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ABSTRACT
The main goal of fine‐mapping is the identification of relevant genetic variants that have a causal effect on some trait of interest,

such as the presence of a disease. From a statistical point of view, fine mapping can be seen as a variable selection problem.

Fine‐mapping methods are often challenging to apply because of the presence of linkage disequilibrium (LD), that is, regions of

the genome where the variants interrogated have high correlation. Several methods have been proposed to address this issue.

Here we explore the ‘Sum of Single Effects’ (SuSiE) method, applied to real data (summary statistics) from a genome‐wide meta‐
analysis of the autoimmune liver disease primary biliary cholangitis (PBC). Fine‐mapping in this data set was previously

performed using the FINEMAP program; we compare these previous results with those obtained from SuSiE, which provides an

arguably more convenient and principled way of generating ‘credible sets’, that is set of predictors that are correlated with the

response variable. This allows us to appropriately acknowledge the uncertainty when selecting the causal effects for the trait.

We focus on the results from SuSiE‐RSS, which fits the SuSiE model to summary statistics, such as z‐scores, along with a

correlation matrix. We also compare the SuSiE results to those obtained using a more recently developed method, h2‐D2, which
uses the same inputs. Overall, we find the results from SuSiE‐RSS and, to a lesser extent, h2‐D2, to be quite concordant with

those previously obtained using FINEMAP. The resulting genes and biological pathways implicated are therefore also similar to

those previously obtained, providing valuable confirmation of these previously reported results. Detailed examination of the

credible sets identified suggests that, although for the majority of the loci (33 out of 56) the results from SuSiE‐RSS seem most

plausible, there are some loci (5 out of 56 loci) where the results from h2‐D2 seem more compelling. Computer simulations

suggest that, overall, SuSiE‐RSS generally has slightly higher power, better precision, and better ability to identify the true

number of causal variants in a region than h2‐D2, although there are some scenarios where the power of h2‐D2 is higher. Thus,

in real data analysis, the use of complementary approaches such as both SuSiE and h2‐D2 is potentially warranted.

1 | Introduction

Primary biliary cholangitis (PBC), formerly known as primary
biliary cirrhosis, is an autoimmune liver disease that results
from a combination of genetic and environmental risk factors.

The largest genome‐wide association study (GWAS) performed
to date in PBC was an international genome‐wide meta‐analysis
involving five European and two East Asian cohorts (Cordell
et al. 2021), which identified 57 genome‐wide significant loci
(21 novel), including 47 loci that were significantly implicated
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within the European cohorts. Fine‐mapping using the FINE-
MAP package (Benner et al. 2016) was performed within each
genome‐wide significant risk locus to identify independent as-
sociations and to construct ‘credible sets’ of variants most likely
to be causal in PBC. At most loci the association signal was best
explained by a single variant, but at 16 of the 47 European‐
identified loci it was best explained by ≥2 independent variants.
Cordell et al. (2021) performed the fine mapping separately
within the European and East Asian cohorts. In principle,
combining the European with the East Asian cohorts should
provide greater power and resolution for fine‐mapping
(on account of both the larger sample size and the differing
LD patterns between Europeans and East Asians). In practice,
however, this proved problematic on account of both the dif-
fering LD patterns and the different genotyping chips used for
the different cohorts, resulting in a limited overlap of variants
that passed postimputation QC. For the current work, therefore,
we focus on fine‐mapping the results obtained from the Eur-
opean cohorts, which provides the larger sample size and a
higher resolution (in terms of the number of variants interro-
gated) than can be obtained by combining the results from the
European and East Asian cohorts.

Genome‐wide association studies (GWAS), such as those per-
formed in PBC, have been highly effective for identifying
genetic variants—usually single‐nucleotide polymorphisms
(SNPs)—that are associated with complex traits (Schaid, Chen,
and Larson 2018). A large number of variants have been asso-
ciated with both rare and common genetic disorders. While
numerous variants are reported as being causally associated
with complex traits, false assignments of causality at the variant
level are an important issue (MacArthur et al. 2014). Assigning
causality can be challenging due to the presence of linkage
disequilibrium (LD) across the genome, that is, SNPs within a
particular genomic region that exhibit a high correlation
structure. A frequently used approach to address this issue
involves the use of fine‐mapping techniques (Spain and
Barrett 2015). Fine‐mapping methods aim to identify genetic
variants that causally affect some trait of interest. Fine mapping
can be framed as a variable selection problem. Given the high
number of variables and their correlation structure, an attract-
ive approach is to use Bayesian methods. Uffelmann et al. (2021)
provide an excellent review on several fine‐mapping tech-
niques used to optimise the selection of variables by
considering a Bayesian approach. A variety of different met-
hods and software packages have been developed for this
purpose, including CAVIAR (Hormozdiari et al. 2014), PAIN-
TOR (Kichaev et al. 2014), CAVIARBF (Chen et al. 2015),
FINEMAP (Benner et al. 2016), JAM (Newcombe, Conti,
and Richardson 2016), DAP (Wen et al. 2016), SuSiE
(Wang et al. 2020) and SuSiE‐RSS (Zou et al. 2022).

Here, we consider the recently proposed fine‐mapping method
based on summary statistics, SuSiE‐RSS. SuSiE‐RSS is an ex-
tension of the original SuSiE (‘Sum of Single Effects’) model
introduced by Wang et al. (2020), where ‘RSS’ signifies
‘regression with summary statistics’. SuSiE addresses the fine‐
mapping problem by writing the vector of regression coeffi-
cients as a sum of ‘single‐effect’ vectors, each with one nonzero
element, and then performing a Bayesian analogue of stepwise
selection. The end result is the generation of one or more

‘credible sets’ of variables that encompass the uncertainty about
which variables should be selected as causal, when multiple,
highly correlated variables compete with each other. SuSiE and
SuSiE‐RSS were shown to perform competitively with alterna-
tive competing methods such as FINEMAP (Benner et al. 2016)
and CAVIAR (Hormozdiari et al. 2014), while providing an
arguably more convenient and principled way of generating
credible sets of putative causal variants.

While our work was in progress, a new method, h2‐D2
(Li, Sham, and Zhang 2024), which uses a continuous global‐
local shrinkage prior (in contrast to the discrete mixture prior
used by previous methods) was published. We therefore further
compare our results from SuSIE‐RSS with those from h2‐D2,
which uses the same inputs as SuSiE‐RSS, and was shown in
some cases (Li, Sham, and Zhang 2024) to outperform
SuSiE‐RSS.

2 | Methods

2.1 | Application to Real PBC Data

We applied SuSiE‐RSS to summary statistics derived from
logistic regression analysis of the European data from the
GWAS of Cordell et al. (2021) with a total sample size of
24,510 individuals (8021 cases and 16,489 controls). We fo-
cussed on variants withMAF>0.0001 lying within 56 of the 57
genome‐wide significant loci identified by Cordell et al. (2021),
excluding the human leucocyte antigen (HLA) region on account
of its extended LD and complicated correlation structure (A more
detailed investigation of HLA based on a subset of the European
data used here was previously performed by Darlay et al. [2018]).
The 56 loci considered here were previously interrogated by
Cordell et al. (2021) using FINEMAP. Cordell et al. (2021) pre-
viously used a complicated strategy involving ‘double genomic
control’ (Devlin and Roeder 1999) in the contributing cohorts to
derive their original summary statistics. Here, taking the view
that these loci have already been established, we used a simpler
strategy of re‐analysing the imputed genotype data from the
combined European cohorts using logistic regression im-
plemented in the software package PLINK (Purcell et al. 2007),
with 10 genetic principal components included as covariates.

We built the correlation matrix for each locus based on
individual‐level data from our own European samples, again
using the software package PLINK. Where necessary, the cor-
relation matrix R was enforced to be positive definite through
use of the ‘repairMatrix(R, eps = 0.0001)’ function from the R
package NMOF. We chose to use the in‐sample correlation
matrix after initial explorations using a covariance matrix
derived from an external reference panel (1000 Genomes
European‐ancestry individuals) generated a number of in-
stances where the SuSiE‐RSS algorithm failed to converge,
presumably because of discrepancies between the LD structure
of the reference panel and our own European individuals. We
then used the summary statistics (regression coefficients
together with their corresponding standard errors) and the
obtained correlation matrix to fit SuSiE‐RSS using the susieR
R package. The coverage level threshold (i.e., the proportion of
credible sets that should contain an effect variable) was set to be
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TABLE 1 | Results obtained from SuSiE‐RSS and h2‐D2 in comparison with previously obtained posterior probabilities from FINEMAP.

FINEMAP posterior probabilities SuSiE results h2‐D2 results

Locus
number Locus 1 variant 2 variants 3 variants

No
of CS CS sizes

No
of CS CS sizes

1 1p36.32 0.95 0.05 0 1 65 1 79

2 1p31.3 0.05 0.45 0.5 2 1, 4 1 1

3 1p13.1 0.95 0.05 0 1 29 1 29

4 1q23.1 0.92 0.08 0 1 33 1 48

5 1q31.3 0.8 0.19 0.01 1 6 1 20

6 1q32.1 0.85 0.14 0 1 33 1 37

7 2p25.1 0.88 0.12 0 1 7 1 11

8 2p23.3 0.1 0.8 0.09 2 2, 8 1 8

9 2q21.3 0.88 0.12 0 1 12 5 3, 2, 9,
32, 35

10 2q32.2 0 0 1 4 1, 14,
32, 19

3 1, 18, 33

11 2q33.2 0.61 0.37 0.02 1 39 1 54

12 3p24.3 0.88 0.11 0 1 14 1 25

13 3p24.2 0.91 0.02 0 1 10 1 13

14 3q13.33 0.8 0.17 0.02 1 2 1 3

15 3q25.33 0 0 1 4 1, 4,
11, 39

4 1, 4, 10, 45

16 4q24(1) 0.71 0.27 0.02 1 63 1 76

17 4q24(2) 0.9 0.1 0 1 23 1 48

18 5p13.2 0.85 0.15 0 1 15 1 16

19 5q21.1 0.96 0.04 0 1 87 3 1, 1, 126

20 5q31.3 0.92 0.08 0 1 61 1 66

21 5q33.3 0.81 0.18 0.01 1 1 1 10

22 6q21 0.24 0.64 0.12 2 11, 5 1 15

23 6q23.3 0.06 0.4 0.54 1 7 1 7

24 6q27 0.89 0.11 0 1 10 1 44

25 7p21.1 0.79 0.2 0.01 1 27 1 48

26 7p14.2‐p14.1 0.91 0.09 0 1 33 1 40

27 7q32.1 0 0.89 0.11 2 20, 6 2 10, 21

28 7q34 0.82 0.17 0.01 1 60 1 63

29 8q24.21 0.14 0.57 0.29 1 9 1 16

30 9q22.33 0.94 0.06 0 1 15 1 16

31 9q32 0.55 0.44 0.02 1 6 2 8, 38

32 10q11.23 0.66 0.07 0.27 1 1 1 19

33 11p15.5 0.01 0.9 0.09 2 1, 15 3 1, 14, 24

34 11q13.1 0.91 0.09 0 1 19 1 19

35 11q23.1 0.22 0.73 0.04 2 10, 57 2 38, 61

36 11q23.3 0.67 0.28 0.05 1 12 1 9

37 11q24.3 0.85 0.15 0 1 9 2 9, 97

38 12p13.31 0.89 0.1 0.01 1 1 1 1

39 12q24.12 0.88 0.12 0 1 3 2 3, 312

(Continues)
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0.95, except for four loci where this threshold had to be lowered
to achieve any nonempty credible sets: 2q21.3 where the level
was specified to be 0.6, 9q32 and 11q24.3 where the level was
specified to be 0.7 and 14q13.2 where the level was specified to
be 0.8. Following visual inspection of our results, we also low-
ered the coverage threshold for locus 11p15.5 to 0.7, to force
SuSiE‐RSS to identify the primary signal in this region that had
been identified by Cordell et al. (2021).

While this work was in progress, a new Bayesian fine‐mapping
method, h2‐D2 (Li, Sham, and Zhang 2024), which uses the
same inputs as SuSiE‐RSS, and was shown in some cases to
outperform SuSiE‐RSS, was published. We therefore repeated
our analysis of the 56 loci using h2‐D2 (version 1.1, down-
loaded 12 March 2024), and compared the results obtained to
those obtained from SuSiE. We initially used the default h2‐D2
coverage level threshold of 0.95, except for the five loci where
the threshold had been lowered for SuSiE‐RSS, where we used
the same lower threshold as had been used in SuSiE‐RSS. We
subsequently had to reduce the h2‐D2 coverage threshold used
to 0.9 for four loci (2p25.1, 4q24[2], 6q27 and 8q24.21), in order
for h2‐D2 to generate any credible sets.

2.2 | Initial Simulation Studies

For initial simulation studies, we used HAPGEN2 version
2.0.1 (Su, Marchini, and Donnelly 2011) to simulate data
under three different scenarios, generating 100 replicates of 500

cases and 500 controls in each scenario. As a generating panel,
we used the CEU HapMap genotypes in the region from 26.0 to
26.4Mb of chromosome 21. In Scenario 1, only one risk variant
was assumed to exist in the region, in Scenario 2 two risk
variants were assumed, located relatively near to one another in
a highly correlated subregion, and for Scenario 3, we chose two
risk variants that were situated a slightly larger distance away
from each other. The genotypic relative risks were assumed to
be 2 and 4 for one and two copies of the risk allele respectively;
we took the view that using a relatively small sample size with
relatively large genotypic relative risks would produce summary
statistics similar to those seen in larger cohorts at loci with
smaller effect sizes, while being considerably quicker to simu-
late. Each simulation replicate was analysed in the same way as
had been used for the PBC data. To evaluate the performance of
SuSiE‐RSS and h2‐D2 we considered different metrics, such as
the power (the number of times that each causal variant had
been correctly detected within the generated credible set[s]),
and the average number and size of credible sets, along with
their variability as measured through their standard deviations.

2.3 | Tailored Simulation Study Based on
PBC Data

We conducted more extensive/realistic simulations using the
genotyping data and association results from the PBC data set.
The top associated variant from each credible set identified by
either SuSiE‐RSS or h2‐D2 (as reported in Table S1) was

TABLE 1 | (Continued)

FINEMAP posterior probabilities SuSiE results h2‐D2 results

Locus
number Locus 1 variant 2 variants 3 variants

No
of CS CS sizes

No
of CS CS sizes

40 13q14.11 0.91 0.09 0 1 20 1 38

41 13q14.2‐
q14.3

0.87 0.12 0.01 1 6 1 5

42 14q13.2 0.68 0.09 0.23 1 13 1 136

43 14q24.1 0.66 0.31 0.03 2 2, 62 1 3

44 14q32.12 0.47 0.48 0.05 2 18, 11 2 13, 17

45 14q32.32 0.39 0.54 0.08 1 3 5 1, 4, 3,
100, 2

46 16p13.13 0 0.6 0.41 2 15, 6 2 21, 10

47 16p12.1 0.92 0.07 0 1 10 1 10

48 16q22.1 0.94 0.06 0 1 65 1 94

49 16q24.1 0.24 0.63 0.13 1 2 1 2

50 17q12 0.96 0.04 0 1 24 1 23

51 17q21.31 0.99 0.01 0 1 1909 1 746

52 18q22.2 0.91 0.09 0 1 24 1 24

53 19p13.2 0.78 0.2 0.02 1 2 1 2

54 19p13.11 0.82 0.17 0.01 1 23 1 34

55 19q13.33 0 0.93 0.07 2 4, 6 2 5, 4

56 22q13.1 0 0.59 0.41 3 4, 22, 11 2 4, 30

Note: No of CS is the number of credible sets generated. CS sizes are the sizes of the generated credible sets.
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assumed to be a true causal variant, with effect size (log odds
ratio) determined from the real data analysis. A simulated
binary (disease) phenotype was generated for each of the 24,510
individuals from the PBC study, with the probability of an
individual being diseased determined based on their known
genotypes at the causal variants (along with the assumed log
odds ratios). The resulting ‘polygenic risk score’ for each indi-
vidual was converted to a probability of being diseased using the
logit function, which was then used as a threshold for de-
termining case/control status (when applied to the output of the
runif() function in R), with the threshold scaled to produce
on average the same number of cases and controls as seen in the
real PBC data set. The generated cases and controls were ana-
lysed via logistic regression in PLINK, and SuSiE‐RSS and h2‐
D2 were applied to the resulting summary statistics, in the same
way as in the real case/control analysis. The process was
repeated for 100 simulation replicates (each generating different
case/control phenotype designations) and the overall perform-
ance of SuSiE‐RSS and h2‐D2 in terms of identification of the
true causal variants, and identification of the true number of
causal variants in each credible set, was evaluated.

3 | Results

3.1 | Results From Application to PBC Data

Table 1 shows a comparison of the results obtained from SuSiE‐
RSS and h2‐D2 with those previously obtained using FINEMAP.
The FINEMAP results are shown as the posterior probabilities
for the number of causal variants (columns 2‐4), while SuSiE‐
RSS and h2‐D2 results are shown in terms of number of credible
sets for each risk locus and the corresponding number of ele-
ments in each credible set (columns 5‐8). Overall we find gen-
erally good concordance between SuSiE‐RSS, h2‐D2 and
FINEMAP in terms of the number of credible sets (i.e., number
of putative causal variants) identified within each locus, except
for a few cases where h2‐D2 gives an unusually large number of
credible sets. However, similar to what was seen by Li, Sham,
and Zhang (2024), the sizes of the credible sets generated by h2‐
D2 are generally larger than those from SuSIE‐RSS.

Plots showing the results from application of SuSiE‐RSS and
h2‐D2 to four example risk loci are shown in Figures 1–4.
Results for the full set of 56 risk loci are shown in Supporting
Information S1: Figures S1–S19. The scatter‐plots show the
obtained transformed p‐values for the SNPs in each locus,
where the horizontal axis shows the position in Mb and the
vertical axis shows the corresponding negative log‐
transformed p‐value. The obtained credible sets are shown in
coloured dots (red for the first credible set, blue for the second,
and so on), with SNPs that were not selected to be part of any
credible sets shown in grey.

Figures 1 and 2 illustrate two loci (13q14.11 and 16p13.13,
respectively) where the results from SuSiE‐RSS and h2‐D2 are
broadly concordant, identifying either one (Figure 1) or two
(Figure 2) credible sets. The main difference seen is that the
credible sets from h2‐D2 contain a larger number of variants
than those from SuSiE‐RSS.

Figures 3 and 4 illustrate two loci (1p31.3 and 2q21.3, respec-
tively), where the results from SuSiE‐RSS and h2‐D2 are less
concordant; in addition to identifying a larger number of SNPs
in each credible set, h2‐D2 also identifies different numbers of
credible sets than are identified by SuSiE‐RSS (one compared to
two from SuSiE‐RSS at 1p31.3, and five compared to one from
SuSiE‐RSS at 2q21.3, respectively). At 1p31.3, based on the

FIGURE 1 | Association plots for 13q14.11. The x‐axis shows the

base pair position and the y‐axis shows the −log10 p‐value of each SNP

tested for association by Cordell et al. (2021) (top plot) or by using

logistic regression (middle and lower plots); the summary statistics from

the logistic regression analyses were used as input to SuSiE‐RSS and h2‐
D2. SNPs in different credible sets from SuSiE (middle plot) and h2‐D2
(lower plot) are indicated in different colours. SNPs coloured in grey

were not chosen as part of any credible set.

5 of 13



original LocusZoom plot from Cordell et al. (2021) (Figure 3 top
panel), the SuSiE‐RSS results seem most plausible, identifying
a second signal at 4 SNPs that are genome‐wide significant but
not in strong LD with the primary signal in the region.

The 2q21.3 locus was the one of those where the coverage
threshold had to be reduced to get SuSiE‐RSS to generate any
credible sets; with this reduced (0.6) threshold, the h2‐D2

results again seem somewhat implausible, potentially over‐
estimating the number of credible sets in comparison to
SuSiE‐RSS (Figure 4 right‐hand panels) and identifying SNPs
that do not look particularly good causal candidates based on
their nominal significance levels. If the h2‐D2 coverage
threshold is increased back to 0.95, h2‐D2 still identifies two
credible sets with implausibly low significance levels
(Figure 4 bottom left panel).

FIGURE 2 | Association plots for 16p13.13. The x‐axis shows the

base pair position and the y‐axis shows the −log10 p‐value of each SNP

tested for association by Cordell et al. (2021) (top plot) or by using

logistic regression (middle and lower plots); the summary statistics from

the logistic regression analyses were used as input to SuSiE‐RSS and

h2‐D2. SNPs in different credible sets from SuSiE (middle plot) and

h2‐D2 (lower plot) are indicated in different colours. SNPs coloured in

grey were not chosen as part of any credible set.

FIGURE 3 | Association plots for 1p31.3. The x‐axis shows the base
pair position and the y‐axis shows the −log10 p‐value of each SNP tested

for association by Cordell et al. (2021) (top plot) or by using logistic

regression (middle and lower plots); the summary statistics from the

logistic regression analyses were used as input to SuSiE‐RSS and h2‐D2.
SNPs in different credible sets from SuSiE (middle plot) and h2‐D2
(lower plot) are indicated in different colours. SNPs coloured in grey

were not chosen as part of any credible set.
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In the Supplementary Text, we go through each of the 56
loci in turn, describing the results in detail and arguing
(based on the LD pattern in the region shown in the
LocusZoom plots of figs. S2.1–S2.57 of Cordell et al. [2021],
along with comparison to the previously obtained FINEMAP
results), whether the results from SuSiE‐RSS or h2‐D2
seem the most plausible. For the majority of the loci
(33 out of 56) we consider the results from SuSiE‐RSS

to be most plausible, for 5 loci we consider the results of
h2‐D2 to be most plausible, and for 18 of the 56 loci we
consider the results from SuSiE‐RSS or h2‐D2 to be equally
plausible.

The final full list of implicated variants identified by SuSIE‐
RSS (or by h2‐D2 when h2‐D2 was considered more plau-
sible) within each credible set can be found in Table S1.

FIGURE 4 | Association plots for 2q21.3. The x‐axis shows the base pair position and the y‐axis shows the −log10 p‐value of each SNP tested for

association by Cordell et al. (2021) (top left plot) or by using logistic regression (other plots); the summary statistics from the logistic regression

analyses were used as input to SuSiE‐RSS and h2‐D2. SNPs in different credible sets from SuSiE (top right plot) and h2‐D2 (lower plots) are indicated

in different colours. SNPs coloured in grey were not chosen as part of any credible set.

TABLE 2 | Simulation results for different scenarios and metrics.

Analysis Power Power Power No of CS CS size

Method Scenario (1st) (2nd) (both) Mean SD Mean SD

SuSiE‐RSS 1 0.95 — — 0.99 0.10 7.18 2.27

SuSiE‐RSS 2 0.94 0.98 0.92 1.00 0.00 5.27 1.25

SuSiE‐RSS 3 0.85 0.76 0.76 1.77 0.45 7.17 3.15

h2‐D2 1 0.84 — — 0.90 0.30 9.11 4.76

h2‐D2 2 0.80 0.88 0.72 0.98 0.14 4.18 1.43

h2‐D2 3 0.71 0.23 0.15 1.08 0.46 9.36 5.65

Note: Power is the power (probability) to detect the 1st, 2nd or both variants respectively. No of CS is the number of credible sets generated. CS size is the size of the
generated credible sets, ignoring the replicates where no credible sets were generated. Mean and SD are the mean and the standard deviation of these quantities over up to
100 simulation replicates.
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3.2 | Initial Simulation Results

We applied SuSiE‐RSS and h2‐D2 to simulated data as described
in Section 2. The simulation results are reported in Table 2.
Overall the performance of SuSiE‐RSS in these scenarios is
better than that of h2‐D2, with SuSiE showing higher power to
correctly detect one or both causal variants, and a mean number
of identified credible sets (1.77 compared to 1.08) closer to the
true number (two) in Scenario 3. We note that the higher power
of SuSiE‐RSS compared to h2‐D2 is not fully consistent with
results reported by Li, Sham, and Zhang (2024); although in

several of scenarios they considered (see fig. 1E of Li, Sham, and
Zhang [2024]) SuSiE did have the higher power, in most cases
Li, Sham, and Zhang (2024) found h2‐D2 to have higher power
than SuSiE. In our study, both methods struggle to identify two
credible sets in Scenario 2, probably because of the high LD
between the simulated causal variants, meaning that the two
signals are generally identified as the presence of a single
credible set. The sizes of the credible sets (when generated) are
seen to be larger for h2‐D2 than SuSiE‐RSS in Scenarios 1 and 3,
again consistent with results reported by Li, Sham, and
Zhang (2024).

FIGURE 5 | Scatter plots from a single example replicate of simulated data in each of Scenarios 1–3 (top to bottom), with coloured dots

highlighting the variants identified and the black vertical line showing the positions of the true disease‐causing variants. The x‐axis shows the base

pair position and the y‐axis shows the –log10 p‐value of each SNP tested for association using logistic regression; the summary statistics from the

logistic regression analyses were used as input to SuSiE‐RSS and h2‐D2. Results from analysis with SuSiE are shown on the left‐hand plots and results

from analysis with h2‐D2 are shown on the right‐hand plots. SNPs coloured in grey were not chosen as part of any credible set.
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An illustration of the results in a single replicate of each of the
three simulation scenarios is shown in Figure 5. This displays a
scatter plot of the negative log‐transformed p‐value in the
specified region, with vertical black lines highlighting the posi-
tions of the causal SNPs and coloured dots showing the variants
that SusiE‐RSS and h2‐D2 have detected in their respective
credible set(s). Different colours on the plot correspond to dis-
tinct credible sets. In Scenario 1 (top panels), both methods
identify a single credible set that includes the simulated causal
SNP, along with several other SNPs in LD with it. In Scenario 2
(middle panels), both methods identify a single credible set
rather than separate credible sets for each of the two causal
SNPs; the credible set from SuSiE‐RSS includes both
causal SNPs but that from h2‐D2 only includes one of the two
causal SNPs. In Scenario 3 (bottom panels), SuSiE correctly
identifies two credible sets, each containing the relevant causal
SNP, while h2‐D2 only identifies one credible set, correspond-
ing to the stronger causal SNP. These results serve to illustrate
in more detail (for these selected replicates) the overall better
performance that we saw with SuSiE‐RSS over the full set of
simulation replicates.

3.3 | Results from Tailored Simulation Study
Based on PBC Data

The results from our more realistic simulation study are shown
in Table 3, the entries of which are summarised in Figure 6 via a
comparison of the power to detect each causal variant (left‐
hand plot), and the mean size of the credible sets generated at
each locus (right‐hand plot). In general, SuSiE‐RSS shows the
highest power (more points above the diagonal in the left‐hand
plot of Figure 6) and better precision (more points below the
diagonal, indicating a small credible set size, in the right‐hand
plot), although there are a few loci where h2‐D2 exhibits higher
power and/or better precision. Most notably, the size of the
credible set generated by h2‐D2 is much smaller than that of
SuSiE‐RSS at 17q21.31, similar to what was seen in analysis of
the real data. Both methods do reasonably well at detecting, on
average, the correct number of credible sets, although the
number of credible sets detected by SuSiE‐RSS tends to be less
variable, and SuSiE‐RSS also does better at correctly detecting
the existence of 4 causal variants (and thus four credible sets) at
3q25.3.

3.4 | Implicated Genes and Pathways

Identifying the precise number and identity of causal variants in
a locus is arguably less important than identifying the biological
mechanism through which they operate. Cordell et al. (2021)
used the credible sets generated by FINEMAP to identify
putative candidate genes via functional annotation of the var-
iants using (among other tools) FUMA (Watanabe et al. 2017).
We applied FUMA to the list of implicated variants identified by
SuSIE‐RSS (or by h2‐D2 when h2‐D2 was considered more
plausible) shown in Table S1. Given the similarity particularly
between the SuSiE‐RSS credible sets of putative causal variants
and those previously obtained using FINEMAP, it was not
surprising that the resulting genes (Table S2) and pathwaysT
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(Tables S3 and S4) identified were similar to those previously
prioritised by Cordell et al. (2021) when using the results
obtained from FINEMAP. Consistent with previous work
(Cordell et al. 2015), these included pathways such as cytokine
signalling, T cell activation, cytokine‐cytokine receptor inter-
action and the IL12, IL27 and JAK‐STAT signalling pathways.
Further biological interrogation/annotation of the putative
causal variants listed in Table S1 using alternative software
tools and analysis pipelines would be an interesting topic for
future work, and could potentially uncover additional biological
findings, but is beyond the scope of the current investigation.

4 | Discussion

Using SuSiE‐RSS and h2‐D2, we successfully identified credible
sets of potential causal variants within the 56 established loci
(excluding HLA) that show strong association with PBC, largely
confirming the previous findings obtained using FINEMAP
(Cordell et al. 2021). The results from SuSiE‐RSS and h2‐D2
were generally similar, but, where there was a discrepancy, the
results from SuSiE‐RSS seemed most plausible in 33 out of
the 56 loci interrogated, with h2‐D2 generating the more
plausible results at just five of the loci investigated. In computer
simulations carried out under a variety of simplistic and more
realistic generating scenarios, SuSiE‐RSS also performed better
than h2‐D2 in terms of showing higher power to identify true
causal variants within the credible set(s), better precision
(smaller credible set sizes), and better identification of correct
number of credible sets. We note that we used the default
parameter options for h2‐D2 in terms of coverage, purity,
MCMC iterations, burn‐in, step size etc. (except when tweaking
the coverage to match that of SuSiE or to produce any credible
sets)—altering these parameters could potentially result in
better performance. However, our identification of the higher
power of SuSiE‐RSS compared to h2‐D2 is not inconsistent

with results reported in several scenarios by Li, Sham, and
Zhang (2024), although Li, Sham, and Zhang (2024) did find
h2‐D2 to outperform SuSiE (and FINEMAP) in other scenarios.
The fact that both we and Li, Sham, and Zhang (2024) find
some scenarios where h2‐D2 achieves better performance than
SuSiE‐RSS suggests that, in practice, inspection of the results
from several complementary analysis approaches may prove
fruitful—although the user would then need to make a decision
as to which set of results they consider most plausible. The
generation of automated approaches for deciding between (or
perhaps averaging over) such competing sets of fine‐mapping
results would be an interesting topic for future investigation.

We found SuSiE‐RSS to perform better when provided with an
in‐sample correlation (LD) matrix compared to using a Eur-
opean reference panel (whose LD may not perfectly match that
of the analysed data set), consistent with expected theory. Im-
proving the performance of fine‐mapping methods to better
allow for differences between the LD in a reference panel and
the target data (when an in‐sample correlation matrix is not
available) is an active area of current research. Improvements to
allow the inclusion of variants that have not been measured
(genotyped or imputed) in all samples would also be extremely
useful when analysing summary statistics that derive from
meta‐analyses, in which the contributing cohorts may have
been genotyped on different genotyping platforms. Such
improvements would potentially allow us to combine our
European and East Asian PBC cohorts to allow greater fine‐
mapping resolution.
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FIGURE 6 | Power (left‐hand plot) and mean credible set (CS) size (right‐hand plot) for SuSiE‐RSS versus h2‐D2. Each dot shows the results from

a single simulated causal variant (left‐hand plot) or locus (right‐hand plot), with the power and mean CS calculated over 100 simulation replicates.
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