confirming the general 
agreement between GGCP10 and SPAM 2010. However, there was a slight tendency for GGCP10 to over-
estimate compared to SPAM 2010, as indicated by the lower percentages of pixels with negative differences 
(ranging from 33.9% for soybean to 44.0% for rice).
To provide a more informative comparison, we conducted a grid-to-grid analysis between GGCP10 and 
SPAM 2010 for maize, wheat, rice, and soybean. Figure 13 shows the scatter density plots of this compari-
son, with both axes logarithmically scaled to better visualize the wide range of production values.
The grid-to-grid comparison between GGCP10 and SPAM 2010 reveals strong positive correlations for all 
four crops, with Corr ranging from 0.62 (maize) to 0.79 (rice). The scatter density plots demonstrate that 
most grid cells have similar production estimates in both datasets, particularly for medium to high produc-
tion values. Rice shows the strongest agreement with the highest correlation and R² values, while soybean 
exhibits the lowest RMSE. Wheat and maize display good overall consistency, with wheat showing tighter 
clustering around the 1:1 line compared to maize.
Despite the general agreement, there are noticeable differences between the datasets, particularly for lower 
production values where greater dispersion is observed. The RMSE values, ranging from 1.62 (soybean) to 
5.09 (rice) kilotons, indicate varying levels of local differences between GGCP10 and SPAM 2010. These 
findings suggest that while GGCP10 captures similar spatial patterns of crop production as SPAM 2010, 
there is room for continued refinement and validation, especially in areas with lower production values.
To illustrate the consistency and differences between GGCP10 and SPAM 2010, we selected key regions, 
including Africa (maize), Western Europe (wheat), Southeast Asia (rice), Brazil, and Argentina in South 

Fig. 11 Violin plots of model performance (R²) across continents for (a) Maize; (b) Wheat; (c) Rice; (d) 
Soybean.
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America (soybean). The results are presented in Fig. 14.
Owing to differences in the definition of arable land between the two datasets, inconsistencies in the 
covered pixels are inevitable. From a detailed perspective, the two datasets have very high consistency in 
high-production regions, whereas the inconsistent regions are mainly located in low-value areas. In addi-
tion, compared with SPAM2010, GGCP10 exhibited smoother spatial transitions.
In summary, the comparison revealed a high level of consistency between GGCP10 and SPAM 2010, 
particularly for soybean, maize, and wheat. The agreement was slightly lower for rice, but still within an 
acceptable range. These findings support the reliability of the GGCP10 as a global gridded crop production 
dataset.

 (2) Comparison with AsiaRiceYield4km. The AsiaRiceYield4km48 dataset provides a high-resolution (4 km) 
seasonal grid of rice yields in Asia spanning 1995 to 2015 and covers single-, double-, and triple-season 
rice. To harmonize the evaluation metrics and ensure consistency with our GGCP10 dataset, several ad-
justments were made to the AsiaRiceYield4km dataset.
Owing to the unavailability of seasonal harvested area data in AsiaRiceYield4km, the comparison was con-
strained to single-season rice areas, which constitute 56.5% of the total AsiaRiceYield4km area. To align 
with the spatial resolution of GGCP10, the AsiaRiceYield4km dataset was resampled to a 10 km grid. Dur-
ing the development of the GGCP10 dataset, we generated the corresponding harvested area data, allowing 
us to calculate the total production values for AsiaRiceYield4km based on these areas. The recalculated 
total production data served as the basis for consistency evaluation with the GGCP10 dataset.
For the overlapping years from 2010 to 2015, scatter density plots (Fig. 15) were used to assess the consist-
ency of gridded production data between the GGCP10 and AsiaRiceYield4km.
The data revealed a strong positive correlation between the GGCP10 and AsiaRiceYield4km for the years 
2010–2014. The data points closely align along the 1:1 line, reinforcing the idea that GGCP10 accurately 
captures the data distribution patterns present in AsiaRiceYield4 km. Acceptable error rates are indicated 
by RMSEs ranging from 3.09 to 3.30 kilotons per 10 km grid. The R² values range from 0.83 to 0.86, and 
correlation coefficients are between 0.91 and 0.93. Notably, 2015 exhibited a marginally lower slope and 
R², but remained within acceptable limits. It should be noted that for all years examined, the slope of the 
fitted line was less than 1, suggesting that GGCP10 tends to overestimate production when compared to 
AsiaRiceYield4km.
In summary, the GGCP10 exhibits a strong degree of consistency with AsiaRiceYield4km in terms of sin-
gle-season rice production grids, although localized discrepancies warrant further investigation.

 (3) Comparison with global subnational statistical data. To comprehensively validate the GGCP10 dataset 
on a global scale, we collected eight sets of subnational crop production statistics covering diverse regions 
worldwide (Table 3). These datasets are:

 1) HarvestStat Africa49

 2) Harmonized European Union subnational crop statistics50,51

 3) USDA “SURVEY” data of USA (https://quickstats.nass.usda.gov)

Fig. 12 The density distributions of the differences between GGCP10 and SPAM 2010.
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 4) Agricultural statistics from Directorate of Economics and Statistics of the Department of Agriculture of 
India (https://data.desagri.gov.in/website/crops-apy-report-web)

 5) Agricultural statistics from National Bureau of Statistics of China (https://data.stats.gov.cn/english/
easyquery.htm?cn=E0103)

 6) Agricultural statistics from Ministry of Agriculture, Livestock and Fisheries of Argentina (https://datoses-
timaciones.magyp.gob.ar/reportes.php?reporte=Estimaciones)

 7) Agricultural statistics from Central Statistics Agency of Indonesia (https://www.bps.go.id/en/
statistics-table?subject=557)

 8) Agricultural statistics from Australian Bureau of Statistics (https://www.abs.gov.au/statistics/industry/
agriculture/agricultural-commodities-australia)

Taking maize as an example, these datasets encompass 2,823 subnational units across 43 countries at various 
administrative levels. This extensive coverage allows for a comprehensive assessment of GGCP10’s performance 
across diverse agricultural systems and geographies.

To conduct the comparison, we aggregated GGCP10 data based on the boundaries of each subnational unit. 
We then created scatter plots (Fig. 16) comparing GGCP10 aggregated production estimates with subnational 
statistical data for maize, wheat, rice, and soybean. These plots offer a quantitative assessment of the dataset’s 
performance across different crops and production scales.

The scatter plots reveal varying levels of agreement between GGCP10 estimates and subnational statis-
tics across the four crops. Maize shows a strong positive correlation (Corr = 0.92, R² = 0.84), with data points 
clustering closely around the 1:1 line, indicating good overall agreement. Wheat demonstrates even higher 

Fig. 13 Log-log scatter density plots comparing GGCP10 and SPAM 2010 production estimates (kilotons per 
10 km grid) for (a) maize, (b) wheat, (c) rice, and (d) soybean. Both x and y axes are logarithmically (base 10) 
transformed to better visualize the wide range of production values. The color scale represents the density of 
points, with warmer colors indicating higher densities. The dashed line represents the 1:1 relationship.
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correlation (Corr = 0.94, R² = 0.86), with tightly clustered data points, though there’s a slight underestima-
tion trend for high-production areas. Rice exhibits the lowest correlation among the four crops (Corr = 0.86, 
R² = 0.68), with a more dispersed pattern, especially for production levels between 5,000 and 25,000 kilotons 
where GGCP10 tends to overestimate. Soybean shows the strongest performance with the highest correlation 
(Corr = 0.98, R² = 0.96) and the lowest RMSE (121%), indicating excellent agreement between GGCP10 and 
subnational statistics across all production levels. RMSE values for maize (204%), wheat (262%), and rice (205%) 
suggest significant variability, particularly for smaller production units.

Fig. 14 Spatial comparison of crop production between SPAM 2010 and GGCP10 datasets for selected regions. 
(a) Maize production in Africa; (b) Wheat production in Western Europe; (c) Rice production in Southeast 
Asia; (d) Soybean production in Brazil and Argentina, South America.
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Despite some variations, the high correlations and R² values across all crops indicate that GGCP10 provides 
reliable estimates of crop production at the subnational level, particularly for larger production units.

We then calculated two metrics for each unit: the correlation coefficient and RMSE (relative to the unit’s 
mean production in 2010–2020). A global consistency comparison map was created for the four major crops 
(maize, wheat, rice, and soybean), providing a comprehensive visual assessment of GGCP10’s accuracy across 
different geographical areas and agricultural systems (Fig. 17).

Figure 17 presents a comprehensive global assessment of GGCP10’s performance for four major crops 
(maize, wheat, rice, and soybean) at the subnational level. For maize, high correlations (>0.7) and low RMSE 
percentages (<30%) are observed in major producing regions such as the U.S. Corn Belt, China’s Northeast Plain 
and North China Plain, Argentina’s Pampas, and India’s Gangetic Plain, indicating strong agreement between 
GGCP10 and official statistics in these key areas. Wheat shows robust performance in major wheat-growing 
regions, with strong correlations and low RMSE percentages evident in the U.S. Midwest, most of Western 
Europe, Australia, Argentina’s Pampas, Northern China, and Northern India. Rice estimates demonstrate 
high accuracy in key producing areas of Asia, including Indonesia, India’s Ganges Plain, China’s Heilongjiang 
Province, and West Africa’s Gulf of Guinea, as reflected by high correlations and lower RMSE percentages. 
Soybean production patterns are effectively captured in major producing regions, with strong correlations 
and low RMSE percentages in Argentina’s Pampas, the U.S. Mississippi River Basin and Central Plains, China’s 
Northeast Plain, and South Africa’s semi-arid grasslands.

Overall, GGCP10 demonstrates high consistency with subnational statistical data in global major produc-
tion areas for all four crops. The dataset shows robust performance in capturing production patterns in areas 
with well-established agricultural systems and data infrastructure, particularly in North America, Europe, and 
large parts of Asia. However, the correlation and RMSE values gradually worsen as regional production values 
decrease. Higher RMSE percentages and lower correlations are observed in parts of Africa, non-major produc-
ing provinces in China, Spain within the EU, and non-major producing counties in the United States.

Furthermore, to more clearly illustrate the spatial distribution details, considering that the USDA data is the 
most fine-grained (county level) among the aforementioned subnational datasets, we selected this dataset for a 
detailed spatial comparison with GGCP10 at the county level. To assess the consistency between GGCP10 and 
the USDA data, we selected data from three years (2010, 2015, and 2020). We aggregated the GGCP10 dataset 
based on the boundaries of counties in the United States to obtain production data at the county level. We 
then performed spatial visualization of the two datasets to intuitively present their consistency and differences 
(Figs. 18, 19, 20 and 21), and calculated corresponding accuracy metrics (Corr, R², RMSE). It should be noted 

Fig. 15 Scatter density plots comparing GGCP10 and AsiaRiceYield4km rice production estimates (kilotons 
per 10 km grid) for years. (a) 2010; (b) 2011; (c) 2012; (d) 2013; (e) 2014; (f) 2015.
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that, to focus on the main crop-producing areas and improve the readability of the maps, we only display the 
primary regions in the figures.

For maize, the spatialization results showed that, compared to the USDA data, the underestimation 
of the GGCP10 dataset was mainly located in North Dakota, and the overestimation was mainly located in 
Kentucky, whereas for other regions, the spatial distribution consistency of the two datasets was relatively high. 
Overall, GGCP10 tends to overestimate production in low-production areas and underestimate production in 
high-production areas compared to the USDA survey data.

For wheat, although the R² values were relatively low, the lower RMSE and higher correlation coefficients 
indicated significant correlations between GGCP10 and the USDA data. The spatialization results show that, 
compared to the USDA data, the GGCP10 dataset shows a relatively obvious underestimation in South Dakota 
and Nebraska, whereas overestimation is more evident in North Dakota. Apart from those regions, the other 
regions maintained good consistency.

For rice, the spatialization results showed that there were relatively few regions cultivating rice in the United 
States. In terms of accuracy metrics, correlation and R² were significantly higher than for maize and wheat; and 
the spatial consistency between the USDA data and the GGCP10 dataset was very high, with overestimation 
occurring only in some counties.

For soybean, GGCP10 showed high consistency with the USDA dataset. The spatialization results showed 
that the underestimation of high-production areas by the GGCP10 dataset was mainly located in Indiana, South 
Dakota, and Nebraska, whereas the consistency in other high-production states, such as Illinois, was relatively 
high. The overestimated areas were mainly located in North Carolina, Wisconsin, and Minnesota in 2010.

All four crops had relatively high correlation coefficients, indicating good agreement between our dataset 
and the USDA data. Although R² was relatively low for wheat, this may be due to potential sampling bias, as the 
USDA dataset was derived from sample surveys. Overall, our dataset showed high consistency with the USDA 
data, demonstrating its higher reliability and reference value.

Usage Notes
The GGCP10 dataset, while comprehensive and valuable for global crop production analysis, has certain inher-
ent limitations and potential sources of uncertainty that users should consider when applying it to their research 
or decision-making processes. The following paragraphs elucidate these key considerations to ensure appropri-
ate interpretation and application of the data.

 (1) Limitation in using FAO national statistical data. FAO statistical data, while an important source for the 
GGCP10 dataset, have limitations due to their coarse spatial resolution and potential variability in data 

Data source Unit type Crop type coverage Unit coverage Time coverage

HarvestStat Africa Mixed (Province / City)

Maize 331 units of 27 countries 2010–2020

Wheat 79 units of 12 countries 2010–2020

Rice 249 units of 26 countries 2010–2020

Soybean 90 units of 11 countries 2010–2020

Harmonized European Union subnational crop statistics NUTS
Maize 387 units of 11 countries 2010–2020

Wheat 769 units of 16 countries 2010–2020

USDA “SURVEY” data of USA County

Maize 1998 units of USA 2010–2020

Wheat 1644 units of USA 2010–2020

Rice 87 units of USA 2010–2020

Soybean 1706 units of USA 2010–2020

Agricultural statistics from Directorate of Economics and 
Statistics of the Department of Agriculture of India State

Maize 28 units of India 2010–2020

Wheat 23 units of India 2010–2020

Rice 30 units of India 2010–2020

Soybean 20 units India 2010–2020

Agricultural statistics from National Bureau of Statistics 
of China Province

Maize 31 units of China 2010–2020

Wheat 30 units of China 2010–2020

Rice 30 units of China 2010–2020

Soybean 30 units of China 2010–2020

Agricultural statistics from Ministry of Agriculture, 
Livestock and Fisheries of Argentina Province

Maize 15 units of Argentina 2010–2020

Wheat 14 units of Argentina 2010–2020

Rice 5 units of Argentina 2010–2020

Soybean 15 units of Argentina 2010–2020

Agricultural statistics from Central Statistics Agency of 
Indonesia Province

Maize 33 units of Indonesia 2010–2015

Rice 33 units of Indonesia 2010–2015
2018–2020

Agricultural statistics from Australian Bureau of Statistics State Wheat 4 units of Australia 2017–2020

Table 3. Summary of subnational statistical datasets used for global validation.
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quality across countries. These factors may lead to inconsistencies between GGCP10 and local statistics in 
some regions. While subnational crop statistics could potentially improve modeling accuracy, the lack of 
globally unified sub-regional data and significant variations in data characteristics across countries make 
their incorporation challenging without compromising global comparability.
Despite these limitations, FAO national agricultural statistics offer clear advantages for global-scale 
production estimations. Their authoritative nature, long time series, and systematic verification process 
provide a consistent benchmark across countries. By using FAO data for calibration, GGCP10 maximizes 
the use of existing data resources while ensuring consistency in global benchmarks. This approach enables 
the dataset to better serve applications such as monitoring Sustainable Development Goals (SDGs) and 
assessing global food security, albeit at the cost of some subnational detail.

 (2) Uncertainties in crop spatial distribution. The crop spatial distribution information in the GGCP10 was 
based on reference data from 2015. However, the spatial allocation of crop planting areas may differ across 
years owing to factors such as agricultural policies, market demands, and climate change. This may intro-
duce uncertainties in the crop distribution for certain grids, consequently affecting our estimates of the 
harvested area and crop production52. Although the comparison with other datasets showed a high level 
of consistency, there were instances of overestimation or underestimation in certain regions or for certain 
crops, which may have been caused by this uncertainty.
The irrigation datasets were considered in model development, however, cropland could be cultivated at 
different cropping intensity across the region and across years. Considering the availability of the cropping 
intensity at global scales either at low resolution or high resolution53–55, we will further enhance the pro-
duction estimation model by integration of the cropping intensity dataset.

Fig. 16 Comparison of GGCP10 aggregated crop production with subnational statistical data. Scatter plots are 
shown for (a) maize, (b) wheat, (c) rice, and (d) soybean. The dashed line represents the 1:1 relationship. RMSE 
values are expressed as percentages of mean production.
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 (3) Implications for Data Users. When faced with these limitation and uncertainties in the GGCP10 dataset, 
users should exercise caution when processing and interpreting the results of related research.

The GGCP10 dataset was calibrated for consistency with FAO national-level statistics; however, the data 
sources for different countries primarily came from their respective agencies. This implies that the reliability 
of statistical data may vary by country, and that such regional differences may influence the conclusions drawn 
from cross-national or large-scale comparative analyses.

Moreover, if users have access to more refined statistical data for their regions of interest, we recommend that 
they perform a secondary calibration of their initial estimation results using this more reliable regional data. 
Specifically, users can calculate the ratio coefficient between our initial estimates and the regional statistical 
totals, and then use this coefficient to proportionally scale the gridded production data to match the regional 
statistical totals.

Fig. 17 Global comparison of GGCP10 crop production with subnational statistics. The left column displays 
correlation coefficients, while the right column shows RMSE percentages for maize, wheat, rice, and soybean. 
Gray areas represent background regions, while dark gray areas indicate regions with valid GGCP10 data 
coverage.
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Additionally, due to differences in resolution, definitions of cropland extent, and other factors, the yield 
values calculated from the GGCP10 dataset may differ from those obtained through ground surveys. These 
discrepancies could potentially lead to the overestimation or underestimation of yield-influencing factors when 
using the GGCP10 dataset in research or decision-making processes. Users should be aware of these potential 
limitations and interpret the results with caution.

Fig. 18 Spatial comparison of county-level maize production (kilotons) between GGCP10 and USDA survey 
data for 2010, 2015, and 2020.

Fig. 19 Spatial comparison of county-level wheat production (kilotons) between GGCP10 and USDA survey 
data for 2010, 2015, and 2020.
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Code availability
The custom code used for generating and processing the GGCP10 dataset is publicly available on GitHub: https://
github.com/QinXingli/GGCP10_Method.git. This repository contains all custom code used in our research. The 
code is written in Python 3.7. For long-term preservation and to enable citation, we have archived the specific 
version of the code used in this study on Zenodo56 with the following https://doi.org/10.5281/zenodo.13626322. 
This archived version corresponds to GitHub release v1.0.0.

The code is freely accessible to anyone for use, modification, and distribution, provided appropriate credit is 
given. There are no restrictions on access. The repository includes a detailed README file with instructions for 
installation and usage.
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Fig. 20 Spatial comparison of county-level rice production (kilotons) between GGCP10 and USDA survey data 
for 2010, 2015, and 2020.

Fig. 21 Spatial comparison of county-level soybean production (kilotons) between GGCP10 and USDA survey 
data for 2010, 2015, and 2020.
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