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ABSTRACT: Photosynthetic water oxidation is a vital process responsible for
producing dioxygen and supplying the energy necessary to sustain life on Earth.
This fundamental reaction is catalyzed by the oxygen-evolving complex (OEC) of
photosystem II, which houses the Mn4CaO5 cluster as its catalytic core. In this
study, we specifically focus on the D1-Glu189 amino acid residue, which serves as a
direct ligand to the Mn4CaO5 cluster. Our primary goal is to explore, using density
functional theory (DFT), how the conformational flexibility of the D1-Glu189 side
chain influences crucial catalytic processes, particularly the selection, positioning,
and stabilization of a substrate water molecule within the OEC. Our investigation is
based on a hypothesis put forth by Li et al. (Nature, 2024, 626, 670), which
suggests that during the transition from the S2 to S3 state, a specific water molecule
temporarily coordinating with the Ca ion, referred to as O6*, may exist as a
hydroxide ion (OH−). Our results demonstrate a key mechanism by which the
detachment of the D1-Glu189 carboxylate group from its coordination with the Ca
ion allows the creation of a specialized microenvironment within the OEC that enables the selective attraction of O6* in its
deprotonated form (OH−) and stabilizes it at the catalytic metal (MnD) site. Our findings indicate that D1-Glu189 is not only a
structural ligand for the Ca ion but may also play an active and dynamic role in the catalytic process, positioning O6* optimally for
its subsequent participation in the oxidation sequence during the water-splitting cycle.

1. INTRODUCTION
Most life activities in nature rely on photosynthesis, a
fundamental biological process that harnesses solar energy to
convert carbon dioxide into organic compounds essential for
living organisms.1 Photosynthetic organisms such as cyanobac-
teria, algae, and higher plants have evolved remarkably
sophisticated mechanisms to extract electrons from water,
enabling their widespread distribution on Earth. Conversely,
aerobic organisms have acquired the ability to use dioxygen, a
byproduct of photosynthesis, through respiratory functions
that resist the toxicity of oxygen and facilitate substantial
energy transformations. This adaptation supports various
metabolic processes that are essential for growth, development,
and life maintenance, while also enabling the recycling of
limited carbon between the inorganic environment and the
biological realm using the boundless energy of sunlight,
thereby sustaining the delicate balance of ecosystems. Given
that photosynthesis is the only process in the biosphere
capable of splitting water to produce dioxygen, deciphering its
mechanism is of utmost importance, not only for its intrinsic
scientific value but also for addressing environmental and
energy challenges related to global warming and fossil fuel
depletion.2,3

At the heart of the photosynthetic machinery is photosystem
II (PSII), a multisubunit protein−cofactor complex located in
the thylakoid membrane of chloroplasts and cyanobacterial
cells. PSII plays a crucial role in supplying energized electrons
necessary for the photosynthetic processes by splitting water
molecules.4−7 The initiation of PSII function begins with a
light-induced charge separation between a specialized chlor-
ophyll dimer (P680) and a pheophytin (Pheo) electron
acceptor, forming a P680+Pheo− radical pair. The electron that
is transferred to Pheo− is then relayed through a series of redox
reactions, moving first to a primary quinone electron acceptor
and eventually to a secondary quinone electron acceptor on
the stromal side of the thylakoid membrane. Simultaneously,
the electron hole generated on P680+ is passed to the catalytic
core of the oxygen-evolving complex (OEC), comprised of an
oxo-bridged heteronuclear Mn4CaO5 cluster, on the luminal
side of the membrane via a redox-active tyrosine residue, D1-
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Tyr161 (YZ). This cluster serves as the catalytic center for
water oxidation, a complex four-electron oxidation process that
is facilitated by YZ. The Mn4CaO5 cluster undergoes a cycle of
oxidation states, known as the S-state cycle, which consists of
five distinct intermediates denoted as Si states (i = 0−4). Each
state represents a specific number of accumulated oxidizing
equivalents or holes within the cluster, which are crucial for
driving the water-splitting reaction.

Recent advancements made possible by serial femtosecond
X-ray crystallography have provided unprecedented insights
into the structural dynamics within PSII, particularly regarding
the Mn cluster and its surrounding protein environment. These
studies have offered high-resolution views of their structural
evolution across key intermediates of the water-splitting cycle,
namely the S1, S2, S3, and S0 states.8−15 With high spatial and
temporal resolution, this technique has shed light not only on
the static structural features but also on the intricate interplay
of protein dynamics that govern critical functional events, such
as water ingress and binding, proton transfer, and dioxygen
formation. This is especially evident in the S2 to S3 transition;
over a slower time scale, extensive shifts in amino acid side
chains and backbone configurations take place, while faster,
more localized displacements of the Mn and Ca ions within the
Mn4CaO5 cluster occur simultaneously. One of the most
significant events during this transition is the binding and
activation of a new water molecule, referred to as O6 or OX, in
the vicinity of the existing O5 oxygen atom within the Mn
cluster. This event is a key step toward the formation of the
O5−O6 bond, which is essential for the oxygen-evolving
mechanism. The identity of O5 and O6 continues to be a
subject of ongoing investigation. However, X-ray crystallog-
raphy studies have measured O−O distances ranging from 1.9
to 2.2 Å,9−11,15 suggesting that O5 and O6 might exist
predominantly in an oxyl−oxo form poised for bond formation
or as a mixture of oxyl−oxo and hydroxo−oxo forms.

The OEC exhibits remarkable structural and electronic
flexibility, enabling it to accommodate sequential oxidation
state changes while efficiently binding and chemically trans-
forming substrate water molecules throughout the catalytic
cycle. This flexibility is largely due to the well-coordinated
environment that supports the catalytic activity of the
Mn4CaO5 cluster, comprising six carboxylate ligands (D1-
Asp170, D1-Glu189, D1-Glu333, D1-Asp342, D1-Ala344, and
CP43-Glu354), along with a histidine residue (D1-His332), as
illustrated in Figure 1.16−18 Among these ligands, D1-Glu189 is
particularly notable for its dynamic behavior during the S2 to S3
transition. In lower oxidation states, D1-Glu189 serves as a
structural ligand by coordinating with both the Ca and MnD
ions within the Mn4CaO5 cluster. However, upon the
application of a second flash of light (2F) that advances the
OEC to the S3 state, D1-Glu189 undergoes a displacement of
approximately 0.2 Å away from the Ca ion, which appears to be
a critical adjustment that facilitates the catalytic progres-
sion.8−12,14,15 A recent time-resolved crystallographic study
conducted by Li et al. has further provided new insights into
this transition. Their observations detected the emergence of
new electron density, designated as O6*, within the
coordination sphere of the Ca ion approximately 200 ns after
2F.15 Notably, this newly identified electron density gradually
diminishes after around 200 μs, a time frame that coincides
with the appearance and stabilization of increased O6 electron
density at the MnD site within the Mn4CaO5 cluster. These
findings suggest that the initially coordinated O6* is likely a

water-derived species that is subsequently repositioned from its
temporary location near the Ca ion to the MnD site, where it
becomes incorporated as a substrate water molecule essential
for catalytic activity.

Based on these findings, the present study focuses on the
specific role of D1-Glu189 within the OEC. Assuming, as
proposed by Li et al., that the transient O6*species could exist
in the form of a hydroxide ion (OH−),15 we use density
functional theory (DFT) calculations to investigate how the
conformational flexibility of the D1-Glu189 side chain
contributes to the selection, guidance, and binding of the
transient O6* within the OEC. Through this analysis, we aim
to demonstrate that D1-Glu189 goes beyond serving merely as
a coordinating ligand for the Ca and MnD ions and plays an
active and dynamic role in catalytic processes that have been
challenging to directly capture using current XFEL-based
experimental techniques.

2. COMPUTATIONAL DETAILS
We constructed an OEC model using the XFEL crystallo-
graphic model of PSII (PDB ID 6JLL, monomer A), as
illustrated in Figure S1. This model includes a total of 407
atoms comprising the inorganic Mn4CaO5 cluster, four
terminal aqua/hydroxo ligands coordinated to Ca and MnA,
an additional O6* ligand near the Ca site, 15 crystallographic
water molecules, a chloride ion (Cl−), and the following amino
acid residues: D1-Asp61, D1-Asn87, D1-Tyr161 (TyrZ), D1-
Gln165, D1-Ser169, D1-Asp170, D1-Asn181, D1-Val185, D1-
Phe182 (backbone only), D1-Glu189, D1-His190, D1-Asn298
(fragment), D2-Lys317 (fragment), D1-His332, D1-Glu333,

Figure 1. Conformational changes of amino acid residues within the
primary coordination sphere of the Mn cluster observed exper-
imentally during the S2 to S3 transition.15 Structural models captured
at 1F (red), and time points at 20 ns (gray), 200 ns (orange), 1 μs
(light green), 30 μs (pink), 200 μs (cyan), and 5 ms (gold) after 2F
are superimposed. The inorganic Mn4CaO5 cluster is displayed in
wireframe, while seven amino acid residues in the primary
coordination sphere are shown in stick representation.
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D1-Ala336, D1-His337, D1-Asp342, D1-Ala344 (C-terminus),
CP43-Glu354, CP43-Arg357, D1-Asn296, CP43-Leu401,
CP43-Val410, and CP43-Ala411. Four Mn ions in the
Mn4CaO5 cluster are labeled as MnA, MnB, MnC and MnD,
as shown in Figures 1 and S1, which correspond to Mn4A,
Mn3B, Mn2C, and Mn1D in the crystallographic structures.
The oxidation state of MnD is assigned as MnIII, while MnA,
MnB, and MnC are in the MnIV oxidation state. Geometry
optimizations were performed with a spin multiplicity of 14
using the B3LYP functional19−21 enhanced by the D3 version
of Grimme’s empirical dispersion correction and the Becke−
Johnson (BJ) damping function,22,23 as implemented in
Gaussian 16.24 The Los Alamos (LANL2DZ) pseudopotential
basis set was used to represent Ca and Mn,25−27 while all other
atoms were described using the 6-31G(d) basis set. These
basis sets are labeled as BS1. The impact of steric effects
resulting from the protein fold was taken into account by
constraining the atomic positions of the backbone and the
entire residues of D1-Gln165, D1-Asn298, D2-Lys317, D1-
Asn296, CP43-Leu401, CP43-Val410, CP43-Ala411, and D1-
Asn296, CP43-Leu401, CP43-Val410, and CP43-Ala411
located at the periphery of the model to their X-ray structure
coordinates during the optimization of geometry. Single-point
energies were computed employing the nonstandard B3LYP*
functional, with a 5% reduction in the percentage of the
Hartree−Fock exchange from 20 to 15%,28 in combination
with the extended basis set comprising the Stuttgart/Dresden
(SDD) pseudopotential basis set29,30 for Ca and Mn, and 6-
311G(d,p) for all other atoms, designated as BS2. For these
single-point calculations, the model system was immersed in a
solvent using the IEFPCM model31 with a dielectric constant
of 5.7 (corresponding to chlorobenzene) to approximate the
low polarizability of the protein interior.

3. RESULTS AND DISCUSSION
Our study focuses on the role of the specific amino acid
residue D1-Glu189 within the OEC. This residue is
characterized by its relatively long side chain terminating in a
carboxylate group, which allows it to influence the local protein
environment by modulating the hydrogen-bond network and
coordinating interactions. The main objectives of this research
are to understand how the flexible nature of this long side
chain manifests within the OEC and to evaluate its impact on
the selective attraction, precise guidance, and effective
stabilization of a substrate water molecule. A key hypothesis
underlying this investigation is that during the S2 to S3
transition, a specific water molecule (O6*) may temporarily
interact with a Ca ion in the form of a hydroxide ion (OH−).15

This transient association is assumed to be essential for its
eventual incorporation into the Mn4CaO5 cluster, making it
crucial to investigate its detailed mechanism.

The side chain of the glutamate residue is connected with
the Cα atom of the backbone via two sp3 hybridized carbon
atoms (Cβ and Cγ), enabling it to potentially orient in various
directions, as depicted in Figure 2. The side chain orientation
can be described with a set of three dihedral angles (D1, D2,
D3), with D1 somewhat restricted due to steric interference
between Cγ and the main chain. In the actual protein
environment, the ranges of D2 and D3 are further limited by
steric hindrance from neighboring residues, water molecules,
and cofactors. To investigate the range of motion of the D1-
Glu189 side chain within the OEC environment, we examined
energy changes with respect to the dihedral angles D2 and D3

using the hydrogen-bonding network (arrangement I) shown
in Figure S1B. The result, presented in Figure 2, indicates that
the spatial configuration of D1-Glu189 exhibits a broader range
of motion than anticipated. The energy difference (ΔE),
compared to a metastable structure with O6* (OH−) bound to
Ca, as depicted in Figure S1B, remains relatively low (<∼10
kcal mol−1) while D2 varies from 120° to 210° and D3 from
−80° to 30°. Notably, regions A and B in the energy landscape,
as indicated in Figure 2, draw our attention, as they provide the
opportunity for O6* to engage in physical interactions with
MnD. In the region A, the carboxylate group of D1-Glu189
adopts a twisted conformation oriented toward D1-Val185,
and entry into this area is achievable with an energy of around
7 kcal/mol or less. On the other hand, reaching the region B
involves a twist in the carboxylate group of D1-Glu189 toward
O6*. Crossing a dashed line in the energy landscape results in
a substantial shift of around 20° in the D1 dihedral angle,
causing the carboxylate group to extend well beyond O6*,
leaving a substantial space between O6* and MnD. However,
this structural motion encounters an energy barrier of around
20 kcal mol−1 or higher, making it an impractical motion. Even
with considerable space between O6* and MnD in the regions
A and B, no spontaneous movement of O6* toward the MnD
site was observed, as illustrated in Figure 2. This indicates that
a small amount of energy is likely required to rearrange or

Figure 2. A potential energy surface representing the energy change
(ΔE) as a function of the dihedral angles D2 and D3 of D1-Glu189.
These calculations were based on the PDB coordinates (6JLL,
monomer A),10 with an additional O6* remaining attached to the Ca
ion of the Mn cluster. The relative energy ΔE is referenced to the
metastable structure depicted in Figure S1B. White circles indicate the
D2 and D3 values corresponding to the motion of the D1-Glu189 side
chain when coupled with O6* binding to MnD (see Figure 3). A
magenta circle represents the D2 and D3 values observed in the S3
state, in which O5 and O6 either form an oxyl-oxo bond or exist as
bridging oxo and terminal hydroxo ligands.
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disrupt the surrounding hydrogen bonding network formed by
five water molecules W10, W20, W21, W22, and W23
(arrangement I in Figure S1B), which stabilizes O6* in its
anionic form (OH−) and traps it at the Ca site.

When the Ca-bound O6* (OH−) attempts to establish a
bonding interaction with MnD, it faces significant hindrance
due to the presence of D1-Glu189, located 3.09 Å from Ca
(200 ms after 2F).10 To gain insight into how D1-Glu189
navigates the transfer of O6* toward MnD, we deliberately
inserted O6* into the tight space between Ca and D1-Glu189
by systematically adjusting the angle of Ca···O6*···O−-Glu189
from 60° to 160° in 10° increments. Figure 3A depicts the
coordinated movements of D1-Glu189 and O6*, with their

color-coding representing ΔE at each angle. The result clearly
indicates that alterations in the side-chain conformation of D1-
Glu189 play a guiding role, allowing O6* to enter the confined
region between Ca and D1-Glu189. The dihedral angles D2
and D3 of the side chain shift, as illustrated by white circles in
Figure 2, moving toward the region A along the most gradual
slope of the potential surface when the motion of O6* is not
coordinated. The energy reaches its maximum (ΔE ∼ 13 kcal
mol−1) at around an angle of 140° and a Ca···O−-Glu189
distance of 4.81 Å, beyond which O6* spontaneously binds to
MnD. The substantial conformational change of D1-Glu189
(approaching the region A in Figure 2) is essential, though not
exaggerated, for enabling O6* to move. This is more clearly
understood when Ca and O−-Glu189 oxygen atoms are
represented as spheres, as in Figure 3C,D. Without a
conformational change in D1-Glu189, there would be
significant interference between D1-Glu189 and the moving
O6*, as seen in Figure 3D. However, the extensive motion of
D1-Glu189 creates a narrow passage that minimally allows
O6* to pass through, as depicted in Figure 3C. As O6* moves,
the position of Ca fluctuates, exhibiting a maximum displace-
ment of 0.7 Å, consistent with the experimental observation of
a single negative difference density attributed to Ca disorder at
time points 30 μs to 5 ms after 2F.15 The MnD-bound O6*,
now referred to as O6, serves not only as a hydrogen bond
donor to D1-Glu189, but also continues to act as a hydrogen
bond acceptor for W21 (following the water numbering in ref
15), which has been pulled into a close proximity to O6 by the
movement of O6*, as indicated in Figure 3E. The presence of
W21 in this position hinders D1-Glu189 from returning to its
original configuration. By manually disconnecting the hydro-
gen bond between W21 and O6 and restoring W21 to its
original position, along with altering the hydrogen-bonding
pattern from arrangement I (Figure S1B) to II (Figure S1C),
we confirmed that D1-Glu189 can revert to its original
conformation and energetically cluster around the observed
configuration (in magenta), as demonstrated in Figure 3B. We
believe that such a hydrogen-bonding reorganization is likely to
occur easily at room temperature. The return motion of D1-
Glu189 (escaping from the region A) appears to descend a
steep slope on the potential energy surface when O6* is
uncoordinated (Figure 2).

The intricate dynamics highlighted here emphasize the
pivotal role of the conformational flexibility of D1-Glu189 in
facilitating the movement of O6* and its functional importance
in accessing to the S3 state with the hydroxo−oxo form (Stotal =
3) at room temperature.32 However, this mechanism alone
does not account for the formation of the oxyl−oxo form (EPR
silent, Stotal = 6),33−36 which is expected to emerge around 200
μs after 2F and become predominant in the low-temperature
S3 state.10 One explanation for the discrepancy with the EPR
results is the hypothesis that a reversible proton transfer may
occur between O6 (OH−) bound to MnD and the carboxylate
oxygen of D1-Glu189, which is positioned within hydrogen
bonding distance. However, previous computational studies
found no evidence to support such a proton transfer.37−39 To
further investigate, we compared the relative stabilities of three
chemical species in the S3 state: hydroxo−oxo, oxyl−oxo, and
deprotonated hydroxo−oxo (i.e., oxo−oxo with protonated
D1-Glu189), as illustrated in Figure S2. Our analysis revealed
that the hydroxo−oxo and oxyl−oxo species are nearly equally
stable, which is consistent with the EPR observation that two
species (Stotal = 3 and EPR silent) could coexist or interconvert

Figure 3. (A) Conformational changes in the side chain of D1-
Glu189 as O6* moves toward MnD. The colors of O6* and D1-
Glu189 correspond to the relative energy (ΔE) compared to the
metastable structure shown in Figure S1B. (B) Conformational
changes in the side chain of D1-Glu189 as O6* (renamed O6) binds
to MnD, followed by the return of D1-Glu189 to its original
orientation. The experimentally observed conformation in the S3 state
(6JLL, monomer A)10 is highlighted in magenta. (C, D) A sphere
representation illustrates Ca and the coordinating oxygen atoms of
D1-Glu189 during O6* binding to MnD, aiding in the comprehension
of the steric hindrance resulting from repulsive forces between
neighboring Ca, D1-Glu189, and moving O6*. (E) Fluctuations of
five water molecules (W10, W20, W21, W22, and W23)
accompanying the movement of O6* toward MnD. Purple dashed
lines represent hydrogen bonds between O6* and W21, as well as
between O6* and W10, contributing to the stabilization of the anionic
form of O6* (OH−). As O6* moves closer to MnD, W21 is also
pulled toward the space between Ca and D1-Glu189 due to its
interaction with O6*, while interference from D1-Glu189 (not
shown) causes the hydrogen bond between O6* and W10 to break
just before O6* binds to MnD (O6* → O6).
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under physiological conditions.33 In contrast, the deprotona-
tion of the hydroxo ligand to form the deprotonated hydroxo−
oxo (oxo−oxo) with protonated D1-Glu189 was found to be
energetically unfavorable, with an uphill energy cost exceeding
14 kcal mol−1 (Figure S2A), in agreement with the previous
studies.38,39 This remains true even when considering potential
changes in the dihedral angles (D1, D2, and D3) of the D1-
Glu189 side chain (Figure S2B,C). Therefore, it is highly
unlikely that D1-Glu189 is involved in storing the proton from
O6 (OH−) or mediating its release into the bulk.

Many research groups have undertaken theoretical inves-
tigations to elucidate the sequence of water molecule binding
and Mn oxidation during the S2 to S3 transition.40−48 The
proposed sequences derived from the high-valent scheme,49,50

in which the Mn oxidation state in the S2 state is
MnA

IVMnB
IVMnC

IVMnD
III, intricately intertwine with the

structural rearrangements of the Mn cluster. The basis for
this deduction lies in the fact that a five-coordinated MnD

III

cannot undergo oxidation unless one of the three amino acid
ligands (D1-Glu189, D1-Asp342, and D1-His332) is replaced
by a water-derived ligand. This conclusion remains robust, with
no successful instances of realizing a five-coordinated MnD

IV in
any theoretical investigations. Building upon this computa-
tional evidence grounded in the high-valent scheme, we
recently proposed a reaction scheme outlined in Figure 4.44,45

If there are no significant changes in the framework of the Mn
cluster, known as the open cubane structure, the sequence
comprises water binding as the initial step, followed by Mn
oxidation, as demonstrated by the order indicated above the
dashed line in Figure 4. While it has been conventionally
assumed that the bound water originates from W3 or W2, the
latest XFEL study suggests a novel possibility that O6* could
serve as the direct source of the bound water.15 This
proposition holds significant implications if O6* indeed
represents an OH− ion, as illustrated in Figure 3. However,
current knowledge does not entirely rule out the possibility
that O6* might actually be H2O. The uncertainty surrounding
this issue stems from the inherent characteristics of Ca2+,
which typically exhibit relatively low Lewis acidity compared to
Mn. In this scenario, the specificity of O6* may be diminished.
As W2, W3, and O6* are all water molecules (H2O), it
becomes unclear which one is responsible for the MnD-bound
O6. The ambiguity arises because, in all cases, they produce
the same final products, making it difficult to distinguish their

individual contributions to the reaction. The propensity of
Ca2+ and O6* (H2O) to dissociate at the current level of
theory (B3LYP/BS1) further complicates the assessment of
whether O6* (H2O) serves as the substrate for the ongoing
cycle or the subsequent one. Therefore, the ambiguous nature
of O6* (whether it is OH− or H2O) adds a layer of complexity
to the mechanistic understanding of the S2−S3 transition,
intertwined with the sequence of water binding and Mn
oxidation, as well as the structural rearrangement of the Mn
cluster. Considering the ligand-exchange activity of MnIII and
the ligand-exchange inertness of MnIV, it is reasonable to
suggest that the attachment of O6* to MnD

III may be
reversible. This opens up the possibility for an alternative
mechanistic pathway where Mn oxidation precedes water
binding to the MnIV site. Such a pathway would require the
transient formation of a closed cubane structure,51−53 as
exemplified by the sequence indicated below the dashed line in
Figure 4. This dual-pathway model suggests a level of
mechanistic flexibility that enables the OEC to adapt to
varying physiological conditions. The reversibility for O6*
motion is in line with the persistent presence of residual
density for O6*, which remains detectable even in the S3 state
(at a time point of 5 ms after 2F),15 as well as membrane-inlet
mass spectrometry (MIMS) measurements, which detected
substrate water 16O/18O exchange after the incubation of the
PSII in the S3 state in the presence of H2

18O.54−56

In these contexts, future research should adopt a broader
perspective that explores the distinct structural characteristics
extending beyond the immediate coordination spheres, while
also assessing how these features interact with physiological
conditions such as pH, temperature, and the presence of
cryoprotectants or other environmental additives. The catalytic
environment of the OEC differs across organisms like
cyanobacteria and higher plants due to differences in protein
composition, secondary ligand environments, and cofactors.
These differences, combined with environmental factors, may
influence the efficiency and mechanistic pathways involved in
the uptake and binding of water molecules to the OEC.33,57−65

A comprehensive approach that considers these aspects may
provide valuable insights into how nature optimizes water
uptake and coordination, as well as associated processes such
as electron transfer and proton transport, across different
species and environmental contexts, ultimately advancing our
understanding of biological water oxidation.

Figure 4. A proposed reaction mechanism for the S2 to S3 transition, based on the high-valent scheme.
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4. CONCLUSIONS
In this study, we focused on elucidating the specific role of the
D1-Glu189 amino acid residue within the OEC to better
understand how the conformational flexibility of its side chain
influences the selective attraction, guidance, and stabilization
of a substrate water molecule. This study is based on the
currently tested hypothesis that during the S2 to S3 transition, a
specific water molecule (O6*) may transiently associate with a
Ca ion, stabilizing as a hydroxide ion (OH−).15 Our detailed
analysis demonstrates a critical mechanism in the catalytic
function of the OEC, specifically highlighting the detachment
of the D1-Glu189 carboxylate group from its coordination with
the Ca ion. This detachment triggers a significant reorganiza-
tion of the local protein environment, resulting in the
formation of a transient but well-defined binding passage
within the OEC. This passage serves as a selective gateway,
effectively attracting O6* in its deprotonated form from the
surrounding pool of water molecules and directing its
transition from a loosely coordinated state at the Ca ion to a
more stable, catalytically active position at the MnD site. Once
at this site, O6* undergoes further structural adjustments,
acquiring the necessary chemical properties to act as a
substrate water molecule, now referred to as O6. This optimal
positioning of O6 at the catalytic center is crucial for enabling
the series of subsequent oxidation steps required for the
progression of the water-splitting catalytic cycle. These findings
suggest that the conformational flexibility of D1-Glu189 is not
merely a passive characteristic but could actively contribute to
shaping the specialized microenvironment within the OEC and
supporting key catalytic processes.
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