Table 2.
Class | AIC | BIC | aBIC | Entropy | LMR(p) | BLRT(p) | Sample proportion (%) per class |
---|---|---|---|---|---|---|---|
1 | 135405.166 | 135553.921 | 135471.315 | n.a. | n.a. | n.a. | n.a. |
2 | 125201.556 | 125430.410 | 125303.324 | 0.935 | < 0.001 | < 0.001 | 71.37/28.63 |
3 | 122468.063 | 122777.016 | 122605.449 | 0.908 | < 0.001 | < 0.001 | 55.73/32.17/12.10 |
4 | 121328.755 | 121717.807 | 121501.759 | 0.916 | 0.3132 | < 0.001 | 25.67/55.70/8.23/10.40 |
Note: AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; aBIC, adjusted Bayesian Information Criterion; LMR, Lo–Mendell–Rubin; BLRT, bootstrap likelihood ratio test; n.a., not applicable. An entropy value of more than 0.80 indicates good discrimination. Significant results from LMR and BLRT tests indicate that the more complex model (k-class) fit the data better. Lower AIC, BIC, and aBIC values indicate better model fit