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Abstract 

Background  The age distribution of a mosquito population is a major determinant of its vectorial capacity. To con-
tribute to disease transmission, a competent mosquito vector, carrying a pathogen, must live longer than the extrinsic 
incubation period of that pathogen to enable transmission to a new host. As such, determining the age of female 
mosquitoes is of significant interest for vector-borne diseases surveillance and control programs.

Methods  In this contribution, an automated age-grading system was developed to classify the age of female Culex 
pipiens, which is the primary vector of West Nile virus and other pathogens of medical and veterinary importance 
in northern latitudes. The system comprises an optical wingbeat sensor coupled to the entrance of a mosquito trap 
and a machine learning model. Three age classes were used in the study: young (2–4 days), middle (7–9 days) and old 
(14–16 days). From a balanced dataset of flight data, four features were extracted: wingbeat fundamental frequency, 
spectrogram, power spectral density and Mel frequency cepstral coefficients. The features were used for training 
with the XGBoost algorithm to generate a model for age classification.

Results  The best performing model was trained with the power spectral density feature on two age classes, ≤ 4 days 
old and ≥ 7 days old, and had an accuracy of 71.8%.

Conclusions  An automated mosquito age-grading system was applied for the first time to our knowledge for auto-
mated age classification in mosquitoes; and complements the mosquito genus and sex classification capability 
of the system reported in our previous work. The system may find use in mosquito-borne disease surveillance 
and control to help to discriminate young mosquitoes (≤ 4 days old) from older mosquitoes, which may act as vectors 
of arboviruses.

Keywords  Culex pipiens, Mosquito vectors, Age grading, Chronological age, Optical sensor, Machine learning

Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Parasites & Vectors

*Correspondence:
María I. González Pérez
maria.i.gonzalez.prof@gmail.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-024-06606-w&domain=pdf


Page 2 of 7González Pérez et al. Parasites & Vectors          (2024) 17:510 

Background
Culex (Culex) pipiens Linnaeus, 1758, also known as 
the “common house mosquito” or “Northern house 
mosquito,” is a polytypic species and member of a spe-
cies complex which is now distributed worldwide. It is 
native to Africa, Asia and Europe, where it is the pri-
mary vector of important human and animal pathogens 
such as West Nile virus (WNV), Usutu virus, Sind-
bis virus, Tahyna virus, lymphatic filariasis and avian 
malaria [1]. Females of Cx. pipiens feed on a variety of 
vertebrate hosts, contributing to the amplification of 
the enzootic cycle of arboviruses such as WNV, which 
is sustained mainly among wild birds, with occasional 
spillover to humans [2]. Preventing the spread of mos-
quito-borne diseases (MBD) and responding to out-
breaks is a priority for public health authorities, which 
are developing coordinated strategies to strengthen 
vector control programs worldwide [3].

The age distribution of a mosquito population is a key 
determinant of its vectorial capacity (VC) to transmit 
a pathogen to a host [4]. To become a vector, an adult 
female mosquito must live longer than the extrinsic 
incubation period (EIP) of the pathogen that it car-
ries, which ranges from several days to a couple of 
weeks depending on factors such as vector population, 
pathogen load and ambient temperature. For example, 
the EIP of WNV in Cx. pipiens is typically > 7 days at 
18 to 27 ºC [5–8]. As such, the impact of MBD can be 
reduced by vector control strategies which target adult 
mosquito lifespan [9].

The importance of vector longevity for the epidemiol-
ogy and control of MBD was first described in the 
1950s by Macdonald as a key component of the basic 
reproduction rate of malaria [10]. Following this, the 
concept of VC was introduced, which indicates the 
ability of a population of vectors to transmit a pathogen 
to a host [11]. The VC is calculated as VC =

ma2bpn

−ln(p)
 

where ‘m’ is the vector density relative to host density; 
‘a’ is the probability a vector feeds on a host in one day; 
‘b’ is the competence of the vector for a particular virus; 
‘p’ is the daily probability of the vector survival; ‘n’ is 
the EIP in days. A linear reduction in ‘p’ leads to an 
exponential reduction in VC, which highlights the 
impact of vector survivorship on VC [12].

Several methods have been described in the literature 
to estimate mosquito age [12]. One of the oldest and 
most established of these is based on the examination 
of changes in the ovarian morphology of female mos-
quitoes according to their reproductive status, such as 
the ovary tracheation method or the determination of 
sequential egg laying events [13]. The posterior finding 
of age-related changes in particular biochemical signals 

in mosquitoes, such as the pteridines or the cuticular 
hydrocarbons, led to the development of biochemical 
methods which aimed to quantify these components 
by chromatography [14]. In the last decades, the intro-
duction of molecular methods such as transcriptional 
and protein profiling contributed to the advancement 
of mosquito age grading by analyzing the differences in 
the expression levels of age-responsive genes and pro-
teins [15]. More recently, the use of near-infrared and 
mid-infrared spectroscopy has served to identify spe-
cific mosquito biological traits like age based on the 
quantification of changes in the absorption spectra of 
organic compounds in the exoskeleton [16].

Despite decades of research and their epidemiological 
relevance as vectors, only a few age grading methods have 
been developed for Culex species [17–19]. These meth-
ods, based on ovarian dissection and cuticular hydro-
carbons, are either  labor-intensive, require a high level 
of expertise and complex equipment and processing, or 
do not directly provide an estimation of chronological 
age (calendar days) [12]. To address these limitations, a 
new age-grading method for female Cx. pipiens mosqui-
toes was developed and assessed in the present work. 
This method consisted of a system comprising an opti-
cal wingbeat sensor coupled to a mosquito trap and a 
machine learning (ML) model, which provides an auto-
mated classification of mosquitoes by age.

Several studies have previously investigated the poten-
tial of different type of sensing devices (acoustic, optical, 
image based) in combination with ML to identify mos-
quitoes and other attributes of mosquito biology [20, 21]. 
Optical (also known as optoacoustical) sensors, like the 
one presented in the current work, profit from insect 
bioacoustic properties, which have been under study for 
classification purposes since the first half of the twentieth 
century [22–24]. In the last decade, the number of pub-
lished works using optical sensing approaches to classify 
flying mosquitoes by genus, species, sex or parity status 
has increased [25–31]. However, age classification using 
such devices has not been attempted before, even though 
mosquito wingbeat frequency has been reported to vary 
with age [32].

In the present contribution, the authors attempted to 
close the gap in age-grading methods for Culex species 
by proposing a new technological approach consisting of 
an optical wingbeat sensor coupled to a mosquito trap. 
This method was previously tested in both laboratory 
and field conditions to classify Aedes and Culex mosqui-
toes by genus and sex, reporting high-accuracy results 
[33, 34]. In this case, the sensor was trained with Culex 
female mosquito samples of different ages to build a ML 
model for age classification. This is the first time this kind 
of system has been applied for mosquito age classification 
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to our knowledge. We hope this work opens new possi-
bilities in this field, with a view to its future application in 
vector biology research and in mosquito surveillance and 
control programs.

Methods
Mosquito rearing conditions
Larvae of Cx. pipiens, population of Bellaterra, Cerdan-
yola del Vallés, Barcelona, Spain (2020 and 2022), were 
kept in plastic trays containing 750 ml dechlorinated tap 
water renewed three times per week and fed with fish 
food pellets (Goldfish Sticks-TETRA, Melle, Germany). 
Pupae were placed in plastic cups inside insect-rearing 
cages (BugDorm-1 Insect Rearing Cage W30 × D30 × H30 
cm, MegaView Science, Talchung, Taiwan) until adult 
emergence. Adult female mosquitoes were anesthetized 
with carbon dioxide in a plate (Flowbuddy flow regula-
tor, 59-122BC, Flystuff, California, USA) and sorted into 
three age classes: young (2–4  days), middle (7–9  days) 
and old (l4–16 days). They were fed 10% sucrose solution 
ad libitum; this was removed 24 h before the flight assay 
for a particular age class.

The mosquito life cycle took place inside a climatic 
chamber (Telewig, Barcelona, Spain) at 28  ºC, 80% rela-
tive humidity, with a light:dark photoperiod of 11:11  h 
(plus 1 h of dusk and 1 h of dawn). Different generations 
of adult mosquitoes were used to obtain samples for the 
experiment until F15. All female mosquitoes used in the 
experiment were nulliparous.

Flight assays using the optical sensor and mosquito trap
An optical wingbeat sensor (Irideon, Barcelona, Spain) 
was coupled to the entrance of a BG-Mosquitaire mos-
quito trap (Biogents, Regensburg, Germany) contain-
ing a suction fan. The sensor comprises an optical 
emitter formed by a two-dimensional array of light-emit-
ting diodes that emit a collimated light beam (940  nm) 
toward an optical receiver formed by a two-dimensional 
photodiode array with a sensing zone formed between 
them. When a mosquito flies close to the entrance of the 
sensor, it is likely to be sucked into the sensor by the air-
flow of the fan and pass through the sensing zone where 
it casts a fast-changing shadow on the optical receiver 
because of the modulation of the light beam by the wing-
beats of the mosquito in flight. A detailed description of 
the sensor is provided in our previous works [33, 34].

The sensor and trap were placed in an insect cage (Bug-
Dorm-4S4590 W47.5 × D47.5 × H93.0  cm, MegaView 
Science, Talchung, Taiwan) inside a climatic chamber 
(CCK-0/5930 m, Dycometal, Barcelona, Spain) where the 
flight assays took place (Fig. 1). The trap was fitted with 
a sachet of BG-Sweetscent (Biogents, Regensberg, Ger-
many) to attract mosquitoes toward the sensor. During 

each flight assay, female mosquitoes belonging to a par-
ticular age class were released into the insect cage. Flight 
assays were performed at ambient temperatures of 18 ºC, 
23 ºC and 28 ºC, and mosquitoes were acclimatized in the 
climatic chamber for 24 h prior to the start of the assay.

Machine learning model for age classification
The sensor recordings were downloaded to a laptop 
computer after each flight assay and were then pro-
cessed using a Python script. Pre-processing of data 
included the manual examination of each recording 
and the exclusion of those considered to be unrepre-
sentative, e.g. single recordings with two mosquitoes 
or recordings where the mosquito was deemed to have 
hit the wall of the transparent flight tube inside the sen-
sor. The resulting labeled data were randomly under-
sampled to obtain a balanced dataset which was split, 
with 75% used to train the supervised ML model, with 
fourfold cross validation, and the remaining 25% used 
to test the classification performance of the model on 
unused data. A series of wingbeat features, including 
wingbeat fundamental frequency (WBF), spectrogram, 
power spectral density (PSD) and Mel frequency ceps-
tral coefficients (MFCC), were extracted from the sen-
sor recordings and used to train the ML model with 
the XGBoost gradient boosting algorithm [35]. For 
every feature, training was done using fourfold cross-
validation, and the model with the best cross-validation 

Fig. 1  Experimental setup for the flight assays
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score was then selected for testing. The performance of 
the ML model was assessed using the accuracy metric, 
which was calculated by dividing the number of correct 
predictions by the total number of predictions.

A schematic diagram of the whole methodological 
procedure is illustrated in Fig. 2.

Results
The balanced dataset used for training and test contained 
a total of 2088 recordings of female Cx. pipiens from the 
three age classes: young (2–4  days), middle (7–9  days) 
and old (14–16 days).

A first ML model based on the gradient boost algo-
rithm was trained to classify mosquitoes into the three 
age classes. The four features, WBF, PSD, spectrogram 
and MFCC, were evaluated, and the best performing 
feature was the PSD with an accuracy of 46.6%. The low 
accuracy result for this model is largely due to the confu-
sion between the middle and old age classes, as shown in 
the confusion matrix (Table 1).

Considering the accuracy results of the first model in 
Table 2 and the high level of confusion between the mid-
dle and old age classes, a second model was trained with 
the middle and old age classes combined into a single 
“older” class. This model was also based on the gradient 
boost algorithm and classified into only two age classes: 

Fig. 2  Diagram illustrating the study methodology

Table 1  Confusion matrix for ML classification into three age 
classes, young (2–4 days), middle (7–9 days) and old (14–
16 days), using the PSD feature

Actual age Predicted age

2–4 days 7–9 days 14–16 days

2–4 days 95 37 42

7–9 days 41 74 59

14–16 days 31 69 74

Table 2  Accuracy for the different wingbeat features for ML classification into three age classes and two age classes

PSD power spectral density, MFCC Mel frequency cepstral coefficients, WBF wingbeat fundamental frequency

Feature Accuracy of classification

Three age classes [young (2–4 days), middle (7–9 days) and old 
(14–16 days)]

Two age classes [young 
(2–4 days) and older 
(7–16 days)]

PSD 46.6% 71.8%

MFCC 46.2% 68.7%

Spectrogram 44.6% 65.8%

WBF 37.0% 53.5%
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young (2–4  days) and older (7–16  days). In this case, 
the balanced dataset contained a total of 1392 record-
ings. The same four features were evaluated, and the best 
performing feature continued to be PSD, but with an 
improved accuracy of 71.8% (Table 2). A training score of 
100% indicated that these results could be improved fur-
ther by using more training data.

Discussion
In this contribution, a new method was described to 
determine the age of female Cx. pipiens mosquitoes. This 
method consisted of an optical wingbeat sensor coupled 
to a mosquito trap with an ML model to classify age 
classes based on mosquito wingbeat features. To the best 
of our knowledge, this is the first publication of results 
for an automated age classification system based on a 
wingbeat sensor.

We note that the same automated classification system 
was used in previous laboratory [33] and field studies 
[34] for genus and sex classification of Aedes and Culex 
mosquitoes with high accuracy. While other optical sen-
sor systems have been used to classify flying insects (by 
genus, species, sex or parity status) with good results 
[25–31], there have been no previous reports of auto-
matic age classification using such sensors.

In insect bioacoustics, the WBF has been tradition-
ally used as a predictor variable for different classifica-
tion purposes [20]. However, it was demonstrated to be 
insufficient for certain classification tasks (i.e. taxonomi-
cal classification), because of the existence of overlap-
ping frequency distributions among different mosquito 
species [25]. Therefore, many studies have chosen other 
more complex acoustic features as predictors, such as the 
spectrogram, PSD or MFCC, which provide better clas-
sification results [28–31].

Previous research with Aedes aegypti reported that the 
WBF increased significantly with age [32], although this 
increase only took place at young ages and plateaued for 
older ages [36]. In the present study, using WBF as the 
sole predictor variable for age classification gave the low-
est accuracy due to the overlap between age classes; the 
richer spectrogram, MFCC and PSD features all gave bet-
ter accuracy results. The MFCC and PSD features were 
also used in our prior work [33] and in other mosquito 
classification studies based on bioacoustic sensing [29, 
37–39]. In the present study, the widely used ML algo-
rithm XGBoost was used because it gave good accuracy 
results for mosquito classification in other works [29] and 
in our prior work [33, 34].

The best age classification model, which gave an accu-
racy of 71.8%, used the PSD feature to distinguish young 
(2–4-days old) from older (7–16-days old) mosquitoes. 

As indicated by the training score metric, the accuracy 
could possibly be improved using more training samples.

In the present work, the optical sensor system was able 
to differentiate between young mosquitoes (≤ 4 days old) 
and older mosquitoes. However, it was less able to differ-
ent between the middle and old ages, which may be due 
to the lack of change in the features used. In line with 
vector competence studies of Cx. pipiens for WNV [5], 
this young-older binary classification may serve to dis-
criminate between two functional groups of non-vector 
and potential vector mosquitoes which are old enough 
to have overcome the EIP of the virus. The EIP of WNV 
in Cx. pipiens has been reported to be > 7 days at tem-
peratures ranging from 18 to 27  ºC [5–8]. Therefore, 
this method, if properly calibrated for field applications, 
could be useful to assess WNV control interventions tar-
geting vector longevity.

As described, the sensor-based system should enable 
automated age grading of wild female Culex mosquitoes 
in the field, with potential application to other mosquito 
vectors, which would be very significant for vector sur-
veillance and control programs. The results indicate that 
the accuracy of the ML model could still be improved by 
using more laboratory flights to train the model.

Conclusions
Mosquitoes of Culex genera are one of the main vectors 
worldwide. The age distribution of such mosquito popu-
lations is a key determinant of their vectorial capacity 
since only those mosquitoes which have lived enough to 
overcome the EIP of a pathogen will be able to transmit it 
to a new host. In this article, we assessed a new method 
for age grading of female Cx. pipiens based on an auto-
mated system using an optical wingbeat sensor coupled 
to a mosquito trap with a machine learning model. The 
results derived from the present work could be useful in 
mosquito-borne disease surveillance and control to help 
to discriminate young (≤ 4 days old) from older mosqui-
toes which may act as vectors of arboviruses.
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