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Abstract
There is, at present, a lack of consensus regarding precisely what is meant by the term ’energy’ across the sub-disciplines of

neuroscience. Definitions range from deficits in the rate of glucose metabolism in consciousness research to regional

changes in neuronal activity in cognitive neuroscience. In computational neuroscience virtually all models define the

energy of neuronal regions as a quantity that is in a continual process of dissipation to its surroundings. This, however, is at

odds with the definition of energy used across all sub-disciplines of physics: a quantity that does not change as a dynamical

system evolves in time. Here, we bridge this gap between the dissipative models used in computational neuroscience and

the energy-conserving models of physics using a mathematical technique first proposed in the context of fluid dynamics.

We go on to derive an expression for the energy of the linear time-invariant (LTI) state space equation. We then use

resting-state fMRI data obtained from the human connectome project to show that LTI energy is associated with glucose

uptake metabolism. Our hope is that this work paves the way for an increased understanding of energy in the brain, from

both a theoretical as well as an experimental perspective.

Keywords Computational neuroscience � Neural energy

Introduction

The concept of energy in the brain is understood in various

ways across different sub-disciplines of neuroscience. In

the study of consciousness, energy is often linked to

metabolic activities that support brain function (Magistretti

and Allaman 2022). For example, ATP and glucose have

been shown to maintain the brain’s functional connectivity

(Chen and Zhang 2021)—whereas in cognitive

neuroscience, the brain’s metabolic energy has been linked

to different mental states (Galijašević et al. 2021). In

clinical neuroscience on the other hand, energy is of rele-

vance to many neurodegenerative (Kirch and Gollo 2021)

and neuropsychiatric disorders (Shokri-Kojori et al. 2019;

Zhang and Raichle 2010; Raichle 2006) and is also often

discussed in terms of deficit as a result of pathology—for

example following intracerebral haemorrhage (Rass and

Helbok 2019). In computational neuroscience, the Ising

model can be used to calculate a measure of energy in

terms of the level of correlation between neural regions

(Riehl et al. 2017). Spiking neuron models, originating

in reservoir computing, define the energy of neural systems

in terms of their computational efficiency (Gaurav et al.

2023). In the context of dynamic causal modelling (DCM),

‘free energy’ is defined as the statistical evidence for a

particular hypothesis following Bayesian model inversion

(Friston 2010). Among these different approaches, a key

challenge remains in terms of reaching a cross-disciplinary

consensus as to precisely what is meant by ’energy’ in the

context of the brain.

Such a consensus already exists across the various sub-

disciplines of physics, in which a system’s total energy is

defined as a conserved quantity—i.e., it does not change in

time. This idea was first formalized within Hamiltonian
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mechanics, which allows for a system’s equations of

motion to be derived under the presupposition that total

energy is conserved. However, there are scenarios in which

it is advantageous to conceive of a system as being dissi-

pative, meaning that energy is continuously being lost. Let

us consider for instance, a ball rolling along the floor with

an initial movement (’kinetic’) energy (Fig. 1A).

The ball then gradually slows down in what would

appear to be a dissipation of energy. However, upon closer

inspection we find that the ball’s energy is not actually lost,

but rather has been transferred to degrees of freedom that

are more difficult to measure. These degrees of freedom

take the form of increased motion of the atoms in the floor

and surrounding air, leading to an increase in temperature

(Fig. 1B). In fact, we find that the ball loses energy at

exactly the same rate as the environment absorbs energy

and thus the total energy in the combined ball ? environ-

ment system is conserved.

Virtually every equation of motion in computational

neuroscience e.g., the models of Hodgkin and Huxley

(1952), Izhikevich (2003), and Wilson and Cowan

(1972) describe dissipative processes. As such, these

models only capture the energy-dissipating system of

interest, but do not take account of the energy-absorbing

environment. This focus on purely dissipative dynamics

creates a an incompatibility between the models of com-

putational neuroscience and the foundations of Hamilto-

nian mechanics, which require that energy be conserved.

We can, however, circumvent this incompatibility by

ways of a technique that was first formulated by Morse and

Feshbach in the 1940’s in the context of fluid dynamics

(Morse and Feshbach 1954). The ’dodge’ (to quote the

authors) is that for every dissipative system we can con-

ceive of a mirror system that exists only mathematically

and functions so as to absorb energy at the same rate as the

original system loses energy. The combined dissipative

system ? ’undissipative’ mirror system conserves energy

when considered in unison and can hence be described by

Hamiltonian mechanics. Here, we show how this technique

can be applied to the linear time-invariant (LTI) equation

of motion, as this forms the basis of a large number of

dissipative equations used in computational neuroscience.

Similar approaches are gaining popularity in numerical

solutions to large-scale dynamical systems e.g., in the

application of Lagrangian neural networks (Cranmer, et al.

2003; Sosanya and Greydanus 2022). Other studies con-

sider similar approaches with regard to the associ-

ated computational methodology (Gori et al. 2016).

Furthermore, the modelling of neural activity within a

Lagrangian framework—including a comparison with

existing models—was recently laid out by Galinsky and

Frank (2021).

Our paper comprises three sections:

In the first section, we describe the Morse and Feshbach

mirror system approach using: (a) the simple case of

exponential decay, (b) the LTI form with sinusoidal driving

input, and (c) the LTI form with an unknown driving input.

In the second section, we establish the relationship

between the model parameters of the LTI equation and its

associated average energy by using synthetic data gener-

ated by the LTI equation itself.

In the third section, we establish the energy associated

with regional fMRI timeseries from the human connectome

project (HCP) and compare these with known structural,

functional, metabolic and electrophysiological Neuromaps

(Markello et al. 2022).

Methods

The mirror system Let us begin with a simple dissipative

dynamical system tracking the evolution of a dependent

variable x tð Þ that decays exponentially in time:

_x ¼ �ax; ð1Þ

where a is a positive constant.

In addition, we describe the environment in terms of a

mirror system that evolves according to a new variable

ex tð Þ, where this system gains energy at the same rate as the

original system in Eq. (1) loses energy, such that:

_
ex ¼ aex ð2Þ

The need for this mirror system approach can be moti-

vated by the limitations of alternative approaches, as out-

lined in Appendix 1.

We can then cast Eqs. (1) and (2) in the form of the

following Lagrangian L:

A

B

Fig. 1 A A ball rolls along the floor with an initial velocity indicated

by the arrow. The floor and surrounding air have a certain

temperature, indicated by the thermometer. B As the ball slows

down, we find that the temperature of the floor and surrounding air

increase slightly, due to the ball’s kinetic energy having been

transferred to atomic motion in the environment
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L ¼ 1

2
_xex � x _

ex
� �

þ axex ð3Þ

which we can verify by recovering the equations of motion

via the Euler–Lagrange equations:

oL

o~x
� d

dt

oL

o _~x

� �

¼ 0 ) _x ¼ �ax

oL

ox
� d

dt

oL

o _x

� �

¼ 0 ) _~x ¼ a~x

ð4Þ

The energy1 E associated with the Lagrangian in Eq. (3)

is then obtained via the Legendre transformation:

E ¼ oL

o _~x
_~x þ oL

o _x
_x � L

¼ �ax~x

ð5Þ

The solutions of Eqs. (1) and (2) read:

x tð Þ ¼ c0e�at

~x tð Þ ¼ c1eat ð6Þ

where c0 and c1 are integration constants.

Using Eqs. (5) and (6) we then find that the energy is

conserved, as required (Fig. 2)

E ¼ �ac0c1 ) _E ¼ 0 ð7Þ

Bayesian model inversion We use dynamic causal

modelling (DCM) with the statistical parametric mapping

(SPM) software to extract estimates of model parameters

(Friston et al. 2003) for a given time course. This routine

sets all free parameters (such as coupling strengths) to

Bayesian priors of zero—providing starting points from

which the model inversion then searches for Bayesian

posterior values that best explain the underlying data,

by using variational Laplace to estimate the variance of

states (Roebroeck et al. 2011).

Specifically, we begin by setting the model states in

terms of the initial conditions of the dependent variable at

t ¼ 0. We also set the prior means of model parameters to

zero and set prior variances of unity, thereby allowing the

posteriors of the model parameters to deviate from the prior

means. We set up an observation function consisting of the

dependent variable and apply an external driving input that

is initialized as a randomized time course with mean zero.

Furthermore, we set the precisions of observation noise,

state noise, and of exogenous causes and run Bayesian

model inversion (spm_LAP in spm12) to infer the best fits

of the model parameters and external driving input for a

given dataset. This routine returns a summary statistic

known as the variational free energy, which represents a

trade-off between the accuracy and complexity of a given

model. In other words, for a given level of accuracy, model

evidence is penalized for each additional degree of free-

dom used, thereby avoiding an potential overfitting prob-

lem. Full details of this routine are provided in the

accompanying code.

Resting-state fMRI We next use empirical neuroimaging

timeseries to obtain estimates of energy across a 100-re-

gion brain parcellation (Schaefer atlas) of the cortex

(Schaefer et al. 2018).

Regional fMRI blood-oxygen-level-dependent (BOLD)

resting-state data were sourced from the 1200-subject

release of the Human Connectome Project (HCP) (Essen

et al. 2013). The acquisition of these data was performed

using a Siemens Skyra 3 Tesla MRI scanner with a 3T

imaging capability. The scanning parameters included a

repetition time (TR) of 720 ms, an echo time (TE) of

33 ms, a flip angle of 52 degrees, and a voxel size of 2 mm

isotropic. The scan covered 72 slices with a matrix size of

104 9 90 and a field of view (FOV) of 208 9 180 mm,

employing a multiband acceleration factor of 8. From this

dataset, 100 subjects aged between 22 and 35 were selected

at random, with three individuals excluded due to missing

data.

To mitigate the effects of global movement and respi-

ratory-induced artifacts, we ran the fMRI data through

noise reduction via the ICA-FIX based pipeline. FMRIB’s

ICA-based Xnoiseifier (ICA-FIX) serves as a preprocessing

framework aimed at cleaning fMRI data by eliminating

components associated with noise. This framework inte-

grates two distinct techniques: independent component

analysis (ICA) and FMRIB’s Automated Removal of

Motion Artefacts (FMRIB-AROMA) (Griffanti et al.

2014). We then used the 100-region Schaefer cortical atlas

in MNI152 2 mm standard space to extract the mean

regional fMRI signal for each subject.

Neuromaps Finally, we assessed whether our empirical

resting-state fMRI-derived regional LTI energy estimates

corresponded to any pre-existing regional measures of

biologically-based notions of energy. To this end, we used

the Neuromaps toolbox to obtain structural, functional,

metabolic and electrophysiological maps, parcellated

according to the same 100-region Schaefer cortical atlas as

used with the resting-state fMRI datasets. These maps

include regional cerebral metabolic rate (rCMRGlu),

derived from 18-flurodeoxyglucose positron emission

tomography (FDG-PET)—frequently used to estimate

metabolic energy consumption in vivo. The maps also

include regional cerebral blood flow (CBF) derived from

MRI arterial spin labelling (ASL), which is tightly coupled

to rCMRGlu in the healthy resting brain.

The list of 16 Neuromaps we used is as follows: cerebral

blood flow, blood volume, metabolic rate, and metabolic

1 § The ’energy’ E is not technically a Hamiltonian because, as noted

by Morse and Feshbach, oL
o _x and oL

o _~x
do not describe ’momenta’ in the

usual sense of the word when using the mirror system approach.
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rate of glucose (Vaishnavi et al. 2010); the first three dif-

fusion map embedding gradients of group-averaged func-

tional connectivities (Margulies et al. 2016); MEG

timescales, together with alpha, beta, delta, low gamma,

high gamma, and theta power distributions (Essen et al.

2013; Shafiei et al. 2022); MRI cortical thicknesses and

T1w/T2w ratios (Glasser et al. 2016).

Significance testing To account for the contribution of

spatial autocorrelation between maps, we correlated our

subject-averaged LTI energy map with N ¼ 10,000 spatial

null maps for significance testing (Markello and Misic

2021). This allows us to calculate a p-value by assessing

where a given correlation strength lies within a sorted list

of 10,000 correlation strengths, each of which is calculated

from maps that have a different spatially randomized

(spinpermuted) segmentation. One such significance test

was performed for each of the 16 Neuromaps.

As a further test of significance, we repeated all corre-

lations with mean signal values, rather than with mean

energy values. This is done in order to assess whether a

given result, once spatial autocorrelation is accounted for,

is specifically due to the form of the LTI energy expression

(see Eq. (15) in Results), as opposed to some more basic

property of the time course that can be captured just by its

mean value.

Results

All information required for reproducibility is provided in

the accompanying MATLAB code (see ‘Code availabil-

ity’). All figure axes are normalized between zero and

unity.

The average energy of a dissipative system with sinu-

soidal input Beginning with the simple case outlined in

Methods in Eqs. (1) through (7), let us increase the com-

plexity of the system ? mirror system by adding the effect

of a sinusoidal driving input Acos xtð Þ, where A is the

amplitude and x is the angular frequency. The systems

now evolve according to:

_x ¼ �ax þ Acos xtð Þ
_~x ¼ a~x � Acos xtð Þ

ð8Þ

which can be cast in the form of the following Lagrangian

and associated Legendre transform-derived energy:

L ¼ 1

2
_x~x � x _~x

� �

þ ax~x

� Acos xtð Þ x þ ~xð Þ
E ¼ �ax~x þ Acos xtð Þ x þ ~xð Þ

ð9Þ

Choosing initial conditions of x 0ð Þ ¼ ex 0ð Þ ¼ 0, the

differential equations in Eq. (8) have the following

solutions:

x tð Þ ¼ A

a2 þ x2
acos xtð Þ þ xsin xtð Þ � ae�atð Þ

~x tð Þ ¼ A

a2 þ x2
acos xtð Þ � xsin xtð Þ � aeatð Þ

ð10Þ

which allow us, together with Eq. (9), to write the energy

as follows:

E ¼ aA2

a2 þ x2ð Þ2

��

x2 � a2
�

sin2
�

xt
�

þ 2x2cos2
�

xt
�

� 2x2cos xtð Þcosh atð Þ þ 2axsin xtð Þsinh at
�� �

ð11Þ

This allows us to consider the mirror system approach

for a more complicated, yet still analytically solvable

system. More specifically, we can obtain an expression for

the system’s average energy (Gray et al. 1996) E over one

period 2p
x of the driving input:

E ¼ x
2p

Z 2p
x

0

Edt ð12Þ

which, together with Eq. (11), means that the average

energy is given by:

0 2time

2

4

de
p.

x

mirror

E

Fig. 2 For chosen values of a ¼ �0:4, c0 ¼ 2, c1 ¼ 4, we show time

(arbitrary units) on the horizontal axis and the dependent (dep.)

variables on the vertical axis—consisting of the time course of x tð Þ
(solid black line), the corresponding mirror time course ~x tð Þ (dashed

line) from Eq. (6), and the resultant constant energy E (red line) time

course from Eq. (7)

ω

A

0 1

0

1

E
_

0

1

Fig. 3 The amplitude A and angular frequency x of the sinusoidal

driving input are plotted across the vertical and horizontal axes. The

average energy E is indicated by the colour bar
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E ¼ aA2

p a2 þ x2ð Þ3
3px4 � 4x3asinh

2ap
x

� �

þ 2pa2x2 � pa4

� �

ð13Þ

We calculated the average energy E of this system over

one cycle of the input using Eq. 13ð Þ and plotted how E

varies with respect to the driving amplitude A and angular

frequency x (Fig. 3).

Therefore, as an initial sanity check we find that higher

amplitudes and frequencies of the driving input result in

higher average energies, as expected.

The energy of a dissipative driven system with an

unknown input Let us now consider what happens when the

form of the external driving input is not known a priori. We

describe this unknown input by a function u tð Þ, such that

we extend the original system ? mirror system in Eqs. (1)

and (2) to the following:

_x ¼ �ax þ bu tð Þ
_~x ¼ a~x � bu tð Þ

ð14Þ

where b is an external coupling constant. This is the linear

time-invariant (LTI) state space equation as used in control

theory. Note that the unknown function u tð Þ is taken (but

not constrained) to be non-linear and initialized as a ran-

domized time course to model the effect of aberrant neu-

ronal fluctuations driving the system.

The Lagrangian and associated Legendre transform-

derived energy for Eq. (14) are given by:

L ¼ 1

2
x _~x � ~x _x
� �

� ax~x

þ bu x þ ~xð Þ
E ¼ ax~x � bu x þ ~xð Þ

ð15Þ

see Fig. 4.

We note that, unlike the example shown in Fig. 2, the

energy is no longer conserved due to the time-dependent

nature of the driving input.

The energy of resting-state fMRI timeseries predicts

glucose uptake metabolism We next calculated the region-

wise subject-averaged LTI energy derived from resting-

state fMRI (Fig. 5A). Upon accounting for spatial auto-

correlation between brain maps, we find that these regional

LTI energy values are only significantly correlated

p ¼ 0:01;R2 ¼ 0:39
� �

with the Neuromap of regional

metabolic rate of glucose (rCMRGlu) (Fig. 5B).

Discussion

We showed that it is possible to extract the energy asso-

ciated with linear time-invariant (LTI) state space repre-

sentations using a technique originally described by Morse

and Feshbach in the context of fluid dynamics. We first

used a ground-truth simulation to show that the average

LTI energy over one cycle of an oscillating driving input is

proportional to both the amplitude as well as to the fre-

quency of oscillations, as expected.

We went on to show how the LTI energy varies across

anatomically delineated regions in the brain using resting-

state fMRI timeseries from the Human Connectome Project

(HCP). We found that LTI energy related strongly and

specifically to the regional cerebral metabolic rate for

glucose. This finding aligns with the established view of

glucose as a source of energy for the brain in terms of ATP

production, neurotransmitter synthesis, and oxidation

(Dienel 2019).

In Hamiltonian mechanics and more broadly across the

physical sciences, energy is defined as a quantity that does

not change as a dynamical system evolves in time. In this

sense, all systems are in fact conservative and when we

refer to a ‘non-conservative’ process we are not actually

making any statement about the system itself, but rather

about our inability to take sufficiently accurate

0 2πtime
-2

2

de
p.

x

m
irr
orE

Fig. 4 For chosen values of a ¼ �0:1 and b ¼ 1, and a sinusoidal

driving input u tð Þ we show time (arbitrary units) on the horizontal

axis and the dependent (dep.) variables on the vertical axis—

consisting of the time course of x tð Þ (solid black line), the

corresponding mirror time course ~x tð Þ (dashed line) from Eq. (14),

and the resultant energy E (red line) time course from Eq. (15)

A

0
E

1_

rCMRGlu

E
_

0

1

0 1

B

Fig. 5 A The parcellated aver-

age LTI energy (E), (colour bar)

is shown per brain region when

averaged across subjects from

resting-state fMRI. B The y-axis

shows LTI energy (E) and the

x-axis shows the regional meta-

bolic rate of glucose

(rCMRGlu) parcellated into the

same 100 brain regions as in

(A), for an average taken across

a different group of subjects

Cognitive Neurodynamics (2024) 18:3839–3846 3843

123



measurements. In other words, a non-conservative process

is also conservative, but it is one in which energy is

transferred into microscopic degrees of freedom where it is

difficult to measure—see the rolling ball example in Fig. 1.

Herein lies the Morse and Feshbach insight: every equation

of motion describing a dissipative system can be consid-

ered as just one half of an overall process, with the other

half describing an ‘undissipating’ mirror system into which

energy is absorbed. The balance between this dissipation/

undissipation results in an overall energy conservation that

can then be brought into the formal framework of Hamil-

tonian mechanics.

Morse and Feshbach developed the mirror system

technique in the context of fluid mechanics, in which dis-

sipation occurs due to viscous drag. However, given that

we apply this technique to neuronal systems, the energy

dissipation we estimate is instead a consequence of pro-

cesses including synaptic activity at small scales and

metabolic processes at larger scales. The mathematical

expressions we use involve solving equations that describe

the time evolution of neural states evolving in tailored

phase space representations (Dezhina et al. 2023). The

adaptation of the mirror approach to neuroscience allows

us to explore the relationships between the energy that can

be directly estimated from neuroimaging timeseries and the

more commonly adopted measures of neural energy, such

as glucose uptake metabolism.

One could of course conceive of alternative approaches

with which to describe the energy of dissipative dynamics

using Hamiltonian mechanics. For instance, we can look to

the arguments applied in statistical mechanics in which one

deals with a very large number of degrees of freedom. For

example, if all air molecules start off in one corner of a

room we would find that the molecules spread out and fill

the room and that they do not return to their point of origin

in the corner. There is, however, nothing in the laws of

physics that prevents this from happening—the probability

is just astronomically small. Following the same logic, we

could conceive of a model in which a neural system is

connected to a reservoir of a large number of surrounding

regions. The system is described by a conventional

Hamiltonian and the reservoir regions are described by

simple harmonic oscillators, where energy can be trans-

ferred between regions. We then imagine that the system of

interest begins with a certain amount of energy, with no

energy in the reservoir. We would then find that energy

gradually leaks out from the system into the reservoir

and—given a sufficiently large reservoir—this energy does

not return to the initial system. This is for the same reason

that the air molecules do not return to the corner of the

room—as long as there are enough reservoir oscillators,

any energy that leaves the system of interest has such a

small probability of returning that its dynamics are

effectively dissipative. This construct has the benefit of

being more ’physical’ than the Morse and Feshbach mirror

approach, as it is closer to the way in which nature actually

creates dissipation. Furthermore, because simple harmonic

oscillators are as their name suggests, simple, it may be

possible to then ’integrate out’ their influence to derive an

isolated expression for the dissipative dynamics of the

neural system of interest.

Our findings support those of the neural energy theory

proposed in the Wang–Zhang (W–Z) model, in which the

authors emphasize the coupling of neural information with

neural energy (Wang et al. 2023).

It is our hope that future studies will develop non-

invasive tools for studying brain energetics and identifying

metabolic abnormalities in neurodegenerative and neu-

ropsychiatric disorders. However, there are limitations

when making inferences from neuroimaging timeseries

by using mathematical techniques that were intended for

mechanical oscillators rather than for neural systems. The

transmission of neural signals in the mammalian cerebral

cortex is metabolically expensive and the encoding of

neural signals is closely coupled with biologically com-

plex processes involving both oxygen and glucose pro-

duction. However, simplified models such as the ones

presented here are still valuable in opening new avenues

for understanding the energetics of the brain and allowing

for conceptual bridges to be built between the physical and

biological disciplines. It is our hope that future work will

benefit from our approach in more accurately modelling the

dissipative, nonlinear, and interconnected processes char-

acterizing neural function.

Appendix I

We next demonstrate two erroneous attempts at using

Lagrangian mechanics to derive the energy of the system in

Eq. (1). These attempts illustrate the challenges involved

and motivate the need for the mirror system approach.

Attempt 1—order augmentation To arrive at a Lagran-

gian for Eq. (1) we may find it easier to deal with a second-

order differential equation, as these are commonly associ-

ated with Lagrangian mechanics. As such, we begin by

differentiating Eq. (1) with respect to time:

€x ¼ �a _x; ð16Þ

which, together with Eq. (1), means that:

€x ¼ a2x; ð17Þ

We can cast this in terms of the following Lagrangian L:

L ¼ 1

2
_x2 þ a2x2

� �

: ð18Þ
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We can then verify that this is the correct Lagrangian

form via the Euler–Lagrange equation:

d

dt

oL

o _x

� �

¼ oL

ox
) €x ¼ a2x: ð19Þ

i.e., we recover the second-order equation of motion in

Eq. (16).

To obtain the energy E, we then use the Legendre

transform:

E ¼ oL

o _x
_x � L

¼ 1

2
_x2 � a2x2

� �

ð20Þ

However, there is a problem with this expression, as it

does not actually apply to the original equation of motion

in Eq. (1), other than the trivial case in which E ¼ 0 at all

times. The reason for this is that although every solution of

Eq. (1) is also a solution of Eq. 2ð Þ, the reverse is not true.

In other words, the energy we derive applies only to the

second-order equation of motion, but not to the original

first-order equation of motion. We can therefore disregard

this first attempt as an invalid approach to describing the

energy of a dissipative system such as Eq. (1). The prob-

lems inherent in this approach are circumvented by the

mirror system technique which does not involve order

augmentation of the original first-order system.

Attempt 2—complex variables Another approach

(Fagerholm et al. 2021) to describing the energy of Eq. (1)

is to rewrite the equation of motion using a complex

variable z tð Þ and to introduce an imaginary unit on the left-

hand side:

i _z ¼ �
ffiffiffi

a
p

z: ð21Þ

The associated Lagrangian is then given by:

L ¼ i

2
z� _z � z _z�ð Þ þ

ffiffiffi

a
p

zz� ð22Þ

where z� is the complex conjugate of z. We can verify this

Lagrangian form via the Euler–Lagrange equations:

d

dt

oL

o _z�

� �

¼ oL

oz�
) i _z ¼ �

ffiffiffi

a
p

z:

d

dt

oL

o _z

� �

¼ oL

oz
) i _z� ¼

ffiffiffi

a
p

z�:

ð23Þ

i.e., we recover the equation of motion in Eq. (21) together

with its adjoint.

The energy E is then obtained from Eq. (21) with the

Legendre transform:

E ¼ oL

o _z
_z þ oL

o _z�
_z� � L

¼ �
ffiffiffi

a
p

zz�
ð24Þ

This expression applies to the original equation of

motion in Eq. (21) and we might think that we have

therefore successfully described the energy of a first-order

equation of motion. However, this is not the case.

To see why, let us re-write Eq. (21) by writing out the

complex variable in terms of its real and imaginary com-

ponents according to z,x þ iy:

i _x þ i _yð Þ ¼ �
ffiffiffi

a
p

x þ iyð Þ ð25Þ

for which we can equate the real and imaginary compo-

nents, such that:

_y ¼
ffiffiffi

a
p

x

_x ¼ �
ffiffiffi

a
p

y
ð26Þ

i.e., beginning with Eq. (21) we obtain two coupled first-

order equations that can be re-written as a single second-

order system:

_y ¼
ffiffiffi

a
p

x ¼ � 1
ffiffiffi

a
p €x ) €x ¼ �ax ð27Þ

i.e., we find that the first-order system in Eq. (21) was in

fact just the second-order system in Eq. (27) all along, just

disguised by virtue of the two degrees of freedom afforded

by the use of a complex variable. We therefore face the

same issue as in the first attempt at describing the energy of

the dissipative system in Eq. (1). The problems inherent in

this approach are circumvented by the mirror system

technique which does not involve the use of complex

variables.
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