
Horton et al. Clinical Epigenetics          (2024) 16:181  
https://doi.org/10.1186/s13148-024-01792-x

RESEARCH Open Access

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply  2024. Open 
Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which 
permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit 
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed mate-
rial. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other 
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regula-
tion or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, 
visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Clinical Epigenetics

Changes in DNA methylation are associated 
with systemic lupus erythematosus flare 
remission and clinical subtypes
Mary K. Horton1*, Joanne Nititham1, Kimberly E. Taylor2, Patricia Katz2, Chun Jimmie Ye3, Jinoos Yazdany2, 
Maria Dall’Era2, Charlotte Hurabielle2, Lisa F. Barcellos4, Lindsey A. Criswell1 and Cristina M. Lanata1 

Abstract 

Background  Systemic lupus erythematosus (SLE) has numerous symptoms across organs and an unpredictable 
flare-remittance pattern. This has made it challenging to understand drivers of long-term SLE outcomes. Our objec-
tive was to identify whether changes in DNA methylation over time, in an actively flaring SLE cohort, were associated 
with remission and whether these changes meaningfully subtype SLE patients.

Methods  Fifty-nine multi-ethnic SLE patients had clinical visits and DNA methylation profiles at a flare and approxi-
mately 3 months later. Methylation was measured using the Illumina EPIC array. We identified sites where methylation 
change between visits was associated with remission at the follow-up visit using limma package and a time x remis-
sion interaction term. Models adjusted for batch, age at diagnosis, time between visits, age at flare, sex, medications, 
and cell-type proportions. Separately, a paired T-test identified Bonferroni significant methylation sites with ≥ 3% 
change between visits (n = 546). Methylation changes at these sites were used for unsupervised consensus hierarchi-
cal clustering. Associations between clusters and patient features were assessed.

Results  Nineteen patients fully remitted at the follow-up visit. For 1,953 CpG sites, methylation changed differently 
for remitters vs. non-remitters (Bonferroni p < 0.05). Nearly half were within genes regulated by interferon. The largest 
effect was at cg22873177; on average, remitters had 23% decreased methylation between visits while non-remitters 
had no change. Three SLE patient clusters were identified using methylation differences agnostic of clinical outcomes. 
All Cluster 1 subjects (n = 12) experienced complete flare remission, despite similar baseline disease activity scores, 
medications, and demographics as other clusters. Methylation changes at six CpG sites, including within immune-
related CD45 and IFI genes, were particularly distinct for each cluster, suggesting these may be good candidates 
for stratifying patients in the future.

Conclusions  Changes in DNA methylation during active SLE were associated with remission status and identified 
subgroups of SLE patients with several distinct clinical and biological characteristics. DNA methylation patterns might 
help inform SLE subtypes, leading to targeted therapies based on relevant underlying biological pathways.
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Introduction
Systemic lupus erythematosus (SLE) is a complex auto-
immune disease that follows a relapsing (flare)-remitting 
pattern with systemic symptoms that vary greatly from 
person to person. The disease activity of SLE involves a 
dynamic interplay between molecular processes, par-
ticularly interferon pathways. How exactly this relates to 
flares, remission, and organ damage are largely unknown. 
Importantly, clinical characteristics are not strongly cor-
related with response to treatment, disease activity, or 
future prognosis. Given the diversity of symptoms and 
flare-remittance patterns of illness, it has been challeng-
ing to predict long-term SLE outcomes.

Patterns of DNA methylation (DNAm) have emerged 
as potential mechanisms for and biomarkers of SLE risk, 
disease activity, and heterogeneity [1–7]. Identifying dif-
ferences in DNAm by SLE phenotypes or flare remis-
sion status might also illuminate mechanistic pathways 
responsible for SLE heterogeneity. Recently, much effort 
has been devoted to identifying SLE patient subtypes to 
better characterize disease heterogeneity. These efforts 
have primarily been based on bulk and single cell RNA 
sequencing, clinical symptoms, autoantibodies, and gene 
sequencing [8–17]. The strong involvement of type I 
interferon signaling has consistently emerged as one SLE 
patient subtype, while others have varied. Despite this 
consistency and the great need to stratify SLE patients, 
these studies have predominantly been cross sectional 
with participants not necessarily experiencing active 
disease flares. To the best of our knowledge, no studies 
have subtyped SLE patients based on changes in DNAm 
at different points of disease activity. Additionally, there 
has been limited inclusion of non-white participants in 
efforts to subtype SLE, a significant limitation given the 
worse disease outcomes and higher incidence among 
African American, Hispanic, and Asian individuals [18, 
19].

In this study, we utilized 59 multi-ethnic SLE patients 
recruited during an active flare who have DNAm profiles 
at baseline flare and approximately three months later. 
Our objectives were to: (1) identify whether changes in 
DNAm between visits were associated with complete 
remission status at follow-up, and (2) perform unsuper-
vised clustering of changes in DNAm to identify clinically 
or biologically relevant SLE subtypes.

Methods
Study subjects and design
Individuals experiencing an active SLE flare were 
recruited to the California Lupus Epidemiology Study 
(CLUES) Flare Cohort during routine clinical care at 
the University of California, San Francisco (UCSF). SLE 

diagnoses were confirmed by study physicians based 
upon one of the following definitions: (a) meeting ≥ 4 of 
the 11 American College of Rheumatology (ACR) revised 
criteria for the classification of SLE as defined in 1982 
and updated in 1997, (b) meeting 3 of the 11 ACR crite-
ria plus a documented rheumatologist’s diagnosis of SLE, 
or (c) a confirmed diagnosis of lupus nephritis, defined 
as fulfilling the ACR renal classification criterion (> 0.5 g 
of proteinuria per day or 3 + protein on urine dipstick 
analysis) or having evidence of lupus nephritis on kid-
ney biopsy. A flare was established by the treating phy-
sician and characterized by the SELENA Systemic Lupus 
Erythematosus Disease Activity Index (SLEDAI) [20]. 
A SLEDAI ≥ 3 was required for inclusion and physician 
determination that a flare was significant enough to war-
rant a treatment change. Approximately three months 
later, participants returned to the clinic as part of rou-
tine clinical care. Individuals with blood samples and 
complete clinical data at each visit were included in our 
sample. This resulted in a total of 122 paired samples (61 
individuals).

This study was approved by the Institutional Review 
Board of UCSF. All participants signed a written 
informed consent to participate.

DNA methylation data
Genome-wide DNAm was measured using the Illumina 
Infinium MethylationEPIC BeadChip v1.0 from DNA 
extracted from whole blood at each visit. Both samples 
from an individual were run on the same plate/array. 
DNAm data was processed using the minfi package in R 
version 4.3.3 [21, 22]. Signal intensities were background 
subtracted using the noob function and quantile normal-
ized. We excluded both paired samples from individuals 
if at least one of their samples had ≥ 5% detection p < 0.01, 
self-reported sex did not match sex predicted from 
DNAm (n = 1), or if paired samples had mismatched 
genotypes detectable from the methylation array (n = 1). 
CpG sites were removed if ≥ 5% detection p < 0.01, over-
lapped with annotated single nucleotide polymorphisms 
(SNPs) from any ancestral population in the single base 
extension or CpG, overlapped with previously identified 
cross-reactive probes, or were on sex chromosomes [23, 
24]. This resulted in 606,337 CpG sites across 118 sam-
ples for analyses.

Global cell-type proportions for 12 leukocyte sub-
types (neutrophils, eosinophils, basophils, monocytes, 
naive and memory B cells, naive and memory CD4 + and 
CD8 + T-cells, natural killer, and T regulatory cells) were 
estimated at each visit using estimateCellCounts2() with 
EPIC IDOL-Ext library CpGs in the FlowSorted.Blood.
EPIC package in R [25]. Input DNAm data were normal-
ized using preprocessNoob().
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Clinical data
Clinic visits included the collection and review of medi-
cal records, a SLE history and physical examination 
conducted by a physician specializing in SLE, and com-
pletion of a structured interview by an experienced 
research assistant. Data collected included sex, self-
reported race, Hispanic ethnicity, age, and SELENA 
SLEDAI components and score at each visit. Medication 
assessment included whether individuals were on the fol-
lowing at the time of each blood draw: prednisone, cyclo-
phosphamide, mycophenolate mofetil or mycophenolic 
acid, rituximab, belimumab, azathioprine, cyclosporine, 
tacrolimus, hydroxychloroquine, methotrexate, and sol-
umedrol. One person had missing medication for the 
follow-up visit so their medications were imputed with 
the baseline visit medications. Multiple correspondence 
analysis (MCA), similar to principle component analysis 
but for categorical variables, was conducted separately at 
each time point on binary medication variables to reduce 
the dimensionality of the medication data using the Fac-
toMineR R package [26]. The EpiSmokEr R package was 
used to predict smoking status (current, past, never) 
using DNA methylation data [27].

Statistical analyses
Differential methylation position analyses for remission
Our primary objective was to identify CpG sites where 
changes in DNAm between visits were associated with 
complete remission status at follow-up. Because we were 
limited to two timepoints and without additional longi-
tudinal clinical data, it was not possible to determine if 
patients who only had serologic activity (presence of 
double-stranded DNA antibodies and/or low comple-
ment) were clinically quiescent. Therefore, we conserva-
tively defined “remitter” as a patient having a SELENA 
SLEDAI score = 0 at the follow-up visit. For each CpG 
site that reached quality control thresholds, we used 
a linear model with a time x remission interaction term 
in limma R package [28]. Time represented baseline 
flare (time = 0) or follow-up (time = 1) visits. The paired 
design was accounted for using the duplicatecorrelation() 
function. DNAm m-values were used to obtain respec-
tive p-values while DNAm beta-values were reported 
for coefficient interpretation [29]. Interaction coeffi-
cients were interpreted as the average difference in per-
cent change in DNAm between baseline and follow-up 
comparing the remitters to non-remitters at each CpG 
site. The primary model (Model 1) included plate batch, 
sex, diagnosis age, baseline age, and days between visits. 
CpG sites with p < 0.05/606,337 were considered Bonfer-
roni significant. For sites that reached this threshold and 
had an interaction coefficient absolute value ≥ 0.1, we 

additionally tested for the effect of medications (Model 2) 
and cell -type proportions (Model 3) on observed associ-
ations. Model 2 included Model 1 covariates plus the first 
medication MCA component. Additional components 
were not included because they were not associated 
(p < 0.05) with remission status and/or DNAm princi-
pal components in bivariate logistic or linear regression 
models. Model 3 included all covariates from Models 1 
and 2 plus seven estimated cell-type proportions for SLE-
relevant cell types, e.g., neutrophils, naïve and memory 
CD4 + T-cells, naïve and memory CD8 + T-cells, and 
naïve and memory B cells. Only one patient was pre-
dicted to be a current smoker at baseline and none were 
predicted to be current smokers at follow-up. Because 
we were interested in whether changes in DNA methyla-
tion were associated with remission status, we wouldn’t 
expect unchanged smoking behaviors to affect change 
in methylation. For this reason, smoking  status was not 
included as a covariate.

Unsupervised clustering of DNA methylation difference data
We sought to identify whether changes in DNAm 
between visits might be able to subtype patients into 
clinically or biologically relevant subgroups. We used 
a paired t-test in limma to identify sites where DNAm 
changed between visits, agnostic of clinical outcomes. 
DNAm m-values were used to obtain respective p-values 
while DNAm beta-values were used to obtain interpret-
able coefficients. CpGs with false discover rate (FDR) 
q < 0.05 and ≥ 0.03 DNAm change between visits were 
used for clustering (“cluster input CpGs”). The standard-
ized difference in DNAm beta-values between baseline 
flare and follow-up visits were input into the consensus 
hierarchical clustering algorithm using ConsensusClus-
terPlus R package [30]. Pearson distance with average 
linkage was used. Agglomerative hierarchical cluster-
ing was repeated 1,000 times, with 80% of CpG sites and 
80% of participants resampled per iteration. The optimal 
cluster number was determined based on the follow-
ing criteria: a relatively low-variation coefficient within 
the cluster, relatively high consistency, and no obviously 
increased area under the cumulative distribution func-
tion curve.

Associations with SLE methylation subtypes
To determine whether SLE patient clusters identified 
from DNAm data had distinct demographic or clinical 
characteristics, we used chi-square and ANOVA tests. 
Demographics included sex, self-reported race, and 
Hispanic ethnicity. Clinical features, at both visits when 
relevant, included age at visit, diagnosis age, SELENA 
SLEDAI total score and components, remission status, 
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and medications. Estimated proportions of 12 cell types 
derived from DNAm data at each visit were also assessed.

To determine which cluster input CpG sites were 
most strongly contributing to cluster assignments, we 
first used an ANOVA to identify DNAm changes that 
were different between any clusters. For CpGs with 
ANOVA p < 0.05/# input CpGs, we used a bivariate lin-
ear regression model to estimate associations between 
DNAm differences at each cluster input CpG (outcome) 
and cluster (predictor). Cluster was represented as a 
categorical variable with one cluster used as a common 
reference category. A CpG site was considered signifi-
cant for a particular cluster if the respective cluster cat-
egory regression term had p < 0.05/# cluster input CpGs 
significant from ANOVA.

Pathway analyses
Pathway analyses were conducted to test for enrich-
ment of Reactome terms among several sets of CpG 
sites from analyses. This was conducted using the 
methylgometh function in the methylGSA R package 
[31]. Pathways with FDR q < 0.05 were considered sig-
nificantly enriched. Because of the strong involvement 
of interferon signaling in SLE, we annotated CpG sites 
according to whether they were within interferon regu-
lated genes (IRGs) (identified in experiments when cells 
or organisms were treated with an interferon) using the 
Interferome Database v2.01 [32].

Results
Characteristics of participants
Nineteen participants fully remitted by the follow-up 
visit (Table  1). On average, remitters were five years 
older than non-remitters and diagnosed in their mid-
30s, compared to mid-20s. Within this multi-ethnic 
cohort, remitters and non-remitters did not have sig-
nificantly different sex, race, or ethnicity. SLEDAI at the 
baseline flare were similar among remitters and non-
remitters (mean = 11.4 (standard deviation (sd) = 5.7) 
and 11.5 (sd = 5.9), respectively). At the follow-up visit, 
non-remitters had a mean SLEDAI = 5.7 (sd = 4.1). At 
baseline, both groups had similar presence of SLEDAI 
proteinuria (42% each), an indicator of lupus nephri-
tis, a severe manifestation of SLE. All SLEDAI com-
ponents and estimated cell-type proportions were 
similar among remitters and non-remitters, except 
for CD8 + naïve T-cells at baseline and follow-up and 
natural killer cells at baseline (Supplementary Table 1). 
Patients were not treatment-naïve at baseline and med-
ication use at the baseline and follow-up visits were 

similar between remitters and non-remitters (Supple-
mentary Table 1).

Changes in DNA methylation among active SLE patients 
were associated with remission status
Our primary objective was to identify CpG sites where 
DNAm changed between baseline flare and follow-up 
visits differently depending on remission status. After 
adjusting for batch, sex, diagnosis age, baseline age, and 
days between visits (Model 1), we identified 1,953 sig-
nificant CpG sites (Fig.  1A). Of these, 291 had absolute 
value ≥ 0.10 (provided in Supplementary Table 2 and sub-
sequently described). DNAm at these sites changed little 
between visits for non-remitters (mean absolute change 
of 0.00) but more for remitters (mean absolute change 
of 0.12) (Fig.  1B). For remitters, approximately 60% 
(n = 176) of these sites had higher DNAm at the follow-
up visit compared to the baseline flare (Fig. 1B); 131 were 
annotated to IRGs (Supplementary Table  2) [33]. These 
CpGs were not significantly enriched in pathways at FDR 
q < 0.05 (Supplementary Table 3). The 25 CpGs with the 
largest absolute interaction coefficient effect size are 
shown in Table 2. After adjusting for medications (Model 
2) and cell-type proportions (Model 3), these 25 results 
remained Bonferroni significant and interaction effect 
sizes did not appreciably change (Supplementary 2). For 
three of these sites within immune-related genes, distri-
butions of DNAm change and patients’ DNAm trajecto-
ries between visits are shown in Fig. 2. Site cg22873177, 
upstream of URB2, had the largest effect (interaction 
coefficient − 0.23, 95% confidence interval (CI): − 0.29, 
− 0.17). At this site, DNAm decreased 23%, on average, 
from baseline flare to follow-up for remitters and did not 
change for non-remitters (Fig. 2A and B, Supplementary 
Table 2). For the second, cg03278573, within the body of 
death associated protein (DAP), DNAm increased 22%, 
on average, from baseline flare to follow-up for remit-
ters and was unchanged for non-remitters (Fig.  2C and 
D). For the third, cg17988535, within the body of RASA3 
(involved in T-cell homeostasis), DNAm decreased 19%, 
on average, from baseline flare to follow-up for remitters 
and was unchanged for non-remitters (Fig. 2E and F).

Within‑subject changes in DNA methylation stratify SLE 
patients into three clinically relevant subgroups
Our second objective was to identify whether changes in 
DNAm might subtype patients into clinically or biologi-
cally relevant subgroups. We identified 546 CpG sites that 
changed between visits, agnostic of clinical outcomes 
(FDR q < 0.05 and absolute change ≥ 0.03) (Supplemen-
tary Table 4). These were significantly enriched in three 
Reactome pathways (FDR q < 0.05) involved in interferon 
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signaling (Supplementary Fig.  1); 263 were annotated 
to IRGs. Using DNAm change at these sites, we identi-
fied three clusters of SLE patients (Fig. 3). All Cluster 1 
patients (n = 12) remitted at follow-up. We called this the 
“remission” cluster. SLEDAI at baseline flare was simi-
lar across clusters (mean 12.3 (sd = 5.8), 10.3 (sd = 5.7), 
and 12.7 (sd = 5.7) for remission, cluster 2, and cluster 3, 
respectively) (Table 3). For clusters 2 and 3, disease was 
still active at follow-up (mean SLEDAI 5.3 (sd = 5.1) and 
4.3 (sd = 2.8), respectively). We called these the “unre-
solved” C2 and C3 clusters. No clusters differed signifi-
cantly by sex, race, ethnicity, or age at visits. Average age 

at SLE diagnosis was youngest for the unresolved C2 
cluster (mean 26.9  years) and oldest for the remission 
cluster (mean 36.3  years). Median time between visits 
was largest for the remission cluster (mean 127  days) 
and less for the others (mean 80  days, each). Several 
cell-type proportions estimated from DNAm were dif-
ferent across clusters (Supplementary Table 5). At base-
line flare, CD4 + memory T-cell proportion was highest 
for unresolved C2 (mean 0.08 (sd = 0.05)) and lowest for 
the remission cluster (mean 0.03 (sd = 0.03)) (Table 3). A 
similar trend was observed for CD8 + naïve T-cells. At 
baseline flare, average neutrophil proportion was highest 

Table 1  Clinical and demographic features of 59 systemic lupus erythematosus participants by remission status at follow-up visit

Remission defined as SLEDAI = 0 at follow-up visit

IQR, interquartile range; sd, standard deviation; SLE, Systemic Lupus Erythematosus; SELENA SLEDAI, SLE Disease Activity Index—the Safety of Estrogens in Lupus 
Erythematosus: National Assessment trial
a Additional race categories not solely indicated by participants included American Indian and Pacific Islander
b Majority of participants not reporting race identified as Hispanic

Remission status

Yes No P-value

N 19 40

Female, n (%) 18 (94.74) 34 (85.00) 0.52

Self-reported race, n (%) 0.79

 White 1 (5.26) 6 (15.00)

 Black 3 (15.79) 6 (15.00)

 Asian 7 (36.84) 11 (27.50)

 Other 0 (0.00) 2 (5.00)

 Multiple racesa 1 (5.26) 2 (5.00)

Not reportedb 7 (36.84) 13 (32.50)

Hispanic, n (%) 7 (36.84) 15 (37.50) 1.00

Age at diagnosis (years), mean (sd) 35.68 (16.34) 27.05 (10.57) 0.02

Age at baseline flare visit (years), mean (sd) 40.68 (13.64) 35.88 (12.20) 0.18

Days between visits, median [IQR] 96.00 [57.00, 267.50] 78.50 [48.50, 163.25] 0.48

SELENA SLEDAI, mean (sd)

 Baseline 11.42 (5.65) 11.53 (5.85) 0.95

 Follow-up 0.00 (0.00) 5.72 (4.08)  < 0.001

SLEDAI Proteinuria, n (%)

 Baseline 8 (42.11) 17 (42.50) 1.00

 Follow-up 0 (0.00) 6 (15.00) 0.19

Medications at follow-up (yes/no), n (%)

 Prednisone 15 (78.95) 31 (77.50) 1.00

 Hydroxychloroquine 17 (89.47) 32 (80.00) 0.59

 Mycophenolate 7 (36.84) 15 (37.50) 1.00

 Azathioprine 0 (0.00) 7 (17.50) 0.13

 Belimumab 1 (5.26) 5 (12.50) 0.69

 Cyclophosphamide 1 (5.26) 3 (7.50) 1.00

 Solumedrol 1 (5.26) 0 (0.00) 0.70

 Rituximab 1 (5.26) 3 (7.50) 1.00

 Tacrolimus 0 (0.00) 2 (5.00) 0.82

 Methotrexate 3 (15.79) 5 (12.50) 1.00
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for the remission cluster (mean 0.76 (sd = 0.10)) and low-
est for unresolved C2 (mean 0.57 (sd = 0.14)). Medication 
use was similar across clusters (Supplementary Table 5). 
Figure  3 shows a distinct patterning of DNAm changes 
across clusters, particularly for the remission cluster. 
The remission cluster had pronounced strong changes 
in DNAm in the opposite direction of the weak changes 
observed in Clusters 2 and 3. To better characterize 
these patterns, we used ANOVA (global test) and linear 
regression (cluster-specific tests) to identify which clus-
ter input CpGs were most strongly contributing to clus-
ter assignments. ANOVA identified 411 input CpGs that 
were Bonferroni significant (Supplementary Table 6). Of 

these, linear regression identified 371 with significantly 
different DNAm change over time comparing remission 
to unresolved C2 clusters and 116 comparing the unre-
solved C3–C2 clusters (Supplementary Table  6). Each 
of these cluster-specific CpG sets were not significantly 
enriched in Reactome pathways (FDR q < 0.05). Both 
cluster-specific CpG sets included many IRGs, 43 and 
41% for remission and unresolved C3 cluster compari-
sons, respectively. There were six CpGs that were signifi-
cant in both remission and unresolved C3 comparisons 
(vs. C2) and had coefficients at least 50% different from 
each other (Fig.  4). For example, at cg08152411, within 
the body of PTPRC (CD45 antigen), there was a 15% 

Fig. 1  Changes in DNA methylation among active SLE patients were associated with remission status. A Differential methylation change 
between baseline flare and follow-up visits by remission status, with Model 1 covariates (in red, Bonferroni p < 0.05 and coefficient absolute 
value ≥ 0.1). Black line indicates Bonferroni significance. B Among CpGs with Bonferroni p < 0.05 and coefficient absolute value ≥ 0.1, average 
methylation change from baseline flare to follow-up visit for remitters (x-axis) and non-remitters (y-axis). Coefficients shown were from Model 1. 
Quadrants one (red) and three (blue) represent methylation changes in the same direction of effect (hypo- or hyper-methylation) for remitters 
and non-remitters. Quadrants 2 (green) and four (purple) represent opposite direction of methylation change between groups
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Table 2  Difference in DNA methylation change from baseline flare to follow-up visit comparing remitters to non-remitters (visit x 
remission interaction) for 25 CpGs genome-wide significant from Model 1 with largest interaction coefficient

chr, chromosome; CI, confidence interval; coef, interaction coefficient; pos, hg37 position; UTR, untranslated region; SLE, systemic lupus erythematosus; TSS, 
transcription start site

Bolded genes are interferon regulated genes

Model 1

Names chr pos Gene Group Gene’s relevance to immune function, SLE, 
or autoimmunity

Coef 95% CI P-value

cg22873177 chr1 229,761,584 URB2; TAF5L TSS1500; 5’UTR​ Expression associated with cell cycle 
and TGF beta, ERBB, RIG I-like recep-
tor, and P53 signaling pathways. PMID: 
37033651

 − 0.23  − 0.29, − 0.17 4.04E-12

cg14543959 chr3 113,557,658 GRAMD1C TSS200 Expression associated with IL-6 levels. 
PMID: 25311648

 − 0.22  − 0.28, − 0.17 3.94E-14

cg03278573 chr5 10,741,861 DAP Body Multiple eQTLs downregulate its transcrip-
tion in immune cells; expression associated 
with higher autoantibody titers. PMID: 
33213505

0.22 0.16, 0.28 1.46E-11

cg04038932 chr9 135,286,214 C9orf171 Body  − 0.20  − 0.26, − 0.15 1.14E-11

cg00102561 chr9 138,799,260 CAMSAP1 TSS1500 Expression associated with cell cycle 
and TGF beta, ERBB, and T-cell receptor 
signaling pathways. PMID: 36212130

 − 0.20  − 0.26, − 0.14 3.00E-10

cg23945273 chr4 120,987,944 MAD2L1 5’UTR; 1stExon  − 0.19  − 0.24, − 0.13 1.11E-11

cg17988535 chr13 114,808,856 RASA3 Body T-cell homeostasis; promotes pathogenic T 
helper 17 cell generation. PMID: 37545505, 
30446383

 − 0.19  − 0.24, − 0.13 7.14E-11

cg08323960 chr10 45,684,508 0.19 0.13, 0.24 1.27E-10

cg24566341 chr7 98,909,383  − 0.18  − 0.22, − 0.13 4.22E-11

cg22615071 chr3 156,432,778 0.18 0.12, 0.23 1.59E-09

cg10369197 chr17 70,815,226 SLC39A1 Body Expression associated with cell cycle 
and TGF beta, NOD-like receptor, and MAPK 
signaling pathways. PMID: 35211427

0.18 0.12, 0.24 7.18E-09

cg09241617 chr16 7,473,688 RBFOX1 Body Implicated in SLE GWAS. PMID: 28246883  − 0.17  − 0.21, − 0.13 1.44E-12

cg26118675 chr2 96,256,841 TRIM43 TSS1500 Antiviral defense mechanisms. 
PMID: 30420784

0.17 0.13, 0.21 2.49E-12

cg08399134 chr6 126,344,877 TRMT11 Body T-cell proliferation; associated with lupus 
nephritis. PMID: 36168063, 34923866

 − 0.17  − 0.21, − 0.12 4.12E-12

cg17264064 chr18 47,322,166 ACAA2 Body Downregulated in T-cells of lupus-prone 
mice. PMID: 37216123

0.17 0.12, 0.22 1.08E-09

cg11986223 chr7 26,824,073 SKAP2 Body myeloid cell activation and migration. 
PMID: 34172489

 − 0.17  − 0.22, − 0.12 1.49E-09

cg12615557 chr1 109,046,245 0.17 0.12, 0.22 7.06E-09

cg24600355 chr20 34,329,943 RBM39 5’UTR; 1stExon; Body Splicing factor highly expressed in immune 
cells such as CD4+ and CD8+ T cells. 
PMID: 34389703

 − 0.17  − 0.23, − 0.12 8.96E-09

cg06089892 chr2 128,101,198 MAP3K2 TSS1500 Kinase dysregulated in SLE. PMID: 36309313  − 0.17  − 0.22, − 0.11 6.86E-08

cg00470768 chr15 41,285,147 INO80 Body Chromatin remodeling; cell fate. 
PMID: 34139016

0.16 0.12, 0.21 6.13E-11

cg00350932 chr2 86,335,912 PTCD3 Body  − 0.16  − 0.21, − 0.12 1.46E-10

cg06176124 chr3 105,588,009 CBLB TSS200 May contribute to the deregulated activa-
tion of T lymphocytes observed in SLE. 
PMID: 21558139

0.16 0.12, 0.20 1.51E-10

cg05062679 chr10 94,000,186 CPEB3 5’UTR​ Associated with immune biomark-
ers and infiltrating immune cell types. 
PMID: 38476610

0.16 0.12, 0.20 2.20E-10

cg12981595 chr17 39,254,427 KRTAP4-8 TSS200 0.16 0.11, 0.21 1.15E-08

cg13529755 chr1 149,138,398  − 0.16  − 0.22, − 0.10 5.09E-08
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Fig. 2  Distributions of three genome-wide significant methylation sites. Density plot of change in methylation between visits and methylation 
trajectories for remitters and non-remitters for cg22873177 (a and b), cg03278573 (c and d), and cg17988535 (e and f)

Fig. 3  Three SLE clusters were identified from methylation changes over time from 546 cluster input CpGs. Rows represent CpG sites and were 
annotated as being within an interferon regulated gene (IRG). Red represents increased methylation from baseline to follow-up while blue denotes 
decreased. Columns represent participants and were annotated with cluster, remission status, and SLEDAI proteinuria at follow-up visit
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smaller (95% CI: − 0.18, − 0.12) DNAm change between 
visits among the remission cluster compared to the unre-
solved C2 cluster but only a 6% smaller DNAm change 
among the unresolved C3 comparing to the C2 clus-
ter (Fig. 4A and Supplementary Table 6). The other five 
cluster differentiating CpGs were within IFIH1, IFI44L, 
IFIT1, and ENO2. All six CpGs showed similar patterns 
where the remission cluster had the most DNAm change, 
unresolved C3 had intermediate change, and unresolved 
C2 individuals had the least change. Change in DNAm at 
these six sites were significantly correlated with change 
in several cell-type proportions (Fig.  5). For example, 
an increase in DNAm between visits at cg08152411 was 
correlated with a decreased proportion of memory B 
cells, CD4 + memory T-cells, CD4 + naïve T-cells, and 
CD8 + naïve T-cells and an increased proportion of neu-
trophils. Oppositely, increases in DNAm at cg05552874 
and cg02230244 were correlated with an increased pro-
portion of several T-cell types and decreased proportion 

of neutrophils. This suggests DNAm at these six sites and 
the identities of the methylation clusters might be driven 
my cell-type proportions.

Discussion
Using DNAm data from a multi-ethnic cohort of SLE 
patients with active disease, we identified 1,953 methyla-
tion sites whose change over time significantly differed 
depending on whether a patient fully remitted at follow-
up or not. Of these, the CpG sites most differentially 
changed over time were located within genes relevant 
to immune function and autoimmunity. In addition, we 
identified three SLE patient clusters based on DNAm 
changes between visits. There were few distinct clinical 
features of the clusters, apart from one cluster where all 
members remitted. Significant DNAm changes between 
visits at six CpG sites, including CD45 and IFI genes, 
were particularly different among the clusters, suggesting 
these may be good candidates for stratifying patients in 

Table 3  Characteristics of participants in SLE patient clusters identified from consensus hierarchical clustering of DNA methylation 
changes between baseline flare and follow-up visits

Remission–C1 Unresolved–C2 Unresolved–C3 p-value

n 12 28 19

Female, n (%) 12 (100.0) 24 (85.71) 16 (84.21) 0.36

Self-reported race, n (%) 0.27

 Asian 5 (41.67) 5 (17.86) 8 (42.11)

 Black 3 (25.00) 5 (17.86) 1 (5.26)

 White 1 (8.33) 2 (7.14) 4 (21.05)

 Multiple races 1 (8.33) 1 (3.57) 1 (5.26)

 Other 0 (0.00) 2 (7.14) 0 (0.00)

 Missing 2 (16.67) 13 (46.43) 5 (26.32)

Hispanic, n (%) 2 (16.67) 14 (50.00) 6 (31.58) 0.11

Age (years) at SLE diagnosis, mean (sd) 36.33 (18.68) 26.86 (10.98) 30.11 (11.24) 0.11

Age (years) at baseline flare visit, mean (sd) 41.83 (14.72) 36.04 (12.02) 36.68 (12.62) 0.41

Time between visits (days), median [IQR] 127.00 [83.00, 290.25] 80.00 [47.25, 276.50] 80.00 [45.50, 139.50] 0.22

Remission, n (%) 12 (100.0) 5 (17.86) 2 (10.53) 1.13E-7

SLEDAI-SELENA, mean (sd)

 Baseline flare visit 12.33 (5.82) 10.29 (5.70) 12.74 (5.68) 0.31

 Follow-up visit 0.00 (0.00) 5.29 (5.08) 4.26 (2.75) 8.51E-4

Proteinuria, n (%)

 Baseline 7 (58.33) 10 (35.71) 8 (42.11) 0.42

 Follow-up 0 (0.00) 5 (17.86) 1 (5.26) 0.16

Cell-type proportions, mean (sd)

 CD4 + Memory T-cells (baseline) 0.03 (0.03) 0.08 (0.05) 0.04 (0.02) 1.13E-3

 CD4 + Memory T-cells (follow-up) 0.05 (0.04) 0.07 (0.05) 0.07 (0.04) 0.43

 CD8 + Naive T-cells (baseline) 0.02 (0.01) 0.07 (0.04) 0.04 (0.03) 1.69E-4

 CD8 + Naive T-cells (follow-up) 0.03 (0.04) 0.05 (0.04) 0.06 (0.04) 0.06

 Neutrophils (baseline) 0.76 (0.10) 0.57 (0.14) 0.72 (0.10) 1.61E-5

 Neutrophils (follow-up) 0.70 (0.12) 0.63 (0.15) 0.63 (0.13) 0.27
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Fig. 4  Six CpGs had different methylation change over time depending on methylation cluster. Density plot of change in methylation 
between visits and methylation trajectories for remission, unresolved C2, and unresolved C3 clusters for a cg08152411, b cg08888522, c 
cg13304609, d cg17915189, e cg05552874, and f cg02230244. These were defined as CpGs meeting all the following criteria: significant 
from ANOVA (p < 0.05/546), p < 0.05/411 for remission vs. unresolved C2 cluster comparison, p < 0.05/411 for unresolved C3 vs. C2 comparison, 
and cluster comparison coefficients were at least 50% different from each other

Fig. 5  Correlation between change in cell-type proportions and change in DNAm between visits at six CpG sites that strongly differentiated patient 
clusters. Color represents strength and direction of Spearman correlation coefficient. P-values denoted by “*” p < 0.05, “**” p < 0.001, or empty p ≥ 0.05
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the future. The identification of these clinically relevant 
clusters using DNAm data alone may help inform future 
disease subtyping and treatment decisions. Overall, these 
findings support the ability of serial DNAm profiling to 
uncover biologically meaningful differences beyond what 
conventional clinical tools can reveal.

Our study identified many CpG sites that had signifi-
cantly different changes in DNAm between baseline flare 
and follow-up visits depending on remission status. For 
most of these sites, DNAm did not change for non-remit-
ters but did change for remitters. Changes over time 
were upwards of 15% among remitters at 38 CpG sites. 
This suggests a robust effect of treatment at these sites 
for these 19 individuals. The most significant effect was 
observed for cg22873177, in the 1500 transcription start 
site (TSS) of URB2. DNAm at this site decreased 23% 
between visits, suggesting a shift in the chromatin state 
between baseline flare and follow-up from less to more 
permissive for translation. URB2 is involved in ribosomal 
biogenesis and interacts with several proteins includ-
ing interferon-inducible protein IFI16, which is a critical 
antiviral factor and sensor of viral DNA [34]. Autoanti-
bodies against IFI16 have been identified in people with 
SLE, and a recent study showed that expression of IFI16 
was associated with SLEDAI and prognosis in lupus 
nephritis [35, 36].

When examining the other significantly differen-
tially methylated CpG sites between remitters and non-
remitters, most were within or near genes relevant to the 
immune system. For example, the second most signifi-
cant effect was observed for cg14543959, in the 200TSS 
of GRAMD1C, which is associated with IL-6 levels, an 
important inflammatory biomarker for the SLE severity 
and risk of progression [37]. The third most significant 
CpG was within the body of DAP, death associated pro-
tein. A previous study found that SLE patients with the 
DAP1 risk allele exhibited significantly higher autoan-
tibody titers and altered expression of immune sys-
tem, autophagy, and apoptosis pathway transcripts [38]. 
Interestingly, a recent study found both GRAMD1C and 
DAP1 to have significantly higher expression in SLE 
patients in remission compared to SLE patients with 
active disease [39]. Our findings do not directly com-
pare to others because none have investigated change 
in DNAm over time between flare and post-flare time-
points. Another immune-related gene with a significant 
CpG (cg17900535) was RASA3, part of the RAS P21 
protein activators. Ras is important for T-cell function 
and dysfunction has been shown to be associated with 
SLE [40]. Additionally, cg08399134 is within TRMT11, 
transfer RNA methyltransferase, which has been shown 
to selectively enhance protein translation to drive T-cell 

proliferation in  vivo when methylated and is associated 
with lupus nephritis [41, 42].

Results from consensus hierarchical clustering of 
DNAm changes identified three SLE patient clusters. 
Interestingly, a remission cluster emerged, despite solely 
relying on DNAm data for clustering. It’s important to 
note that our sample had 19 people fully remit over the 
follow-up period, but only 12 were classified into the 
“remission” cluster. This highlights that, while the clus-
ters were clinically relevant, they did not completely cor-
respond to clinical features. The two “unresolved” disease 
activity clusters only differed in proportion of neutro-
phils at the baseline flare visit (57% for C2 and 72% for C3 
clusters). Neutrophil proportions were similar for these 
clusters at follow-up. Neutrophils have been implicated 
in SLE pathogenesis and organ damage [43].

An important finding from our cluster analysis 
was that, at six CpG sites, the average DNAm change 
between visits was distinct for each cluster. For exam-
ple, at cg08888522, within the body of IFIH1, DNAm 
increased, on average, from flare to follow-up visit 25% 
for the remission cluster, 13% for the C3 unresolved clus-
ter, and only 1% for the unresolved C2 cluster. IFIH1 
senses double-stranded RNA and activates type I inter-
feron signaling [44]. Several studies have found an asso-
ciation between IFIH1 and SLE, including a de novo rare 
gain-of-function genetic variant identified in a severe 
SLE patient and several common variants associated with 
SLE susceptibility, IL-18 and granzyme B serum levels, 
and autoantibodies in SLE patients [45–48]. Another 
“cluster differentiating CpG” included cg13304609 in 
the TSS1500 of IFI44L. Methylation in the promoter 
of  IFI44L  has been proposed as a diagnostic biomarker 
for SLE [49, 50]. Additionally, cg08152411, within the 
body of PTPRC (CD45 antigen), was a “cluster differen-
tiating CpG”. Autoantibodies to CD45 have been found 
in SLE [51, 52]. Our results also showed these methyla-
tion changes were correlated with changes in SLE-rel-
evant cell-type proportions. This suggests that a shift 
in immune cell composition is reflected in change in 
DNAm in immune relevant genes. Single cell genomics 
approaches should be used to determine the relevance of 
this correlation to better understand disease heterogene-
ity. Altogether, this cluster analysis showcases the hetero-
geneity of the immune response of SLE and indicates that 
DNAm data may be useful for subtyping SLE patients 
who cannot be distinguished from each other using clini-
cal data alone.

This study has several strengths and limitations. The 
majority of SLE studies are cross-sectional and have 
patients with relatively low disease activity. Our study 
has two timepoints and only includes individuals actively 
experiencing a physician-diagnosed flare and warranting 
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a treatment change at study enrollment. This sheds light 
on mechanisms underpinning active disease, which 
might be missed in other studies. Our sample is also eth-
nically and racially diverse. SLE patients from non-Euro-
pean populations, such as Hispanics, African Americans, 
and Asians, develop SLE at a younger age and experience 
worse disease manifestations than patients of European 
descent. Yet, these groups are underrepresented in trans-
lational studies of SLE. Despite having a highly informa-
tive set of individuals, our sample size was modest (118 
samples). This is partly due to the challenge of recruit-
ing and studying active SLE flaring patients in clinics. 
Still, we were able to find many CpG sites where DNAm 
changed differentially depending on remission status 
and identify meaningful patient clusters. Additionally, 
our study involved a real-world uncontrolled medication 
setting, making it difficult to study treatment response. 
While we adjusted for medications using MCA, we may 
not have captured differences in medication use such as 
adherence, dosage, or combinations. Patients also had 
different follow-up times depending on when they were 
seen at outpatient visits. This is relevant for medications 
that take longer to garner an immunological response. 
Ideally, in the future, DNAm would be profiled longi-
tudinally in clinical trials for prediction of treatment 
response and identification of mechanistic pathways 
underlying response. This would also improve our ability 
to determine whether serologically active, clinically qui-
escent patients have different patterns of DNAm change 
compared to those whose remission included serologi-
cal inactivity. Finally, we were not able to replicate our 
findings in an independent cohort because, to the best of 
our knowledge, such longitudinal, repeated sampling of 
DNAm among active SLE cohorts does not exist. How-
ever, we did use consensus hierarchical clustering, which 
conducts clustering 1000 times with slightly different res-
ampling of patients and data, to build confidence in the 
replicability of findings.

Conclusions
Changes in DNAm during active SLE were associated 
with remission status and identified subgroups of SLE 
patients with several distinct clinical and biological char-
acteristics. Knowledge of DNAm patterns might help 
better inform SLE subtypes, leading to targeted thera-
pies based on relevant underlying biological pathways. 
Further studies are needed to elucidate the potential 
importance of the associated CpG sites and genes in 
immune function and to validate the prognostic or diag-
nostic value of the individual CpGs or panels. Addition-
ally, another longitudinal timepoint would be useful for 

identifying whether changes in DNAm might predict 
future disease status and damage.
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