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ABSTRACT: Complex signal vectors, particularly spectra, are
integral to many scientific domains. Interpreting these signals
often involves decomposing them into contributions from
independent components and subtraction or deconvolution of the
channel and instrument noise. Despite the fundamental nature of
this task, researchers frequently rely on costly commercial tools. To
make such tools accessible to all, we present Tihi, interactive, open-
source multiplatform software for interpolation, denoising, baseline
correction, peak detection, and signal decomposition. Tihi provides
a user-friendly graphical interface (GUI) that facilitates the analysis
of spectroscopic data and more. It allows researchers to contribute
to and freely distribute these tools, ensuring broad accessibility and
fostering collaborative improvements. We present examples
demonstrating the efficiency of the program using the spectra of different systems acquired by different spectroscopic techniques,
including Raman (aspirin), IR (solid ammonia), XRD (anatase), and UV−vis (petal tip from the Puya alpestris flower). These
examples showcase a variety of spectra that differ significantly, from signals with narrow profiles to signals with very broad profiles.
This demonstrates the versatility of Tihi for peak identification in a wide range of spectroscopic techniques.

1. INTRODUCTION
Spectroscopic techniques are essential tools for revealing the
structure, composition, and behavior of matter. The analysis of
characteristic peaks in a spectrum provides critical insights into
the chemical properties of a system. For example, in mass
spectroscopy, these peaks offer precise information about the
chemical composition, while in vibrational spectroscopy, they
help identify functional groups present in a molecule. Similarly,
the examination of absorption peaks in various spectroscopic
methods provides valuable data on the molecular structure and
overall composition of materials. The accuracy of peak detection
has a significant impact on the results. However, experimental
signals often contain random noise, alternating baselines,
varying peak shapes, and overlapping peaks, making it crucial
to use a method that can reliably detect peaks in the spectra.

Several peak detection methods have been developed,
including the direct peak-locating algorithm,1,2 first and second
derivative techniques,3−5 curve fitting,6−8 the Fourier transform
method,9 and the wavelet transform method.10−16 Among these,
the wavelet transform-based algorithm has gained considerable
attention in recent years due to its accuracy, performance and
multiscale nature. However, all of these peak detection methods
encounter difficulties when applied to spectral regions with
closely spaced peak pairs, entire peak clusters, or features
exhibiting a high dynamic range. Such complex spectral features
are common in molecular systems like large proteins and
periodic materials.17 In recent years, advances in machine
learning, particularly the rise of deep neural networks, have

opened new avenues for developing models that can more
accurately identify spectral peaks.17−20 However, to the best of
our knowledge, each model remains tailored to a specific
spectroscopic technique, and no universal model exists that can
handle the peaks of spectra across all types of spectroscopy.

Spectroscopists frequently rely on commercial software
options for analyzing and interpreting spectral data. Popular
choices include Spectragryph, Mnova, OriginLab, LabView,
Opus as well as routines in platforms like Matlab, Octave, Excel
and OpenOffice among others.21−27 These tools offer a
comprehensive suite of functionalities for data analysis.
Typically provided features include baseline correction,
smoothing, normalization, peak fitting, and spectral deconvolu-
tion, the latter of which helps separate overlapping peaks to
reveal underlying molecular or elemental contributions.28−35

Additionally, updating these tools to meet the evolving needs of
the scientific community can be challenging and does not allow
user-driven changes.10,36,37 While the premium versions of these
software solutions provide extensive capabilities, their high cost
can limit accessibility, making it challenging for many
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researchers and institutions within the spectroscopy community
to utilize them effectively.

As alternatives to commercial software, there are several free
online tools available that can analyze spectral data effectively.
These tools often deliver performance comparable to paid
versions, as demonstrated by ChemoSpec.38 Examples of such
tools include Vernier Spectral Analysis, ChemInformer, and
SpecVizPro, among others.39−41 However, these free online
tools typically depend on server-side computations with no clear
way to modify the algorithm on the user side, rendering them
ineffective when the user is obliged to embed a new tool into the
provided software. This limitation is also problematic for
outdoor experiments or for analysis embedded directly in data-
gathering devices (remote sensing). Additionally, updating these
tools to meet the evolving needs of the scientific community can
be challenging and do not allow user-driven changes.

Both commercial and open-source spectroscopic analysis
software offer a range of features, but they are often specialized
for specific types of data. For instance, certain tools are designed
exclusively for NMR spectral data (e.g.,TopSpin),42 while others
focus on IR and Raman spectra (e.g.,Opus, DiscovIR10
Software, GIRAS),25,43,44 and some to mass spectroscopy
(e.g.,MaxQuant, MALDIquant, TIPick, NITPICK).2,45−47

Such specializations are natural for their purposes, as the
characteristic peaks and intensities in various spectra are tied to
different molecular properties. Focusing on a single spectro-
scopic technique, combined with additional features like band
assignment and peak decomposition, these tools can achieve
more precise peak detection. However, these specialized tools
rely on mathematical methods that can be adapted to any type of
signal. Thus, the specialization should not obscure the fact that
the underlying techniques are fundamentally general-purpose,
making cross-application and interoperability both feasible and,
in many cases, desirable. Ideally, these specialized features
should function as add-ons to a versatile, general-purpose
platform that can handle a broader range of spectroscopic data.

Here, we introduce, Tihi†, a user-friendly graphical user
interface (GUI) tool for peak detection and signal decom-
position in spectroscopic data analysis. This tool features a
minimalist design for enhanced user clarity and ease of use,
incorporates a modular architecture for easy updates and feature
modifications, and is accessible to the community, allowing for
adaptations to meet the diverse needs of scientists.

Our publication consists of four main sections. Section 2
details detrending algorithms, peak-identification methods, and
the decomposition of signals into a sum of distributions. In
Section 3, we delve into the graphical interface, highlighting its
features and functionalities. Notably, the software comes with a
stepwise tutorial for utilizing denoising and refinement methods
effectively. While our software prioritizes accessibility and
community-driven updates, advanced alternative methods
briefly mentioned in Section 2.1 are yet to be implemented,
where simpler methods like linear, airPLS and arPLS methods
are implemented.48 In Section 4, we showcase the applicability
of Tihi on different spectroscopic signals. We conclude by
discussing the advantages offered by our application.

2. METHODOLOGY
The peak identification workflow is designed to systematically
process spectroscopic data, which often contains complex
signals. Accurate peak identification and quantification are
crucial for understanding a sample’s composition. The workflow
typically begins with an optional step of removing any unwanted

trends in the signal, known as detrending or baseline correction.
This ensures that the analysis focuses on true spectral features,
eliminating artifacts introduced by the instrument or sample
preparation.

After detrending, the next step is to identify potential peaks in
the spectrum using a technique called window propagation. This
method scans the signal with a moving window to pinpoint
regions where peaks are likely present, helping to distinguish
closely spaced features more effectively. Once these candidate
peaks are detected, the workflow moves on to modeling the
signal component around each peak using mathematical
distributions, such as Gaussian, Lorentzian or Voigt distribu-
tions. The goal is to fit these distributions such that their
combined signal closely reproduces the original (detrended)
spectrum, allowing for more accurate quantification of over-
lapping peaks. Finally, the processed spectrum and correspond-
ing peak data are saved for further analysis, allowing for a
detailed interpretation of the chemical properties of the system
under study.

2.1. Signal Detrending Algorithms. Signal detrending
(here including baseline correction), aims to correct bias in the
captured signal at coarse scales, by removing an error signal
which is constant or varies slowly on the scale of the structure in
the data. Accurate decomposition of finer structure in spectral
data typically begins with alignment of the baseline to the x-axis.
Intuitive recognition of the true baseline of the signal is often
easy, but a rigorous algorithmic approach is needed in order to
have sensible, or at least consistent, results in difficult cases.

Mathematically, we define a “baseline” as a function
B f f: ( ) ( ), where

B f x x U f Umin ( ): ( ), where is connected= { }
(1)

Here, f( ) and f( ) represent the domain and range of the
function or distribution f. It is important to note that B is not
unique based on this definition. What we ascertain from this
definition is that f(x) − B(x) yields a function that measures the
deviation or alteration from the initial value of interest.

Since baselines are not unique, various types of baseline
correction algorithms exist, including, linear, Shirley back-
grounds,49,50 penalized least-squares (PLS)/Tikhonov meth-
od,51 polynomial fittings, derivative methods, CROWELL,52

LIMPIC,53 and corner-cutting,54 to name a few. In this section,
and in the program itself, we focus on three simple algorithms:
linear, adaptive iteratively reweighted PLS (airPLS),55 and
asymmetrically reweighted PLS (arPLS).56

A selection of algorithms are implemented in Tihi: the linear
baseline algorithm is the simplest approach. It comprises
drawing a straight line from the initial coordinates to the
signal’s end-point. This method is both fast and less susceptible
to distorting the signal’s shape. However, researchers might seek
a nonlinear baseline or may aim to reshape the signal to remove
noise from the profile. This is where PLS algorithms prove
beneficial. These algorithms are efficient, easy to debug, and
flexible enough to accommodate nonlinear baselines and refine
signal shapes during denoising processes.

The “PLS” algorithms airPLS, arPLS, establish the baseline as
a vector denoted as z following Baek et al.56 This is achieved
through minimizing the regularized least-squares function, or
the cost function, defined as

S z s z W s z z D Dz( ) ( ) ( )T T T= + (2)
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Here, D represents the difference matrix:
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s represents the signal under analysis, while the matrixW and the
scalar λ serve as parameters for fine-tuning. The fitness of the
data and the smoothness of the baseline are represented in the
first and second terms of eq 2, respectively. For airPLS, the

selection among different least-squares methods is determined
by the choice of the parameters in the matrix W = [wi]i.
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where n is the iteration step, si is the i-th component of the signal,
zi is the ith component of the baseline, and d is the negative
elements of s − z. The rationale behind the weight selections in
this method is 2-fold: first, to preserve whatever is already above
the baseline, and second, to iteratively update weights

Figure 1. (a) Comparison between the original signal (generated using multiple sine functions), the linearly detrended signal, and signals detrended
using airPLS and arPLS methods. (b) Difference between the arPLS and airPLS results, showing the differences that can arise from the two baseline
correction methods. Note that the positions of the peaks are not altered despite the changes in amplitudes. The original signal is generated to
emphasize an extreme case.
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exponentially to extend into the region beyond the baseline
when si falls below it.

The arPLS algorithm is expressed below, defining the
parameters W as follows

w n
e s z

s z
( )

(1 )

1
i

d
i i

i i

2( (2 )/ ) 1l
m
ooo
n
ooo=

+
< (5)

Here, σ represents the standard deviation, and μ signifies the
mean of the negative values of s − z. Unlike airPLS, this method
endeavors to guide the logistic function toward convergence at
1, when si ≥ zi. This adjustment ensures that the majority of
baseline values lie beneath the signal, resulting in a primarily
positive detrended signal. As a consequence, this method yields
results closer to scientists’ expectations from spectroscopic data.

Figure 1 compares the linear baseline correction method with
the two PLS-based algorithms discussed in this section. The
linear method is computationally efficient and preserves the
shape of the signal but cannot eliminate nonlinear trends. In
contrast, as shown in Figure 1a, the arPLS algorithm adjusts the
baseline to keep the signal as positive as possible, while airPLS
does not impose this constraint. Consequently, arPLS is more
suitable for broader signals with multiple overlapping distribu-
tions, whereas airPLS is better suited for signals that are
inherently non-negative.

2.2. Peak Detection Method. Peak detection by window
propagation entails a two-step procedure:

1. Define the local interval, called the window, within the
signal.

2. Identify the local maximum of the signal within the
defined window. This maximum is determined among
potential candidates where the negative of the second
derivative of the signal reaches a local maximum.

The window is propagated (slid) along the x-axis. If a
candidate peak, defined as the local maximum (second
derivative minimum), is found, a list of potential candidates is
constructed. These candidates are then filtered using a threshold
that defines the ideal size of the peak of interest. A signal may
consist of multiple overlapping components, forming shoulders
rather than distinct peaks: use of second derivatives is necessary
in this circumstance.

Results from window propagation are sensitive to the choice
of window size and the degree of overlap between neighboring
windows. A smaller window size generates more candidate peaks

from the signal compared to a larger window size. This is due to
the increased likelihood of the amplitude corresponding to the
median of the window reaching its maximum in a smaller
window. Users are required to set a threshold based on the
difference between the maximum and minimum amplitudes
within the specified interval. This threshold helps filter out peaks
with insignificant heights, thereby improving the accuracy of the
analysis. Figure 2 illustrates the outcomes obtained using various
sliding window sizes and thresholds, highlighting the benefits of
interactively selecting the optimal window size. Smaller window
sizes and lower thresholds tend to identify more peak
candidates, which increases the risk of false positives. For
instance, the first peak in Figure 2, marked with a red cross
(window size = 5, threshold = 0.1), demonstrates how minor
local fluctuations can be mistakenly classified as peaks.
Conversely, if the window sizes are too large or the thresholds
are set too small, one may not find enough peaks to accurately
capture the underlying physics or chemistry of the model.

2.3. Decomposition into Multiple Distributions. The
primary objective of the tasks detailed in the preceding two
subsections is to generate a series of distributions that can be
added to form the corrected signal. The measured input signal is
thus accounted for as a sum of physically meaningful
independent signals (plus the baseline correction). Many
chemical or biological signals can be economically represented
as sums of well-defined distributions, often with Gaussian,
Lorentzian/Cauchy, or Voigt functional forms.

Assume a denoised and detrended signal, s,̂ with peaks
identified. The first working definition of a peak is as a local
maximum with height above the nearest stationary point
exceeding a certain threshold, taken as a parameter. Peaks
showing not as maxima but as shoulders in the input signal can
be detected iteratively following this scheme, once the dominant
peaks are recognized. The task our program needs to accomplish
to obtain the decomposition is to find the parameters, p, that
satisfy the following equality.

s x xx x p( ) ( ; , ( ) )
x peaks

p p

p

= { }
(6)

where can be Gaussian, Lorentzian, or Voigt distribution.
Note that the parameters depend on the peaks, xp, because the
distributions corresponding to the different peaks have distinct
shapes and sizes.

Figure 2. A test signal with varying window parameters. A smaller window size and a higher threshold result in a greater number of potential peaks.
However, a smaller window or lower threshold also increases the likelihood of including spurious peaks generated by noise.
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Similar to baseline correction, the parameters defining the
distributions are determined by optimizing a specific cost
function. The simplest function for optimization involves
measuring the discrepancy between the targeted sum and the
original signal. It can be represented as

S s x xx x x p( ) ( ) ( ; , ( ) )
x peaks

p p
2

p

= { }
(7)

The objective is to minimize S(x), ideally achieving a value of
zero. Although reaching zero is highly improbable, the aim is to
get as close as possible, especially if the signal s ̂ maintains
positive definiteness and continuity within a bounded set. In
spectroscopic applications, this set usually represents an interval
where the signal is defined. Determining the parameters involves
identifying the minima of S by computing the partial derivatives
of S with respect to the parameters ∂S/∂p. This well-known
optimization approach is commonly referred as the least-squares
optimization algorithm.

The least-squares algorithm offers a user-friendly approach to
optimization, ensuring efficiency and simplicity. Its roots date
back to 1722 at the latest, with Roger Cotes,57 and its utility was
demonstrated by Legendre and Laplace in their astronomical
predictions.58 Gauss later formalized it, establishing it as an

optimal and well-understood method we know today.59 Despite
its advantages, the community retains the flexibility to opt for
alternative optimization algorithms.

Figure 3 presents a synthetic spectral signal alongside its
identified peaks and reconstructions using Voigt, Lorentzian,
and Gaussian distributions. The original synthetic signal is
compared with these reconstructions to evaluate their accuracy.
Among the three, the Voigt reconstruction provides the closest
fit to the original signal across most of the spectrum. In contrast,
the Lorentzian reconstruction exhibits some deviations,
particularly in the valleys between peaks, where it tends to
overestimate the intensity. The Gaussian reconstruction, while
generally aligning with the trend of the original signal,
underestimates peak heights and overestimates valley depths
in certain regions. This comparison illustrates the importance of
choosing an appropriate distribution for accurate signal
reconstruction in spectral analysis.

3. FEATURES OF THE CODE
While the methods outlined in Section 2 may appear distinct at
first glance, they converge toward a common objective;
identifying peaks and distributions to construct a physically
accurate signal. Figure 4 visually illustrates the strategic

Figure 3. Demonstrating the fitting of spectral data with diverse distributions involves using the least-squares method to optimize the distribution
parameters. This process contributes to accurately reconstructing the original signal.

Figure 4. Illustrating the workflow for peak identification and distribution optimization. The features outlined in the orange box are implemented in
wizard-style interface, as each step must follow the order and heavily relies on the previous results.
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alignment of these methods, demonstrating the systematic
extraction of precise peak information from spectroscopic data
sets. Tihi’s open-source nature and deliberate modular design
enhance its adaptability for future community-driven enhance-
ments and facilitate streamlined debugging processes. The
program is easy to use, maintain, and update. It can run locally
with Python 3 installed. Additionally, its modularity allows for
easy integration with C, Rust, Java, Javascript, or PHP code,
making it suitable for embedding into hardware or web pages.

3.1. Main Section: Basic UI for Visualizing the Input
Signal. The program’s core functionality centers on two pivotal
tasks: (1) managing the input and output of signal data and (2)
displaying visual representations of preprocessed and modified
results. The main window is designed to effectively carry out
these tasks while maintaining user intuitiveness by minimizing
the number of buttons and interactive menus. Figure 5 illustrates
how the UI is structured to guide users with limited selections,
preventing confusion or difficulty in navigation.

To demonstrate how to use Tihi, we use the Raman spectral
signal of an abelsonite sample from the RRUFF database as a test
case,61 shown in Figure 5. This signal is chosen for its complexity
arising from abelsonite’s crystal structure that consists of nearly
planar, covalently bonded porphyrin molecules held together by
weak intermolecular van der Waals forces,62 showcasing Tihi’s
full functionality even with the current backbone GUI program.
Users can press Load File to import two-column data in
.txt format. This step will immediately plot the spectral data,
treating the first column as the x-axis.

3.2. Wizards: The Main Analysis. When users pressRun in
the main window, they are directed to a pop-up window
containing the interpolation and denoising section of the
program. Similar to other wizard windows in the program, this
section is straightforward, with users only required to choose
parameters and observe how their signal is denoised�refer to
Figure 5 for the illustrated explanation. It is important to note
that users are not immediately directed to the one-step peak
detection and signal decomposition page. They are, instead,
guided through a series of steps in the correct order to achieve

the desired decomposition. This sequential approach is
supported by the wizard UI, which encourages users to progress
through the algorithm step-by-step. Even if users prefer to run
the algorithm in reverse order, such as from decomposition to
peak identification, this could pose mathematical challenges or
be time-consuming. The wizard UI is designed to prevent users
from encountering such difficulties and ensures a smoother
experience. Upon clicking Next, users are directed to a window
where they can select and apply the baseline correction
algorithm. In this section, they make only three selections: the
type of baseline correction algorithm, the smoothness
parameter, λ, from eq 2 for PLS methods, and the ratio for the
airPLS method. The results obtained from this step are shown in
Figure 6. The optimal magnitude of the smoothness parameter
depends on the signal’s nature and noise level. The GUI’s default
value of 200 is not ideal for signals with many features, such as
the abelsonite Raman spectrum. As shown in Figure 6c, a value
of λ ∼ 104 using the arPLS method works best, preserving
features and successfully detrending the signal. This conclusion
is based on a small set of trials. For less complex signals, the
default value of 200 may suffice.

After completing the signal detrending step, users proceed to a
page to fine-tune their peak detection scheme, (see Figure 7a).
On this page, three options are available: window size, threshold
and minimum amplitude. The first two parameters are as they
discussed in Section 2, while the minimum amplitude eliminates
small peaks irrelevant to the extracted information. In cases
where the signal is obtained from an experimental device, small
noise-induced bumps may appear, making this parameter
essential for noisy signals.

Once the peaks are identified, users can proceed to the next
step; the signal decomposition page. This page consists of a
plotting window and options similar to those in the previous
pages. There are three options to choose from the type of
distribution, optimizer loss, and maximum number of iterations
(see Figure 7b). Pressing Run decomposition initiates the
decomposition process. Once the process is completed, the final
fitted result will be displayed on the graphing window. It is

Figure 5. (a) The main window of Tihi offers a clean and straightforward interface, featuring a minimal selection of buttons: load, run algorithm, save
parameters, normalize plot and set minimum and maximum values of the x-axis. Additionally, users can customize plot labels, conveniently. Data can be
saved as a text file or exported as an image using the built-in functionality of the PyQtGraph library,60 accessible via a right-click on the plot. The
showcased sample plot is sourced from the RRUFF database.61 (b) The wizard window appears when the user presses Run. It presents the denoised
input signal, represented by the green curve. The buttons and labels of this image are magnified for visibility.
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Figure 6. Application of different baseline correction algorithms with various smoothness parameters on the abelsonite Raman spectrum. Green lines
indicate the baselines, blue lines show the corrected signal, and gray lines represent the original signal. (a) Linear baseline correction result, (b, c) arPLS
baseline correction results with λ = 103 and 104, respectively, (d, e) airPLS baseline correction results with λ = 103 and 104, respectively, (f) menu
interface for toggling options in the baseline correction window.
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important to note that this process will run the decomposition
using the parameter set obtained from the previous run. This
allows users to examine intermediate fitted results in units of the
Maximum number of iterations each time they click
this button. Once the decomposition is terminated, one can

examine the individual distributions on the graphing window by

clickingPlotalldecompositions and obtain a graph as

in Figure 8.

Figure 7. (a) Peak detection window following the baseline correction step. The UI is minimalistic, with only two parameters to choose: window size
and the threshold. (b) Signal decomposition into multiple Lorentzian distributions. Users can choose from three distributions: Gaussian, Lorentzian,
and Voigt, and select the optimization loss for the least-squares method from linear, soft l1, Huber loss, and arctan. The blue curves show the individual
decompositions where the light green curve shows their sum.
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4. RESULTS AND DISCUSSION
To verify the effectiveness of our code, Tihi, in peak detection of
spectral signals, we demonstrated its capabilities using a variety
of spectra from different spectroscopic techniques. While it is
impractical to showcase every type of spectroscopy, we selected
four diverse examples: the experimental Raman spectrum of
aspirin, our simulated IR spectrum of solid ammonia, the XRD
spectrum of anatase and the UV−vis spectrum of the petal tip
from the Puya alpestris flower. These spectra were chosen
because they vary significantly in signal characteristics, from
having narrow profiles to very broad profiles. This diversity
highlights the efficiency of our program in identifying peaks in
spectra with different properties. Our code is versatile and can be
used for peak identification in any spectroscopic spectrum.

4.1. Raman Spectroscopy. We retrieved the experimental
Raman spectrum of aspirin from the SpectraBase database.63

Figure 9 shows the Raman spectrum of aspirin along with the

detected peaks by Tihi, indicated by vertical lines, using
optimized parameters. These parameters include the baseline
correction method and window size for peak detection, as
described in Section 3 among others. At first glance, our code
with optimized parameters appears capable in accurately
predicting the peak values and corresponding vibrational
frequencies of aspirin. However, for a more accurate assessment,
we compare Tihi’s detected peaks and in turn frequencies with
those reported in the literature for aspirin.

Our goal is to showcase the efficiency and accuracy of our
program. Comparing frequencies based on various previous
studies, which likely used different experimental settings, can be
misleading and does not allow a direct comparison of our code’s
effectiveness. Therefore, we focus solely on the results related to
this particular spectrum, even though not all bands are assigned
to specific vibrations. In the experimental reference spectrum,
aromatic rings are observed at 1030 cm−1, and the C−O−H
vibration is observed at 1200 cm−1. The C−CH3 vibration
appears at 1300 cm−1, while the carbonyl group (C�O) shows a
stretching vibration at 1600 cm−1. Vibrations associated with
C−H are observed at 2950 cm−1 and those with O−H are at
3050 cm−1.64 As shown in Table 1, our detected vibrational

frequencies compare well with the experimental ones. The
differences observed in some frequencies can be justified by the
unknown accuracy of the algorithm used to detect the
experimental frequencies. If the methods were not highly
accurate, such deviations are expected.

4.2. IR Spectroscopy. We simulated IR spectral data of solid
ammonia, in Figure 10. Due to the broadening process, the
peaks may deviate from the actual vibrational frequencies−
explaining the deviation shown in Table 2 despite the excellent
agreement.

As shown in Figure 10, the simulated IR spectrum of ammonia
is presented along with the peaks detected by Tihi indicated by
vertical lines. Specifically, the peaks at 468, 1112, 1631, 3287 and
3405 cm−1 correspond to lattice mode νL, symmetric bending ν2,
antisymmetric bending ν4, symmetric stretching ν1, and a
combination of symmetric stretching ν1 and lattice mode νL,
respectively. With optimized settings parameters, the program
accurately predicts the peak positions. Table 2 further illustrates
this agreement by listing the vibrational frequencies of the main
bands, corresponding to the individual lines before spectral
broadening, alongside the peak positions detected by Tihi.
Except for the high frequency band, all other frequencies show
excellent agreement between the actual simulated vibrational
frequencies and those estimated by our code. The deviation in
the high frequency band can be attributed to the broadening
method applied to the individual lines of frequencies and IR

Figure 8. Program displays the final result on the main window of Tihi.

Figure 9. Experimental Raman spectrum of aspirin (blue line),
retrieved from the SpectraBase database,63 compared with Tihi’s
detected peaks and in turn vibrational frequencies (red line). The
optimized Tihi settings were as follows: the original signal was
interpolated with 10,000 data points, and the denoising window was set
to 8. The arPLS algorithm with λ = 200 and a ratio of 1 × 10−6 was used
for baseline correction. The window size for peak detection was 10, with
a minimum amplitude of 0.01, and a threshold of 5 × 10−6. Lorentzian
distribution was selected and the optimization loss for the least-squares
method was set to soft l1, with a maximum of 100 iterations.

Table 1. Performance Benchmark of Tihi for Raman
Spectrum of Aspirina

frequency reported63,64 (cm−1) frequency detected with Tihi (cm−1)

1030 1038
1200 1196
1300 1299
1600 1610
2950 2942
3050 3054

aThis table lists the experimental frequencies (peak positions)
assigned to specific vibrations,63,64 alongside the corresponding
frequencies detected by Tihi.
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intensities, as mentioned earlier. Since Tihi analyzes the
broadened spectrum, such a shift in frequency may result from
the broadening process and should not be considered a flaw in
the program.

4.3. X-ray Diffraction (XRD). For the XRD analysis, we
selected the XRD spectrum of anatase (TiO2) due to its
extensive industrial applications, including the production of
plastics, artificial fibers, electronic materials, rubber and solar
cells.65,66 This spectrum is characterized by sharp peaks,
differing from the other spectra we have examined. Con-
sequently, identifying the peaks using Tihi for the entire
spectrum at once is not optimal. To address this, we divided the
spectrum into different x-axis windows: [20,50], [50,60],
[60,68], [68,72] and [72,85], and estimated the peaks within
each window.

In Figure 11, we present the experimental spectrum of
anatase,61,67 along with the peaks detected with our program.
We observe a very good agreement between the estimated and
experimental peaks. To further verify the accuracy of our
program in identifying the peaks of the XRD spectrum, we
calculated the Miller indices (h, k and l), for the peaks detected
by Tihi and compared them with the reported values (see Table
3). We utilized Bragg’s law for this calculation:

n d sin( )= (8)

where n is the diffraction order (usually n = 1 for XRD analysis),
θ is the angle of incidence, d is the grating distance and λ is the
wavelength of the incident X-rays. Given that anatase has a
tetragonal crystal structure with lattice constants a, b and c,
where a = b ≠ c, the interplanar spacing dhkl for a tetragonal
crystal system is given by

Figure 10. Simulated IR spectrum of solid ammonia (blue line),
compared with Tihi’s detected peaks and in turn vibrational frequencies
(red line). The optimized Tihi settings were as follows: the original
signal was interpolated with 10,000 data points, and the denoising
window was set to 10. The arPLS algorithm with λ = 200 and a ratio of 1
× 10−6 was used for baseline correction. The window size for peak
detection was 18, with a minimum amplitude of 0.022, and a threshold
of 0.009. Lorentzian distribution was selected and the optimization loss
for the least-squares method was set to soft l1, with a maximum of 100
iterations.

Table 2. Performance Benchmark of Tihi for the Simulated
IR Spectrum of Solid Ammoniaa

frequency in sim. data (cm−1) frequency detected with Tihi (cm−1)

468 469
1112 1111
1631 1631
3287 3286
3405 3412

aThis table lists the simulated frequencies assigned to specific
vibrations, alongside the corresponding frequencies detected by Tihi.
Abbreviation: sim.: simulated reference data.

Figure 11. XRD spectrum of anatase (blue line),61,67 compared with
the peaks detected by Tihi (red line). To identify the peaks with Tihi,
the spectrum was divided into different x-axis windows. The optimized
Tihi settings for each window were as follows: The original signal was
interpolated with 1000 data points for all x-axis windows. No denoising
and detrending methods were applied. The window size for peak
detection was 18. The minimum amplitude settings were 0 for windows
with ranges [20,50], [50,60] and [68,72], 0.01 for the window with
range [60,68], and 0.1 for the window with range [72,85]. The
threshold was set to 0.05. Gaussian distribution was selected and the
optimization loss for the least-squares method was set to linear, with a
maximum of 50 iterations for all windows except the window with range
[68,72], which was set to 100 iterations.

Table 3. Performance Benchmark of Tihi for the XRD
Spectrum of Anatase61,67,a

exp. 2θ61,67 ref Miller indices (h k l)61,67 2θ Miller indices (h k l)

25.23 1 0 1 25.24 1 0 1
36.86 1 0 3 36.80 1 0 3
37.72 0 0 4 37.66 0 0 4
38.46 1 1 2 38.43 1 1 2
47.89 2 0 0 47.86 2 0 0
53.77 1 0 5 53.70 1 0 5
54.89 2 1 1 54.87 2 1 1
61.92 2 1 3 62.02 2 1 3
62.51 2 0 4 62.57 2 0 4
68.59 1 1 6 68.59 1 1 6
70.05 2 2 0 70.24 2 2 0
74.83 2 1 5 74.85 2 1 5
75.78 3 0 1 75.54 3 0 1
82.41 2 2 4 82.28 2 2 4
82.87 3 1 2 82.52 3 1 2

aThis table compares the experimental angles of incidence θ and their
corresponding Miller indices (h k l) with the angles of incidence and
Miller indices detected by Tihi. Abbreviations: Exp.: experimental
angle of incidence, ref: reference data.
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Combining eqs 8 and 9, we can determine the Miller indices
corresponding to the peaks in the XRD spectrum by solving for
the possible combinations of h, k and l using the equation for dhkl
in a tetragonal system:
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We used a wavelength of λ = 1.54 Å, typical for Cu Kα
radiation, to calculate the Miller indices. As shown in Table 3,
the peak positions detected by our program exhibit excellent
agreement with the experimental peaks. The calculated Miller
indices also match well with the reported values, demonstrating
that our program can accurately identify peaks in signals with
sharp features, such as the XRD spectrum of anatase.

To evaluate Tihi’s peak detection performance, we analyzed
the XRD spectrum of anatase using two other widely used peak
detection tools (see Table 1 in the Supporting Information).
Tihi successfully identified all the peaks in the spectrum.
Similarly, Spectragryph21 also performed well, although it
missed one peak. In contrast, OriginPro,23 detected 13 out of
15 peaks, but its deviations from the reference data were more
significant compared to both Tihi and Spectragryph.

4.4. Ultraviolet−Visible (UV−vis) Spectroscopy. To
evaluate the effectiveness of Tihi in UV−vis spectroscopy, we
analyzed the UV−vis spectrum of the petal tip from the Puya
alpestris flower,68 which grows at lower elevations on the western
side of the Andes in Central Chile. The distinctive blue-green
pigment in Puya alpestris is identified as a nonacylated
anthocyanin, delphinidin 3,7,3′-tri-O-glucoside. This anthocya-
nin is known to decolorize rapidly in an aqueous solution at pH
5.3−5.5. Therefore, various spectroscopic methods, including
UV−vis spectroscopy, are crucial for investigating the chemical
factors responsible for the green-blue coloration in Puya species.

Figure 12 presents the experimental UV−vis absorption
spectrum of the petal tip, highlighting three absorption maxima
at 575, 614, and 679 nm. These maxima are shown alongside the
peaks identified by our program. Mizuno et al.68 attributed the
absorption maximum at 679 nm to chlorophyll and the maxima
at 575 and 614 nm to the anthocyanin. To demonstrate our
program’s accuracy, the peaks it identified that correspond to the
experimentally observed ones are marked in dark red, while the
others are indicated in light red.

As a first glance, the UV−vis spectrum appears smooth,
suggesting that peak identification might be straightforward.
However, this is not the case; it is actually a challenging system
to analyze due to spectral broadening. The difficulty arises from
the varying full width at half-maximum (fwhm) used for the
distributions that sum to produce the spectrum. There can be
scenarios where a few distributions with larger fwhm result in
fewer peaks, or more distributions with narrower fwhm result in
more peaks.

We hypothesize that the reason our program predicted more
peaks than those previously reported for the UV−vis spectrum is
due to the use of narrower fwhm compared to those used by
Mizuno et al.68 This discrepancy should not be considered a flaw
in our implementation, as it depends solely on the settings used
in the previous peak identification. Despite this condition, as
shown in Table 4, our program accurately identified the three
peaks reported by Mizuno et al.68 These findings illustrate Tihi’s

capability to accurately identify peaks in spectra with significant
broadening and even propose additional peaks, offering insights
into the pigment composition of Puya alpestris flower.

Additionally, similar to the analysis of the XRD spectrum of
anatase, we assessed Tihi’s performance in predicting the
spectral peaks of the UV−vis spectrum of the petal tip of Puya
alpestris flower, compared to other tools, (see Table S2 of
Supporting Information). Our findings indicate that Tihi
accurately predicts multiple peaks, whereas other tools either
detect only a single peak or exhibit higher deviations from the
reference data.

5. CONCLUSIONS
Here we introduce Tihi, an open-source user-friendly GUI tool
designed for peak detection and signal decomposition in
spectroscopic data analysis. Tihi offers a comprehensive
backbone workflow for signal processing that includes baseline
correction, peak detection and signal decomposition, ensuring
high flexibility and precision. Its minimalist design enhances
clarity and ease of use, while the modular architecture allows for
easy adaptation and future enhancements. Users can efficiently
manage their data, visualize results, and fine-tune parameters for

Figure 12.UV−vis absorption spectrum of the petal tip of Puya alpestris
from,68 compared with the peaks detected by Tihi (red). The dark red
lines indicate peaks also reported by Mizuno et. al,68 while lighter red
indicates additional peaks identified by the program. The optimized
Tihi settings were as follows: the original signal was interpolated with
1000 data points, and denoising was applied three times with sizes of
100, 30 and 10, consecutively. The detrending method was not used.
The window size for peak detection was set to 10, with a threshold of
0.01. A Lorentzian distribution was selected and the optimization loss
for the least-squares method was set to linear, with a maximum of 100
iterations.

Table 4. Performance Benchmark of Tihi for UV−vis
Absorption Spectrum of the Petal Tip from the Puya alpestris
Flower68,a

frequency reported68 (nm) frequency detected with Tihi (nm)

575 576
614 615
679 675

aThis table lists the experimental frequencies, alongside the
frequencies detected by Tihi.
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optimal signal reconstruction. The program’s practicality is
further enhanced by the ability to save and export data.
Additionally, with the entire code available online, users can
modify the software independently and run their applications
locally without relying on a web server. Importantly, the open-
source nature of the program invites researchers worldwide to
enhance the tool, ensuring more scientists have access to a local
peak decomposition GUI tool on their desks.

Our program is equipped with the least-squares optimization
algorithm, coupled with various baseline correction methods
(linear, airPLS, arPLS), so that it can effectively refine an input
signal. The wizard UI approach ensures that users follow a
structured, step-by-step process, minimizing errors and
enhancing the accuracy of peak detection and signal
decomposition. To showcase the efficiency of our program, we
used both publicly available experimental spectroscopic data and
our own simulated spectroscopic data from different techniques,
including Raman (aspirin), IR (solid ammonia), XRD (anatase)
and UV−vis (petal tip from Puya alpestris flower). These spectra
were chosen because they represent a wide range of signal
characteristics, from spectra with narrow profiles to spectra with
very broad profiles. These examples demonstrate the program’s
success in peak identification, highlighting its versatility in
analyzing spectroscopic data of any kind.

Future work may involve integrating additional signal
detrending and optimization algorithms to broaden the scope
of the application. Given the rapid advancements in machine
learning techniques, we will explore their potential for peak
identification, particularly in automating parameter selection
and addressing complex signal patterns. While traditional
algorithms have been prioritized for their interpretability and
computational efficiency, machine learning approaches could
help overcome challenges such as adaptive baseline correction
and noise reduction. Enhancing parallelization capabilities could
further decrease computation time for large data sets, which is
critical for real-time applications.

Additionally, we aim to introduce add-on packages such as a
peak assignment helper, 3D visualizer, and vibration visualizer.
By continuously adapting and improving our code based on user
feedback, we will address issues like limited configurability and
complex error handling. Future versions of Tihi are expected to
feature specialized wizard windows tailored to specific needs,
simplifying the user experience for both novice and advanced
users.

5.1. Computational Details. The IR spectrum of solid
ammonia was calculated using the all-electron numeric-atom-
centered orbital code FHI-aims (Fritz Haber Institute ab initio
molecular simulations).69−72 This computation employed the
PBE functional,73 enhanced by the nonlocal many-body
dispersion (MBD-NL) method.74 The tight species default
settings in FHI-aims were used for all numerical atom-centered
basis functions and integration grids, incorporating scalar
relativistic effects via the zero-order regular approximation
(ZORA).

Convergence criteria were set to 10−6 eV for total energy, 10−7

electrons/Å3 for charge density, 10−5 eV/Å for the sum of
eigenvalues, and 10−4 eV for forces. Geometry and cell relaxation
was considered converged when the maximum residual force
component per atom was below 10−5 eV/Å, with the maximum
acceptable energy increase per relaxation step also set to 10−5

eV. The Brillouin zone was sampled with a 4 × 4 × 4
Monkhorst−Pack k-points grid.75 For the graphical representa-

tion of the vibrational spectra, Lorentzian broadening was
applied with a full width at half-maximum (fwhm) set to 10.0.
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