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Multi-resolution X-ray micro-
computed tomography images 
of carbonate rocks from brazilian 
pre-salt
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The recent surge in artificial intelligence (AI) advancements has been driven by the availability of open 
datasets for model development and evaluation. However, in the field of earth sciences, particularly in 
digital rock physics applications, open data remains scarce. to bridge this gap, we introduce a dataset 
comprising 16 rock samples from the Brazilian pre-salt region, available in both low resolution (48 
μm - 64 μm) and high resolution (6 μm - 8 μm). The dataset also includes their respective segmented 
images into pore and matrix. Furthermore, porosity and permeability values obtained from laboratory 
measurements are provided for all samples. this dataset serves as a valuable resource for developing 
and benchmarking AI-based superresolution/segmentation models. Additionally, it can be utilized to 
develop models for predicting porosity and permeability directly from μ-Ct images.

Background & Summary
Characterizing reservoirs is a significant challenge and critical step in various applications, including carbon 
capture and storage as well as oil extraction in the oil and gas industry. This process typically involves a multidis-
ciplinary approach, combining physical, geological, and mathematical modeling techniques to obtain accurate 
representations of rock layer structures, compositions, and physical properties1. However, when dealing with 
carbonate rocks from the Brazilian pre-salt region, the complexity of this task increases due to their inherently 
heterogeneous nature. Therefore, acquiring comprehensive knowledge of their petrophysical and structural 
properties is essential for optimizing operational efficiency and maximizing resource utilization rates in these 
applications2.

Digital rock physics is increasingly being utilized for the precise analysis and characterization of physical 
properties such as porosity and permeability3–5. One key technology in this domain is X-ray computed tomog-
raphy (CT), which has been adapted for geological investigations, particularly in petroleum geology6–8. This 
non-invasive technique excels at generating high-resolution, three-dimensional images of a sample’s internal 
structure without causing any damage to the sample itself. Notably, this digital approach significantly accelerates 
the characterization process compared to traditional laboratory-based methods, which require time-consuming 
rock cleaning procedures that typically span 100-120 days before analysis can commence9,10. However, while 
numerical simulations enable rapid estimation of petrophysical properties, they often rely on high-resolution 
images, which are costly and time-consuming to acquire through microtomography (μ-CT). To address this 
limitation, this descriptor is designed to provide both high and low-resolution images, accompanied by their 
corresponding segmentations. In this context, the release of a comprehensive dataset comprising microtomog-
raphy images of pre-salt carbonate rocks is of paramount importance to the digital rock physics community. 
Its value lies particularly in the fields of artificial intelligence (AI) and petrophysical property characterization, 
where it enables comprehensive analysis at different scales. The availability of multi-resolution images presents 
a significant opportunity for the development and validation of superresolution algorithms11–13. This rapidly 
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evolving area of research in image analysis aims to reconstruct high-resolution images from low-resolution ones. 
Successful implementation of these algorithms can significantly enhance the quality and accuracy of analyses, 
leading to more precise characterizations and improved predictive models. Furthermore, this dataset facilitates 
the development of segmentation algorithms for distinguishing between pore and matrix structures at both high 
and low resolutions. The inclusion of laboratory-measured permeability values also enables the development of 
predictive models that can enhance our understanding of rock properties and improve the accuracy of simula-
tions in various geological and engineering applications.

In digital rock applications, it is common to acquire images of the same rock sample-such as plugs, side-
wall samples, or subsamples of a rock matrix-at multiple resolutions. These images, whether low-resolution, 
high-resolution, or zoomed, depict the same underlying rock matrix but vary in the level of detail and quality of 
information they provide. Zoomed images typically serve as an intermediate step between larger samples and 
more detailed subsamples. Having images at different scales offers vast opportunities for petrophysical, geo-
logical, and AI applications. In the field of petrophysics, this dataset can be used for porosity and permeability 
analyses, characterizations of rock connectivity and heterogeneity, and simulations of advanced properties like 
acoustics, wettability, and relative permeability.In geology, high-resolution images are particularly useful for 
investigating diagenetic processes that impact rocks over time, such as cementation and mineral dissolution. 
This analysis can provide valuable insights into the diagenetic history of a formation and its effects on petro-
physical properties. Additionally, these images enable precise identification of specific minerals and rock com-
ponents, allowing three-dimensional visualizations of textures and internal structures. AI further enhances the 
utility of this dataset through various applications. Image classification algorithms can automatically segment 
rock samples into pore and matrix files, while object detection techniques identify features like pores, grains, or 
fractures within samples. Semantic segmentation models partition images into distinct regions based on their 
properties, enabling quantitative assessments of material distributions. Feature extraction algorithms extract 
meaningful attributes from images, which can be used for conducting predictive modeling on petrophysical 
properties. Moreover, AI facilitates anomaly detection to identify unusual patterns within images, indicating 
potential geological features or artefacts. Transfer learning leverages pretrained models to extract relevant fea-
tures from images, reducing the need for extensive labelled data. Generative modelling techniques can augment 
the dataset by generating synthetic images with characteristics similar to those obtained from real samples, 
expanding the training data for achieving improved model performance.

The dataset presented in this descriptor was compiled from 16 samples of carbonate rocks sourced from the 
Brazilian pre-salt region, a critical and challenging exploratory environment for the oil and gas industry. The 
μ-CT acquisition processes were performed using the X-ray emission μ-CT VTomex M model manufactured 
by Waygate Technology. The resulting images were subsequently processed, filtered, registered, and cropped into 
equal volumes for both high and low-resolution datasets. Furthermore, these images were segmented into pore 
and matrix structures. A detailed description of the workflow employed to obtain and process the μ-CT data, as 
well as their segmentations, is provided in the Methods section. Additionally, the Data Records section provides 
a comprehensive list of all images included in the dataset, along with their main characteristics, while the Usage 
Notes section offers guidance on how to access and utilize these datasets using Python.

Methods
In this section, we provide a detailed description of the methodology used in this study, focusing on three fun-
damental aspects: descriptions of the database, the image acquisition process using a μ-CT, and the workflow 
employed in image processing.

Data Description. The dataset presented comprises 16 carbonate rock samples from the Brazilian Pre-Salt. 
The selected samples fall into two distinct categories: sidewall core samples with a diameter of 2.54 cm and plug 
samples with a diameter of 3.81 cm. Each sample was used to generate μ-CT images at two resolutions, facili-
tating the development of super-resolution methods. Specifically, the sidewall core samples yielded high and 
low-resolution images at 6 μm and 48 μm, respectively, while the plug samples produced images at 8 μm and 64 
μm, respectively. This resolution scheme was chosen to maintain a consistent eight-fold difference between low 
and high resolutions, thereby ensuring consistent analysis and comparison across the dataset.

The dataset comprises both grayscale (16-bit) and segmented images. The grayscale images underwent pro-
cessing, including artifact reduction through filtering, registration, and cropping, ultimately yielding 32 image 
files. Meanwhile, the segmented images were obtained using Otsu14,15 and Watershed16,17 methods. Each original 
image has a corresponding segmented version, divided into pore and matrix components, thereby adding 32 
more files to the dataset and bringing the total to 64 files.

The integration of both grayscale and segmented images significantly enhances the versatility and applica-
bility of this dataset. The grayscale images are particularly well-suited for the development and validation of 
super-resolution algorithms, whereas the segmented images can be directly utilized for the evaluation of seg-
mentation algorithms or for implementing super-resolution methods that bypass the need for grayscale data. 
Moreover, we also provide experimentally determined permeability and porosity values, which were obtained 
through laboratory analysis. These values can be leveraged to develop or, given the limited size of this dataset, 
evaluate predictive models for these characteristics in complex heterogeneous rocks, such as carbonates.

Image Data Acquisition. The μ-CT setup consists of an X-ray source and detector, with the rock sam-
ple positioned between them. During scanning, the sample rotates 360 degrees around a fixed axis, enabling 
detailed imaging from multiple angles. This rotation process captures a series of radiographic (2D) images at var-
ious angles, which represent the attenuation of X-rays passing through the sample. The grayscale values in these 
images reflect the varying absorption of X-rays by different materials and structures within the rock.
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The VTomex M model was used for all μ-CT acquisitions. This equipment features two X-ray tubes (180 kV 
and 300 kV) and a flat screen detector, offering faster and more enhanced image quality with better resolution 
than competing devices. In this case, only the 300-kV tube was utilized since the rock sample needed to remain 
stationary for subsequent imaging purposes.

After acquiring the 2D radiographic images, reconstruction software employs algorithms like filtered back 
projection and iterative reconstruction to transform the 2D images into a coherent three-dimensional volume. 
This reconstructed 3D volume represents the spatial distribution of the X-ray attenuation coefficient within the 
rock sample, effectively mapping its internal structures in detail. The resulting 3D volume provides a detailed 
and accurate representation of the internal features of rocks, enabling further analyses and simulations of their 
petrophysical properties, such as porosity and permeability.

μ-CT scans were performed at both low and high resolutions for all rock samples considered in this descrip-
tor with energy settings of 150 KeV and 140 KeV, respectively. Low-resolution scans employed a current setting 
of 250 μA with an average factor of 3 to improve the signal-to-noise ratio, while the skip factor was set to 1, 
ensuring no data points were skipped during scanning. A 0.15-mm Cu filter was used to reduce beam harden-
ing effects and noise by absorbing lower-energy X-rays. In contrast, high-resolution settings utilized a current 
of 140 μA with an average factor of 6 to further improve image quality by reducing random fluctuations in the 
measurements, and maintained the same jump parameter as low-resolution scans. The same type of 0.15-mm 
Cu filter was used for both cases to maintain consistency in image quality.

Image processing Workflow. After acquiring the images, a post-processing workflow was applied, as illus-
trated in Fig. 1. This comprehensive process consisted of four primary steps: image processing, image registration, 
cropping, and segmentation. The first step, image processing, aimed to enhance the quality of the acquired images 
by reducing noise and artefacts. This ensured that the images were clear and suitable for further analysis. In the 
second step, image registration was performed to align the low-resolution images with their high-resolution 
counterparts. This step is crucial because there is an inherent trade-off between resolution and the sample size that 
can be captured; higher resolutions provide more detail but limit the sample area. Essentially, the high-resolution 
image serves as a detailed “zoom-in” on a specific part of the sample initially captured in low resolution, and, thus, 
image registration ensures that the same physical structure is aligned in both high and low-resolution images. 
Following registration, the images were cropped in the third step to generate images representing the same phys-
ical structure and maintain a consistent enlargement factor, chosen as 8x, between the low and high-resolution 
images. The final step was segmentation, where the images were divided into regions of interest (rock and pore).

Image Processing. After reconstructing the images into a 3D volume from the 2D projections, a quality con-
trol check was performed using the reconstruction software provided with the μ-CT equipment (Fig. 2). The 
goal of this step was to ensure that all 2D projections, from the first to the last, were processed correctly. This 
was achieved by selecting the entire area of interest of each image (red rectangle in Fig. 2(a)) and verifying its 
acquisition. Once the 3D digital volume was processed, a verification procedure was carried out to inspect the 
reconstructed volume (Fig. 2(b),(c)). The first slice (Fig. 2(b)) showed the beginning of the sample, while the last 
slice (Fig. 2(c)) displayed the end. This step ensured that all slices of the sample were preserved and processed 
correctly.

Following the initial quality control procedures, the analysis of rock images proceeds with the application of 
filters, a fundamental step in enhancing image clarity for detailed examination. Industry-standard software, typ-
ically incorporates several filtering tools designed to refine the visualization of rock structures. These filters play 
a crucial role in smoothing the rock matrix, thereby facilitating the differentiation and segmentation of various 
gray shades that correspond to different mineral compounds within the rock. In addition to enhancing matrix 
visibility, filters are instrumental in achieving a clearer distinction between the rock matrix and its pores, a key 
factor in accurate rock characterization. In this study, two specific filters were employed: the Median Filter and 
the Gaussian Filter, both applied using the Pergeos software. The Median Filter, used on low-resolution images, 
utilizes morphological operators to assign pixel values based on the median of their surrounding neighborhood. 
This approach is effective in mitigating non-Gaussian noise and minimizing the impact of small-scale artifacts, 
which are common in lower quality captures. In Pergeos, the adjustable parameter for the Median filter is called 
number of interaction, set to 2 in this study. Conversely, for high-resolution images, the Gaussian filter was used. 
This filter enhances contrast and smooths edges, facilitating the precise segmentation of pores in the rock. In 
Pergeos, the available parameters for the Gaussian filter include the kernel type, which was set to separable, and 
the standard deviation on the (x) and (y) axes which were defined as 2.

Fig. 1 Image processing workflow.
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In the subsequent step, adjustments are made to align the low and high-resolution images. The objective of 
this procedure is to ensure that the high-resolution image is precisely centered over the low-resolution image, 
enhancing the consistency and accuracy of the analysis. This alignment is critical as it sets the stage for the next 
phase of the process: image registration. Proper alignment ensures that the registration process is feasible.

Image Registration. In μ-CT, image registration is a crucial process that aligns images with varying resolutions 
into a unified voxel spatial coordinate system. This requires a transformation that precisely maps each point 
in one image to another, ensuring spatial coherence across different image scales. In this project, we consider 
zoomed images to be high-resolution images. Pre-adjustment processes facilitate the effectiveness of image reg-
istration by ensuring that the spatial positioning of the highest-resolution 3D image aligns closely with the 
reference image, which usually has a lower resolution. Figure 3 illustrates the alignment process, showing the 
overlay of a low-resolution image in Fig. 3(a) onto the corresponding zoomed image in Fig. 3(b), with successful 
registration displayed in Fig. 3(c). This technique confirms that all images accurately represent the same area of 
the sample at different scales and resolutions.

Cropping. At this stage, the high and low-resolution images are precisely aligned, ensuring accurate spatial 
correspondence between them. This alignment is crucial for cropping both sets of images to focus on identi-
cal regions of interest at different resolutions. The cropping process is primarily guided by the high-resolution 
image, as depicted in Fig. 4. Figure 4(a) shows a sample at a resolution of 64 μm. In Fig. 4(b), we see the cropping 
step guided by the details visible in the high-resolution image, resulting in Fig. 4(c), which is a cropped version 
from the same area as the high-resolution image. This method guarantees that the data extracted at varying 
resolutions are consistent and precise, enhancing the reliability of comparative analyses and interpretations. 
However, it is important to note that the resulting cubes do not necessarily have the same voxel count since their 
resolution differs. The image registration was verified to ensure that the high and low-resolution images were 
precisely aligned, corresponding voxel to voxel in the same position.

Fig. 2 Visual Quality Control. (a) 2D Projections Image (b) The first slice of the 3D volume. (c) The last slice of 
the 3D volume.

Fig. 3 Registration process for Sample P01: (a) Low-Resolution Image (64 μm); (b) High-Resolution Image 
(8 μm) and (c) Registered Image of (a) and (b).
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Image Segmentation. After being cropped into cubes, both high-resolution and low-resolution images were 
then subjected to segmentation using the watershed algorithm. Initially, segmentation was performed using 
the Otsu method, which established ideal thresholds to distinguish between pores and matrix. These thresh-
olds were carefully verified for accuracy before advancing. With the selected thresholds in place, the next step 
involved applying them to the watershed algorithm. The watershed segmentation method, which is a robust 
technique in image processing, has been employed in various research domains. The method interprets an image 
as a topographic landscape, where grayscale levels represent elevational heights-darker regions signify valleys, 
and lighter regions denote peaks. Segmentation is achieved by identifying the dividing lines between valleys, 
known as watershed lines, which partition the image into distinct regions or segments. This allows for the pre-
cise separation of objects and structures of interest16,17. This method proves particularly effective in scenarios 
with object overlaps or gradual variations in grayscale intensity, leading to more accurate segmentations and 
minimizing the risk of errors18. The resulting segmented images clearly delineate the pores and matrix, pro-
viding a detailed analysis of the sample’s microstructure and enabling a more precise characterization of its 

Fig. 4 Example of steps in the low-resolution cropping stage. (a) Low-resolution image, (b) cropping based on 
the high-resolution image, and (c) the final low-resolution image.

Fig. 5 High and low resolution images for the P01 sample. In (a) and (c) we have the images before 
segmentation for the high and low resolution respectively, in (b) and (d) we have their respective segmentations. 
In (e) and (g) we have 2D images before segmentation. In (f) and (g), we have 2D images showing the pores 
highlighted in blue.
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petrophysical properties. An example of a segmented sample is shown in Fig. 5. To ensure the reproducibility of 
the segmentation process of the files provided, the threshold values applied in the segmentation, as well as the 
colormap parameters used in the PerGeos software, are listed in the Table 1.

Data Records
The dataset acquired in this study and reported in the manuscript is available on the Digital Rocks Portal at 
https://www.digitalrocksportal.org/projects/50319. The dataset comprises 16 samples, as shown in the Table 2, 
each comprising two sets of grayscale images: one high resolution and one low resolution, for a total of 32 
images. To further enhance the dataset, segmentation was applied to distinguish between pores and matrix, 
resulting in an expanded dataset of 64 files, including both original grayscale images (32) and segmented images 
(32). Notably, 10 of these samples are sidewall cores, while the remaining 6 are plugs. In μ-CT applications, 
precise differentiation between various materials and structures is crucial. To achieve this level of precision, we 
utilized 16-bit unsigned images due to their superior numerical resolution compared to the more common 8-bit 
images. The use of 16-bit images offers several advantages. They provide enhanced capability to differentiate 
between varying levels of X-ray absorption, which is essential for identifying and characterizing pores, miner-
als, fractures, and other features in rock samples. Additionally, these higher-resolution images offer significant 
benefits in post-processing, quantitative analysis, and image manipulation. The increased bit depth allows for 

Code

Colormap Threshold value

Low Res. High Res. Low Res. High Res.

P01 5011–19022 8574–16720 7100 10300

P02 2756–9734 19094–22829 4200 20000

P03 3405–13721 20916–26352 5075 21900

P04 3760–13497 16536–20831 5500 17294

P05 3562–9667 14277–18713 5200 15250

P06 5367–16918 13391–17147 7710 14150

SW01 4071–13463 19100–27229 5646 20003

SW02 2996–10291 17055–21334 4300 17927

SW03 3282–8992 21682–25259 4030 22050

SW04 2529–10692 11837–18230 4100 13268

SW05 3083–11436 15461–21112 4300 16000

SW06 7167–12956 9971–13185 8410 10450

SW07 2469–9131 19669–22968 3851 20400

SW08 2303–11483 11204–17767 3800 12410

SW09 2899–8192 16451–19923 3850 17077

SW10 3100–9470 20391–25164 3812 21151

Table 1. Parameters used for image segmentation.

Code

Dimensions (pixels) Pixel Size

Low Res. High Res. Low Res. High Res.

P01 150 × 168 × 186 1200 × 1340 × 1488 64 um 8 um

P02 176 × 183 × 207 1401 × 1461 × 1655 64 um 8 um

P03 144 × 158 × 201 1149 × 1259 × 1603 64 um 8 um

P04 142 × 171 × 193 1132 × 1362 × 1541 64 um 8 um

P05 154 × 158 × 189 1226 × 1261 × 1507 64 um 8 um

P06 163 × 151 × 196 1299 × 1202 × 1562 64 um 8 um

SW01 161 × 164 × 203 1281 × 1308 × 1622 48 um 6 um

SW02 169 × 150 × 198 1348 × 1199 × 1579 48 um 6 um

SW03 139 × 164 × 197 1105 × 1310 × 1572 48 um 6 um

SW04 156 × 154 × 203 1241 × 1226 × 1620 48 um 6 um

SW05 179 × 156 × 187 1427 × 1244 × 1491 48 um 6 um

SW06 162 × 150 × 197 1294 × 1194 × 1569 48 um 6 um

SW07 151 × 164 × 200 1202 × 1307 × 1599 48 um 6 um

SW08 150 × 166 × 204 1199 × 1324 × 1625 48 um 6 um

SW09 163 × 156 × 198 1298 × 1241 × 1582 48 um 6 um

SW10 155 × 143 × 184 1236 × 1140 × 1466 48 um 6 um

Table 2. Size and resolution details for each sample μ-CT.
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more substantial adjustments in contrast and brightness without compromising information, leading to more 
accurate and reliable data interpretation. This is particularly important when working with rock samples that 
often exhibit complex structures and subtle features.

technical Validation
The technical validation process is divided into two parts: the microtomography system itself and the images it 
produces. To ensure the precision and accuracy of the measurements, the μ-CT VTomex M system undergoes 
regular calibration checks. This procedure is crucial for verifying that the images do not contain distortions and 
that the dimensions, density, and other parameters are measured accurately.

The Jima test, a standard evaluation method developed by the Japan Inspection Instruments Manufacturers’ 
Association, is used to assess the spatial resolution and performance of the imaging system. In this test, the sys-
tem’s ability to distinguish between close details in a sample is evaluated. The Jima phantom consists of a pattern 
of fine lines engraved on a metal substrate with known and variable widths. This allows for the evaluation of the 
imaging system’s ability to resolve different levels of detail.

During calibration, the Jima phantom is placed in the inspection position of the μ-CT imaging system, 
which then captures an image of the phantom through scanning. The resulting image is analyzed to determine 
the smallest line width that can be clearly resolved by the system. This result is compared with established stand-
ards to ensure that the system meets the spatial resolution requirements, thereby verifying that the image pixels 
accurately represent the details of the rock. Through this metrological calibration process, it was ensured that 
the μ-CT imaging system was capable of resolving and identifying fine details in the evaluated rock samples.

To assess the quality of our dataset, we compared the estimated digital porosities with laboratory-measured 
porosity values. Digital porosity was calculated by counting voxels in segmented images, which were previously 

Code
Laboratory 
Permeability (mD)

Laboratory 
Porosity (%)

Digital Porosity 
high (%)

Digital Porosity 
low (%)

P01 1610 19.9 17.1 16.2

P02 4923 13.1 11.3 10.2

P03 1518 7.7 5.4 4.5

P04 247 11.8 10.4 8.7

P05 340 10.5 7.2 4.7

P06 1950 11.2 8.9 7.9

SW01 179 13.8 12.7 6.0

SW02 642 17.7 13.4 5.5

SW03 24.6 11.7 8.2 5.5

SW04 945 18.3 12.6 12.9

SW05 50.3 10.0 10.1 6.9

SW06 352 16.2 8.2 7.0

SW07 25.1 10.0 8.9 6.3

SW08 422 18.9 12.1 7.7

SW09 14.2 14.0 10.2 5.5

SW10 7.92 12.8 11.3 7.4

Table 3. Porosity and permeability values of the rock samples analyzed in this study.

Fig. 6 The volume analyzed, highlighted by the orange rectangle at the center of the sample P05, represents a 
portion of the sample included in the dataset.
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divided into two phases: pore voxels (representing the pore space within the rock) and matrix voxels (com-
prising the solid phase of the rock). In a conventional binary image, pore voxels are assigned a value of 1, while 
matrix voxels are assigned a value of 0. The porosity was then calculated using the following equation: 

φ = N
T (1)

 where N represents the total number of pore voxels, and T denotes the total number of voxels in the image. 
This method provides a direct measure of the porosity based on the proportion of pore space observed in the 
segmented images.

Table 3 presents the estimated digital porosities alongside laboratory-measured porosity and permeability 
values. Some images within our dataset exhibit ring artifacts, which are a result of limitations inherent to the 
microtomography technique. Although these artifacts do not affect the segmentation process, they do impact 
the overall quality of the grayscale images.

Fig. 7 High and low resolution images of samples SW01, SW02 and SW03.
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As expected, the digital porosity values for all samples were lower than those obtained in the laboratory, both 
for low and high-resolution images. This discrepancy is attributed to limitations in image resolution and the 
potential unrepresentativeness of the cubes extracted from the whole image, particularly given the heterogeneity 
of the pre-salt carbonate samples. Figure 6 displays examples of the cubes extracted from the whole image, which 
were used to construct the dataset. Notably, sample P05 contains more porous regions that were not included 
in the central cube cut. This exclusion of porous areas results in a diminished porous volume and a lower digital 
porosity measurement compared to the laboratory-determined porosity reference value. This phenomenon is 
also evident in other samples where digital porosities are derived from high-resolution images. In contrast, the 
primary influencing factor for porosity results obtained from low-resolution images (48 μm-64 μm) was the 
limitation of image resolution itself. Given the heterogeneous nature of the samples and the diversity in pore 
sizes, pores smaller than the image resolution are not captured, leading to a decreased pore volume being ana-
lyzed in the low-resolution images. Figure 7 illustrates the differences between high and low-resolution images.

From these results, we can conclude that the segmentations, at least in the high resolution, are close to the 
real segmentation given the values obtained. However, additional work is needed to incorporate permeability 
simulations, this step is essential to establish a correlation between the porosity and permeability values for each 
sample based on μ-CT images. Including permeability will enable a more comprehensive and precise analysis of 
the petrophysical properties of the samples, enhancing our understanding of the behavior of the porous media. 
Additionally, future studies could aim to improve segmentation techniques and address the challenges posed by 
image resolution limitations. In summary, while the current results are promising, ongoing research is crucial 
to refine and extend the application of μ-CT images in assessing the petrophysical properties of heterogeneous 
samples.

Usage Notes
The dataset files are provided in NetCDF (.nc) format, a widely used standard for array-oriented scientific data. This 
format allows for easy manipulation and analysis using libraries such as xarray in Python. To work with the dataset, you 
can load a file named “filename.nc” using the following code snippet:

Here, “data” refers to the specific field within the NetCDF file that contains the image data. Notably, if the 
filename contains the string “segmented”, it indicates that the associated images have been segmented into pores 
and matrices. This structured format and accompanying naming convention enable efficient data handling and 
analysis.

Code availability
No custom code was utilized to generate or process the data. All data processing was done using commercial 
softwares such as Avizo.
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