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Abstract 

Leaf water content (LWC) encapsulates critical aspects of tree physiology and is considered a proxy for assessing tree 
drought stress and the risk of forest decline; however, its measurement relies on destructive sampling and is thus 
less efficient. Advancements in hyperspectral imaging technology present new prospects for noninvasively 
evaluating LWC and mapping drought severity across forested regions. In this study, leaf samples were obtained 
from Populus alba var. pyramidalis, a species widely employed for constructing farmland shelterbelts in water-limited 
regions of northern China but notably susceptible to drought. These samples were dehydrated to varying degrees 
to generate concurrent LWC measurements and hyperspectral images, enabling the development of narrow-band 
and multivariate spectral prediction models for LWC estimation. Two visible-spectrum narrow-band indices identified, 
the single-band index (R627) and the band subtraction index (R437 − R444), demonstrated a strong correlation with LWC. 
Despite certain influences of variable preprocessing and selection on multivariate model performance, most models 
exhibited robust predictive accuracy for LWC. The FDRL-UVE-PLSR combination emerged as the optimal multivari‑
ate model, with R2 values reaching 0.9925 and 0.9853 and RMSE values below 0.0124 and 0.0264 for the calibration 
and validation datasets, respectively. Using this optimal model, along with localized spectral smoothing, moisture dis‑
tribution across leaf surfaces was visualized, revealing lower water retention at the leaf margins compared to central 
regions. These methodologies provide critical insights into subtle water-associated physiological processes at the leaf 
scale and facilitate high-frequency, large-scale assessments and monitoring of drought stress levels and the risk 
of drought-induced tree mortality and forest degradation in drylands.
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Introduction
Climate change, driven by anthropogenic greenhouse gas 
emissions, has altered global climate patterns, resulting 
in a noticeable warming and drying trend in vast regions 
across the globe [17, 49, 64]. The altered weather pat-
terns, characterized by longer and more intense periods 
of drought, exert immense pressure on forest ecosystems, 
leading to widespread tree mortality and forest decline, 
especially in water-limited areas [4, 29]. Drought-induced 
tree mortality has a noteworthy influence on forest 
structure and functionality, thereby impacting crucial 

Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

Plant Methods

*Correspondence:
Xue‑Wei Gong
gongxw@iae.ac.cn
Guang‑You Hao
haogy@iae.ac.cn
1 School of Computer Science, Shenyang Aerospace University, 
Shenyang 110136, China
2 CAS Key Laboratory of Forest Ecology and Silviculture, Institute 
of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, 
China
3 Key Laboratory of Oasis Ecology of Education Ministry, College 
of Ecology and Environment, Xinjiang University, Urumqi 830017, China

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-024-01312-1&domain=pdf


Page 2 of 17Li et al. Plant Methods          (2024) 20:184 

ecosystem services such as carbon sequestration and tim-
ber production [8, 70]. In the scenarios of more frequent 
and severe drought events, monitoring forest degrada-
tion risks by assessing the physiological status of trees 
is crucial for understanding forest resilience under the 
backdrop of climate change, and for implementing timely 
management strategies to mitigate the impacts of climate 
change on forest ecosystems. It also enables the assess-
ment of carbon sequestration potential and the identi-
fication of areas requiring reforestation or conservation 
efforts to maintain forest ecosystem services.

Hydraulic failure has been proposed as the pivotal 
physiological mechanism causing tree mortality under 
drought conditions intensified by warming and drying 
climates [2, 5, 16, 42, 44]. This mechanism is primarily 
driven by the inability of trees to transport water from 
the roots to the leaves under drought, leading to tissue 
dehydration and eventual death [2, 5, 41]. A relevant 
parameter that mirrors the degree of water stress in trees 
is supposed to facilitate predicting the risk of drought-
associated tree mortality. One of the most commonly 
used approaches to investigate the effects of drought on 
plants involves measuring leaf water content. Emerging 
evidence suggests that leaf water content holds consid-
erable promise in projecting tree drought stress as it is 
a direct measure of plant water status, closely related to 
cell volume, turgidity, and thus xylem hydraulic function-
ing [43, 65]. Physiologically, leaf water content effectively 
integrates the water relations of plants, reflecting their 
water supply, demand, and retention [56, 57]. Apart from 
its association with xylem hydraulic functioning, several 
investigations have documented the close connection 
between leaf water content and essential physiological 
characteristics such as stomatal conductance, photosyn-
thetic capacity, respiration rate, and non-structural car-
bohydrate reserves [30, 71]. These findings imply that leaf 
water content may potentially perform crucial roles in 
drought-induced tree mortality by influencing plant car-
bon economics. Although leaf moisture content serves as 
a reliable metric for quantifying drought status in trees, 
its measurement necessitates on-site leaf collection 
through destructive sampling. This requirement imposes 
significant limitations on large-scale and high-frequency 
monitoring efforts.

Hyperspectral remote sensing technology has shown 
great potential in retrieving plant physiological prop-
erties and functional traits due to its ability to capture 
detailed spectral information across hundreds of narrow 
contiguous spectral bands. Consequently, the utilization 
of hyperspectral remote sensing technology, coupled 
with unmanned aerial vehicles, aerocrafts, and satellite 
platforms, has emerged as a burgeoning methodology 
for the non-destructive assessment of plant physiological 

status at a larger scale or in a high-frequency manner 
[19, 39, 72]. The variances in reflectance spectroscopy 
among leaves in distinct bands are intimately associ-
ated with their chemical composition, cellular structure, 
and physiological characteristics [18, 23, 53, 59]. Indeed, 
numerous studies have successfully utilized rich spectral 
information from hyperspectral sensors to estimate leaf 
element concentrations [68], chlorophyll content [74], 
photosynthetic capacity [45], and water content [62] in 
crops. Advanced hyperspectral sensors have demon-
strated significant utility as non-destructive tools for the 
assessment and monitoring of the physiological status of 
crops [69]. Nevertheless, due to limited data accessibility, 
high structure complexity, and strong community hetero-
geneity, there remains a paucity of research regarding the 
accurate inversion of leaf water content for trees in for-
ested environments using leaf spectroscopy [75].

Based on the spectral data of a spectrometer, narrow- 
and full-band models can be developed. Narrow-band 
models predict plant physiological characteristics utiliz-
ing reflectance within specific, narrow spectral ranges. 
Vegetation indices derived from narrow-band models 
offer advantages in terms of fast computation and are 
well-suited for large-scale data evaluations. Numer-
ous spectral indices have been developed to estimate 
plant physiological indicators, such as the water index 
(WI), normalized difference water index (NDWI), sim-
ple ratio water index (SRWI), normalized difference 
infrared index (NDII), etc., and they are powerful tools 
for quickly assessing and monitoring changes in the 
physiological status of plants [27, 52, 66]. In contrast, 
full-band modeling leverages the entire spectral data-
set, performing derivative preprocessing and feature 
band selection, often combined with machine learning 
algorithms, to build more accurate predictive models. 
Derivative preprocessing techniques such as the recipro-
cal logarithm of reflectance (RLR), second-order deriva-
tive (2D), and Savitzky-Golay (S-G) filtering effectively 
mitigate baseline drift and multiple scattering effects 
[1, 15, 55, 61]. Feature band selection, which aims to 
reduce the dimensionality of spectral data, is another 
key aspect of full-band modeling. Popular band selec-
tion algorithms include competitive adaptive reweighted 
sampling (CARS), least absolute shrinkage and selection 
operator (LASSO), and uninformative variable elimi-
nation (UVE), which excel in identifying the most valu-
able features from numerous spectral bands [15, 32, 46]. 
Additionally, researchers have applied machine learning 
based regression algorithms including multiple linear 
regression (MLR), partial least squares regression (PLSR), 
and support vector machine regression (SVR) to develop 
predictive models, demonstrating these methods’ adapt-
ability across diverse datasets for spectral modeling and 
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analysis [40, 75]. These models have proven to be valuable 
resources for non-destructive assessment and monitoring 
of the physiological status of plants. Moreover, the recent 
advancements in hyperspectral camera technology have 
facilitated the visualization of spatial patterns and tempo-
ral changes in the physiological status of plants. Precise 
spectral models based on hyperspectral imagery for leaf 
water content prediction and visualization are an impor-
tant prerequisite for monitoring tree drought severity 
and mapping the risk of drought-induced tree mortality 
over a large spatial range and at a higher time frequency.

In this study, leaves of Populus alba var. pyramidalis 
(Xinjiang poplar) seedlings were sampled and exposed 
to dehydration, during which leaf water content and 
hyperspectral images were periodically determined. Our 
specific objectives are: (1) to investigate narrow-band 
models and identify spectral indices that are indicative of 
leaf water content; (2) to evaluate the robustness of pre-
diction models for leaf water content developed through 
various combinations of spectral preprocessing, feature 
band screening, and multivariate regression methods; 
and (3) to visualize the distribution of moisture con-
tent across the leaf surface using the optimal multivari-
ate model based on full-band reflectance spectrum. This 
study may offer reliable methods and technical support 
for non-destructive monitoring of drought stress levels 
and decline risks in Xinjiang poplar shelterbelts estab-
lished in drought-prone areas.

Materials and methods
Plant materials
Populus alba var. pyramidalis, commonly known as Xin-
jiang poplar, is a commonly used tree species for affor-
estation in the Three-North (North, Northeast, and 
Northwest) region of China. This species is particularly 
valued for its role in establishing shelterbelts around 
farmland, where it effectively reduces wind speed, mini-
mizes soil erosion, and modifies microclimates. In the 
context of ongoing climatic shifts, northern China is 
undergoing pronounced patterns of warming and aridi-
fication, which are paralleled by the escalating sever-
ity of drought. The intensified drought conditions have 
imparted severe challenges to the P. alba var. pyramida-
lis shelterbelts in water-limited regions, manifesting in 
pronounced decline and mortality [39], thereby exerting 
substantial detrimental effects on the local ecological 
environment. This underscores the necessity of utiliz-
ing remote sensing technology to develop hyperspectral 
models for this species, facilitating the inversion of leaf 
water content and thereby enabling the monitoring of 
drought stress levels and associated mortality risks in 
Xinjiang poplar shelterbelts.

Experimental design and study framework
The research concept and framework of this study are 
illustrated in Fig. 1. Initially, a hyperspectral image acqui-
sition system was designed, assembled, and employed to 

Fig. 1  Framework for predicting leaf water content (LWC) in Populus alba var. pyramidalis. See Tables 1–4 for abbreviations



Page 4 of 17Li et al. Plant Methods          (2024) 20:184 

capture spectral images of P. alba var. pyramidalis leaves 
with varying water statuses, while concurrently measur-
ing leaf water content (LWC). The spectral images were 
then subjected to correction, segmentation, and averag-
ing to derive the spectral curve for each sample. Based 
on these curves, the four selected narrow-band models 
were developed, and the performance of each model with 
different band or band combinations for LWC predic-
tion was evaluated to identify the relevant indices. Sub-
sequently, the correlation between the spectral-derivative 
data and LWC was examined, integrating band selection 
and regression methodologies to determine the opti-
mal multivariate model. Finally, this optimal model was 
applied to visualize the distribution of water content 
across the leaf surface.

Leaf water content measurement
Leaf samples were collected from six three-year-old 
P. alba var. pyramidalis seedlings naturally growing 
in the Daqinggou Ecological Research Station, Insti-
tute of Applied Ecology, Chinese Academy of Sciences 
(119°25′E, 42°54′N). Specifically, five to six sun-exposed 
and mature leaves located in the middle section of the 
canopy were excised from different individual seed-
lings. Immediately after collection, each leaf sample was 
promptly sealed in a plastic bag along with a moist paper 
towel slice to maintain its moisture content and then 
transported to the laboratory for LWC measurements 
and spectral analyses. Upon arrival at the laboratory, 
the leaves were allowed to dehydrate on the laboratory 
bench in a darkroom, and the mass of each leaf sample 
was repeatedly measured at intervals of 20–30 min using 
an electronic analytical balance (CPA 225D, Sartorius 
Inc., Göttingen, Germany) throughout the dehydration 
process. Following each mass determination, the spectral 

information for each leaf was immediately captured using 
a hyperspectral image acquisition system (see below for 
details). This measurement process continued continu-
ally until the leaf mass exhibited minimal fluctuations 
after approximately 20 rounds of measurements. Fol-
lowing this phase, the sampled leaves were subjected to 
oven-drying at 65  °C for 48  h to obtain their dry mass. 
LWC was calculated as:

where FW represents the fresh leaf mass measured at a 
specific time during the dehydration process, and DW 
denotes the dry mass of the corresponding leaf sample.

In the present study, a total of 29 leaf samples were col-
lected, obtained from five batches of leaves. Each batch 
consisted of five leaves in the first batch and six leaves in 
the subsequent batches. Totally, a comprehensive collec-
tion of 574 paired foliar spectral and LWC data was pro-
duced. All the 574 sets of records were included in the 
subsequent analysis. For the purpose of model training 
and evaluation, 454 sets of data originating from the first 
four batches were utilized as the training and calibration 
dataset, while the remaining 120 sets of data from the last 
batch were reserved for testing and evaluation.

Spectral reflectance data acquisition
A push-broom hyperspectral camera (GaiaSky-mini2, 
Dualix Spectral Imaging, China) was used to capture 
hyperspectral images. The camera covers a spectral 
range of 393.7–1001.4  nm, comprising 176 bands with 
a spectral resolution of 3.5 ± 0.5  nm. To minimize light 
interference, spectral data collection was conducted in a 
darkroom equipped with a custom hyperspectral image 
acquisition system (Fig. 2). The system consisted of four 

LWC =
(FW− DW)

FW

Fig. 2  Schematic diagram (a) and physical picture (b) of the hyperspectral image acquisition system used in this study
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50 W halogen lamps, a conveyor belt, and a monitor. The 
halogen lamps were preheated for 20  min before image 
acquisition to ensure stable and uniform illumination. 
The conveyor speed was set to 2.5 cm/s, and the camera 
was positioned at a height of 35 cm.

Before capturing the images, a white Teflon plate was 
used to obtain a white reference image, and an opaque 
lens cap was placed over the camera lens to acquire a 
dark reference image. These two reference images were 
subsequently used for reflectance correction, following 
the formula below:

where Rc is the corrected reflectance  of a  hyperspectral 
image, Ioriginal is the original hyperspectral image, Iwhite 
is the white reference image, Idark is the dark reference 
image, and Rwhite is the reflectance of the white Tef-
lon plate (approximately 100%).

The hyperspectral images were corrected for lens dis-
tortion and reflectance using SpecView software (Dualix 
Spectral Imaging, China) to obtain standardized images. 
In Envi 5.3 software (RSI, USA), threshold segmentation 
was applied to eliminate background pixels and delineate 
regions of interest (ROI), and the average spectral values 
of the leaves were extracted using binarization and mask 
processing.

Narrow‑band models
Common narrow-band models can be categorized into 
four types: single band (SB), band ratio (BR), band sub-
traction (BS), and normalized band difference (NBD) 
models (Table 1). The single band (SB) model represents 
the most straightforward computational method, using 
only the reflectance value of a single band to derive the 
target index. The formula for the SB model is:

where b1 denotes the spectral reflectance value of a spe-
cific band.

Rc =
Ioriginal − Idark

Iwhite − Idark
× Rwhite

SB = b1

The band ratio (BR) model computes the ratio of the 
reflectance values of two bands, which enhances the 
vegetation signal while minimizing the effects of atmos-
pheric conditions and soil background. The formula for 
the BR model is:

where b1 and b2 are the spectral reflectance values of 
designated bands.

The band subtraction (BS) model computes the dif-
ference between the reflectance values of two bands, 
proving particularly effective for identifying absorption 
features at specific wavelengths. The formula for the BS 
model is:

where b1 and b2 are the spectral reflectance values of 
chosen bands.

The normalized band difference (NBD) model is an 
improved version of the BS model. It calculates the ratio 
of the difference and the sum of the reflectance values 
of two bands, contributing to minimizing the effects of 
external factors such as lighting conditions. The formula 
for the NBD model is:

where b1 and b2 are the spectral reflectance values of 
specific bands.

Multivariate models
Spectral reflectance preprocessing
Initially, the raw reflectance data underwent preprocess-
ing through the calculation of spectral derivatives. This 
derivative analysis elucidates trends and features, reduces 
noise, and enhances the correlation between spec-
tral signals and the properties of the target substance, 
thereby improving the accuracy and interpretability of 
the analysis. In this study, several prevalent methods for 

BR(b1, b2) =
b1

b2

BS(b1, b2) = b1− b2

NBD(b1, b2) =
b1− b2

b1+ b2

Table 1  The optimal band or band combinations for the four studied narrow-band models

For SB, only one optimal band was selected; for the other three, “Band1” and “Band2” represent the best band combinations. The model with the highest R2 value for 
the calibration dataset was shown in bold

SB single band, BR band ratio, BS band subtraction, NBD normalized band difference

Models Calculation equations Band or band 
combinations

Calibration (n = 454) Validation (n = 120)

R2 RMSE R2 RMSE

SB Band1 627 0.7055 0.0959 0.6875 0.0926

BR Band1/Band2 755, 759 0.0526 0.172 0.0981 0.1574

BS Band1 − Band2 437, 444 0.8121 0.0766 0.7911 0.0757

NBD (Band1 − Band2)/(Band1 + Band2) 755, 759 0.0507 0.1721 0.0962 0.1575
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calculating spectral derivatives were employed, including 
reciprocal logarithm of reflectance (RLR), first-order dif-
ferential of reflectance (FDR), second-order differential 
of reflectance (SDR), first-order differential of reciprocal 
logarithm (FDRL), and second-order differential of recip-
rocal logarithm (SDRL).

RLR applies a reciprocal and logarithmic transforma-
tion to the spectral curve, effectively reducing back-
ground interference, particularly in the presence of 
significant baseline drift. The formula for the RLR trans-
formation is:

FDR accentuates the slope characteristics of the spec-
tral curve by calculating the rate of change, rendering the 
peaks and valleys of the spectral curve more pronounced. 
The formula for the FDR transformation is:

SDR further emphasizes the acceleration of changes 
in the spectral curve, enhancing the details of inflection 
points and curve variations, and is particularly adept at 
capturing local features in the spectral signal. The for-
mula for the SDR transformation is:

FDRL combines the advantages of logarithmic trans-
formation and first-order differentiation, eliminating 
baseline drift while emphasizing changes in the spectral 
signal. The formula for the FDRL transformation is:

SDRL further enhances the detail of spectral signals 
through second-order differentiation of the logarithmic 
form of the spectrum. The formula for the SDRL trans-
formation is:

Feature band screening
Feature band screening refers to the process of iden-
tifying the most representative and relevant bands 
from spectral data for model building, data analysis, or 
addressing specific research questions. The significance 
of band selection lies in optimizing model performance, 
simplifying model complexity, improving interpretabil-
ity and predictive ability, and reducing interference from 

RLR = log

(

1

R

)

FDR =
R(�+��)− R(�−��)

2��

SDR =
FDR(�+��)− FDR(�−��)

2��

FDRL =
RLR(�+��)− RLR(�−��)

2��

SDRL =
FDRL(�+��)− FDRL(�−��)

2��

irrelevant information. The outcomes of band selection 
can significantly affect both the fit of the model and its 
ability to generalize across diverse datasets. In the pre-
sent study, three band selection methods were employed: 
competitive adaptive reweighted sampling (CARS), least 
absolute shrinkage and selection operator (LASSO), and 
uninformative variable elimination (UVE).

CARS is a band selection algorithm based on par-
tial least squares regression (PLSR). Through Monte 
Carlo sampling, CARS randomly selects subsets from 
the hyperspectral data during each iteration and builds 
a PLSR model. The importance of each band is assessed 
based on its regression coefficients within the PLS 
model. An adaptive weighting mechanism progressively 
eliminates less important bands, retaining those that 
most contribute to the model’s predictive performance. 
Through iterative sampling and competitive selection, 
CARS effectively eliminates redundant information and 
noise, resulting in an optimal set of bands that enhance 
the accuracy and stability of the model [36].

LASSO is a regression method based on L1 regulariza-
tion to achieve feature selection by imposing constraints 
on regression coefficients. In hyperspectral image analy-
sis, LASSO automatically selects important bands by 
shrinking the coefficients of less important bands to zero, 
thus reducing model complexity and redundant informa-
tion. The regularization parameter, λ, governs the degree 
of band selection, enabling the model to maintain predic-
tive accuracy while avoiding overfitting and improving 
generalization ability [63].

UVE is a band selection technique predicated on the 
evaluation of variable importance. It ranks and filters 
bands by assessing their contribution to the prediction of 
the target variable. In hyperspectral data processing, the 
UVE method aids in identifying and eliminating bands 
that have minimal or no influence on the target variable, 
thus simplifying the model and improving predictive 
accuracy [14].

Regression algorithms
Three machine learning regression algorithms were used 
in this study: multiple linear regression (MLR), par-
tial least squares regression (PLSR), and support vector 
regression (SVR). These algorithms, when combined with 
various reflectance processing and feature band selec-
tion techniques, exhibit varying performance across both 
training and testing datasets.

MLR is a foundational regression algorithm designed 
to model the linear relationships between one or more 
independent variables and a dependent variable. The pri-
mary objective of MLR is to derive a linear equation that 
minimizes the discrepancy between the predicted and 
observed values. This is achieved by estimating regression 
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coefficients that minimize the sum of squared residuals, 
thereby constructing an optimal model. While MLR is 
effective for analyzing linear relationships, it may necessi-
tate the application of more sophisticated regression algo-
rithms to adequately address nonlinear relationships or 
issues related to multicollinearity.

PLSR is a statistical algorithm utilized to develop pre-
dictive models, particularly advantageous for high-dimen-
sional data and scenarios involving multicollinearity. PLSR 
projects both independent and dependent variables into 
a new dimensional space, identifying the optimal com-
bination of latent variables to maximize the correlation 
between the two. This approach is particularly effective in 
addressing challenges arising from highly correlated inde-
pendent variables, thus circumventing issues associated 
with multicollinearity.

SVR is a machine learning algorithm derived from sup-
port vector machines, specifically tailored for regression 
tasks. SVR seeks to identify a hyperplane that effectively 
partitions the input data while maximizing the margin 
between the hyperplane and the nearest data points. Sup-
port vector machines are capable of employing various 
kernel functions to accommodate nonlinear relationships, 
demonstrating exceptional performance in the analysis of 
high-dimensional data. In this study, radial basis function 
(RBF) kernel, also known as the Gaussian kernel, was used.

Model evaluation
The coefficient of determination (R2) and root mean square 
error (RMSE) were used as metrics to evaluate model per-
formance. The R2 value indicates the model’s capacity to 
explain the variability in the actual data, with a range from 
0 to 1, where values closer to 1 signify a superior fit. The 
formula for R2 is expressed as:

where n represents the number of samples, y denotes the 
actual LWC value for each sample, y signifies the mean 
of the actual LWC, and ŷ indicates the predicted LWC 
value.

RMSE quantifies the average deviation between pre-
dicted and observed values, with lower RMSE values indi-
cating more accurate predictions. The formula for RMSE is 
expressed as:

where n denotes the number of samples, y represents 
the actual LWC value, and ŷ signifies the predicted LWC 
value.

R2
= 1−

∑n
1

(

y− ŷ
)2

∑n
1

(

y− y
)2

RMSE =

√

∑n
1

(

y− ŷ
)2

n

By comparing the R2 and RMSE values, the model’s fit-
ting performance can be systematically assessed, with 
higher R2 values and lower RMSE values indicating a 
stronger ability of the model to elucidate the data.

Visualization of water content across the leaf surface
For developing spectral prediction models, the aver-
age spectral curve derived from hyperspectral images 
was used for training and testing purposes. This method 
effectively reduces spectral noise through global averag-
ing, yielding smoother spectral signals. However, this 
global averaging process results in a loss of spatial infor-
mation inherent in the images. To further reveal the 
spatial distribution of water moisture within leaves, it is 
imperative to preserve the spatial characteristics of the 
spectral images. In this study, a local spectral smoothing 
method was implemented. Specifically, a 5 × 5 pixel win-
dow was used, sliding across the image with a step size of 
1 pixel. The spectral curve of each window was averaged 
and subsequently assigned to the center pixel of that win-
dow. This local smoothing approach facilitates the gen-
eration of more representative and refined spectral data 
while retaining the spatial distribution features of the 
image. Following this, the established optimal multivari-
ate model was applied to predict the LWC for each pixel, 
thereby generating a leaf water content distribution map.

Results
Reflectance changes induced by dehydration
The foliar reflectance spectra exhibited significant altera-
tions in response to changes in LWC induced by dehy-
dration (Fig.  3). Our bench-dehydration experiment 
conducted on detached P. alba var. pyramidalis leaves 
generated a dataset consisting of various LWC values 
spanning 0.0987 to 0.7065, with mean and median val-
ues of 0.5015 and 0.5750, respectively. Overall, irrespec-
tive of leaf desiccation status, the reflectance of P. alba 
var. pyramidalis leaves exhibited lower values across the 
majority of the visible (VIS) spectrum (380–700  nm), 
characterized by a conspicuous peak around 550  nm 
(Fig.  3). This was followed by a marked increase in leaf 
reflectance within the 700–750  nm range, referred to 
as the red-edge effect. Subsequently, reflectance values 
consistently maintained higher within the near-infrared 
(NIR) spectrum (780–1000  nm). Generally, the reflec-
tance of leaves from the studied P. alba var. pyramida-
lis seedlings increased with decreasing LWC, with this 
trend being more pronounced in the NIR spectral range 
(Fig. 3).

Performance of narrow‑band models
Among the four narrow-band models assessed, the BS 
model showed the most accurate predictive capability 
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(Table  1). The optimal spectral range for the BS model 
in predicting LWC was observed within the wavelength 
interval of 400–500 nm, as well as in the combined spec-
trum of 400–500 and 600–700  nm (Fig.  4c). The calcu-
lated R2 and RMSE values for the identified BS index 
(R437 − R444) were 0.8121 and 0.0766 for the calibration 
dataset, and 0.7911 and 0.0757 for the validation dataset 
(Table 1). Furthermore, the SB model also demonstrated 
favorable predictive performance, with the spectral 
bands around 500 and 680  nm, and between 580 and 
630 nm, showing superior prediction accuracy (Fig. 4a). 
The identified SB index at 627 nm (R627) yielded R2 values 
of 0.7055 and 0.6875, along with RMSE values of 0.0959 
and 0.0926, for the calibration and validation datasets, 
respectively (Table 1). In contrast, the BR and NBD mod-
els exhibited inadequate predictive capacities (Table  1). 
The prediction band showing relatively better perfor-
mance for both models was concentrated at 750  nm 
(Fig. 4b, d), with the identified band combination remain-
ing consistent (i.e., 755 and 759 nm, Table 1). The iden-
tified BR index R755/R759 and NBD index (R755 − R759)/
(R755 + R759) consistently yielded lower R2 values and 
higher RMSE values for both the calibration and valida-
tion datasets.

Performance of multivariate models
While most of the multivariate models developed in 
this study demonstrated a high degree of robustness in 
predicting LWC, spectral preprocessing, feature band 

screening, and the choice of regression algorithm signifi-
cantly influenced model accuracy (Tables 2–4). Notably, 
when comparing different leaf reflectance preprocess-
ing methods, R, RLR-, FDRL- and SDRL-transformed 
reflectance exhibited stronger correlations with LWC, 
achieving correlation coefficients of 0.8 or higher across 
multiple wavelengths (Fig.  5a–d). In contrast, the cor-
relations between FDR- and SDR-preprocessed leaf 
reflectance and LWC were notably weaker, with corre-
lation coefficients nearing zero across almost all wave-
lengths (Fig. 5e, f ). Therefore, in subsequent multivariate 
modeling, R, RLR-, FDRL-, and SDRL-transformed leaf 
reflectance were utilized as input. Regarding feature 
band screening, raw leaf spectral reflectance (R) yielded 
the highest number of selected feature bands for CARS 
(Fig. 6a), whereas it yielded the fewest number for both 
LASSO and UVE (Fig. 6b, c). Overall, CARS resulted in 
the lowest number of selected feature bands for the pre-
processed reflectance data (Fig. 6d, g, j), whereas LASSO 
identified the highest number (Fig. 6e, h, k). Regardless of 
the employed method, there was no fundamental differ-
ence in the number of selected feature bands between the 
VIS and NIR spectra.

Based on the selected feature bands derived from 
R, RLR-, FDRL-, and SDRL-preprocessed reflectance 
spectra, multivariate models using MLR, PLSR, and 
SVR were established for LWC prediction. Overall, 
MLR showed strong prediction performance, with 
all models achieving R2 values exceeding 98% for the 

Fig. 3  Spectral reflectance of Populus alba var. pyramidalis leaves with contrasting leaf water content (LWC)
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calibration dataset (Table  2). Among these models, 
the FDRL-CARS-MLR combination demonstrated the 
highest robustness, displaying excellent statistical met-
rics for the calibration dataset (R2 of 0.9936 and RMSE 
of 0.0115) and excellent performance for the valida-
tion dataset (R2 of 0.98 and RMSE of 0.0307). For the 
PLSR algorithm, all models demonstrated outstand-
ing prediction effectiveness, characterized by higher 
R2 and lower RMSE values for both the calibration and 
validation datasets (Table 3). Among them, the FDRL-
UVE-PLSR combination exhibited superior model 
performance, yielding notably high R2 values of 0.9925 
and 0.9853 for the calibration and validation datasets, 
respectively, along with correspondingly low RMSE 

values of 0.0124 and 0.0264. Notably, this multivari-
ate model achieved optimal statistical performance for 
the validation dataset in the present study (Tables 2–4 
and Fig. 7). For the SVR method, models utilizing R and 
RLR-preprocessed reflectance exhibited reliable predic-
tive capabilities, with the RLR-transformed reflectance 
model without feature band selection demonstrating 
the best model performance, i.e., R2 values of 0.9793 
and 0.964 and RMSE values of 0.0206 and 0.0413 for 
the calibration and validation datasets, respectively 
(Table 4). However, models based on FDRL- and SDRL-
preprocessed reflectance data exhibited poor per-
formance, as evidenced by negative R2 values and/or 
exceptionally high RMSE values (Table 4).

Fig. 4  Visualization of the coefficient of determination (R2) for the optimal band or band combinations of the four narrow-band models against leaf 
water content (LWC) of Populus alba var. pyramidalis. SB single band (a), BR band ratio (b), BS band subtraction (c), NBD normalized band difference 
(d)
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Leaf water content mapping
Utilizing the optimal multivariate LWC prediction 
model, detailed, pixel-level mapping of water content dis-
tribution within the leaves was conducted throughout the 
dehydration sequence. During this sequence, the margins 
of the leaf lamina exhibited a more accelerated rate of 
water loss compared to the central region, while the leaf 
veins retained relatively higher moisture content until 
the surface-averaged LWC reached significantly dimin-
ished levels (Fig. 8). Notably, the predicted water content 
exhibited spatial heterogeneity across the leaf surface for 
each measurement, manifesting lower moisture content 
at the margins in contrast to the middle region wherein 
the veins converged (Fig. 8). Furthermore, similar to the 
leaf veins, the petiole also displayed higher water con-
tent and demonstrated a stronger water-holding capacity 
against dehydration.

Discussion
Based on spectral reflectance and water content data 
from detached P. alba var. pyramidalis leaves subjected 
to varying degrees of dehydration, we developed narrow-
band and full-band (VIS–NIR) models for LWC predic-
tion. We identified two narrow-band indices along with 

the optimal algorithmic combination of multivariate 
models. The two narrow-band indices derived from the 
visible spectrum effectively encapsulated the compre-
hensive physiological response of leaves to dehydration. 
While the predictive accuracy of the multivariate models 
developed through three machine learning regression 
algorithms exceeded that of the narrow-band models, the 
performance of these multivariate models was affected 
by spectral preprocessing and the selection of character-
istic variables. Furthermore, the visualization of water 
content across the leaf surface, using the optimal multi-
variate model, elucidated the foliar water profile under 
various desiccation levels. This advancement broadens 
our comprehension of leaf-scale water-related physiology 
and contributes to monitoring forest health and assessing 
risks associated with drought-induced tree mortality and 
forest decline.

Performance of narrow‑band spectral indices
The identified narrow-band indices from the visible 
spectrum exhibited promising potential for predicting 
LWC in P. alba var. pyramidalis. Narrow-band spec-
tral models are widely utilized in vegetation remote 
sensing due to their high effectiveness in character-
izing plant attributes. Commonly employed indices 
for assessing canopy and leaf water content include 
R900/R970 for the WI [52], R970/R900 for the water band 
index (WBI) [50], [(R860 − R1240)/(R860 + R1240)] for the 
NDWI [27], R860/R1240 for the SRWI [73], R1300/R1450 
for the leaf water index (LWI) [58], and R1600/R820 for 
the moisture stress index (MSI) [31]. These indices have 
been extensively used for the rapid evaluation of plant 
water status across various species, biomes, and geo-
graphical regions [28, 39, 72]. The derivation of these 
narrow-band indices relies on the ratio and/or nor-
malized difference calculation of distinct near-infrared 
bands, reflecting the fact that moisture absorption 
predominantly occurs within the infrared range of the 
plant spectrum [12]. However, investigations exploring 
the efficacy of remote sensing in predicting plant water 
status using spectral information from the visible spec-
trum remain limited. In the present study, we identi-
fied two narrow-band spectral indices from the visible 
spectrum that demonstrate high accuracy in forecast-
ing LWC in the studied tree species, i.e., the single band 
index (R627) and the band subtract index (R437 − R444). 
These visible spectral bands, which are primarily influ-
enced by leaf pigment concentration, generally do not 
directly reflect the absorption of radiation by water. 
However, dehydration can reduce the absorption of 
radiation by pigment, enabling secondary effects of 
water content to influence visible reflectance [13]. As a 
result, these pigment-sensitive bands may also serve as 

Table 2  Evaluation of LWC prediction models fitted by MLR

The model with the highest R2 value for the calibration dataset was shown in 
bold

R raw reflectance, RLR the reciprocal logarithm of reflectance, FDRL first-order 
differential of the reciprocal logarithm of reflectance, SDRL second-order 
differential of the reciprocal logarithm of reflectance, CARS competitive adaptive 
reweighted sampling, LASSO least absolute shrinkage and selection operator, 
UVE uninformative variable elimination

Spectrally-
derived data

Feature band 
screening 
methods

Calibration 
(n = 454)

Validation 
(n = 120)

R2 RMSE R2 RMSE

R None 0.9961 0.009 0.8539 0.0831

CARS 0.9932 0.0118 0.9779 0.0323

LASSO 0.9802 0.0202 0.9245 0.0598

UVE 0.9945 0.0106 0.8911 0.0718

RLR None 0.996 0.009 0.8719 0.0779

CARS 0.9941 0.011 0.9754 0.0341

LASSO 0.9927 0.0123 0.9349 0.0555

UVE 0.9948 0.0104 0.9139 0.0638

FDRL None 0.9954 0.0097 0.9423 0.0523

CARS 0.9936 0.0115 0.98 0.0307

LASSO 0.9944 0.0107 0.9448 0.0511

UVE 0.994 0.0111 0.9743 0.0349

SDRL None 0.9943 0.0108 0.936 0.055

CARS 0.9929 0.0121 0.9531 0.0471

LASSO 0.994 0.0111 0.9301 0.0575

UVE 0.9901 0.0142 0.9479 0.0497
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proxies for predicting LWC to some extent [12, 51, 67]. 
Leaf pigment concentration has been suggested to be 
closely associated with water content, and severe dehy-
dration may damage leaf cellular structure, leading to 
pigment degradation. Under water-stressed conditions, 
pigment instability may reduce absolute pigment con-
tent, resulting in detectable changes in corresponding 
sensitive spectra [37, 60]. Even if the absolute pigment 
content remains stable or undergoes slight variations, 
dehydration-induced reductions in leaf cell volume, 
area, and weight may alter relative pigment content, 
affecting pigment-sensitive spectra [33]. Consequently, 
the narrow-band indices identified in this study may 
encapsulate bands that collectively capture the compre-
hensive sensitivity of various leaf components to water 
stress, though further investigations into the coupled 
changes in leaf pigment concentration, element com-
position, and cellular structure during dehydration are 
needed. These indices offer a theoretical foundation for 
the design and development of cost-effective spectrom-
eters equipped with a limited number of specific bands 
in the visible spectrum, enabling rapid and efficient 

field assessment of water status in drought-prone spe-
cies such as P. alba var. pyramidalis.

Influence of spectral preprocessing, band selection, 
and regression algorithms on the robustness 
of multivariate models
Overall, the majority of the multivariate models we devel-
oped demonstrated robust predictive capabilities for 
LWC; however, the selection and combination of meth-
odologies for spectral preprocessing, feature variable 
screening, and regression significantly influenced their 
predictive performance. High-quality spectral data forms 
the foundation for ensuring model accuracy. To acquire 
spectra from leaves with varying moisture contents, we 
utilized a darkroom illuminated by halogen lamps, effec-
tively minimizing stray light interference and enhancing 
data quality [21]. Furthermore, in conjunction with high-
quality spectral data and corresponding physiological 
measurements, reducing data noise, extracting relevant 
variables, and selecting suitable regression algorithms are 
critical factors contributing to model accuracy [15]. We 
found that the integration of differential and reciprocal 

Fig. 5  Correlation coefficients between leaf water content (LWC) and raw and preprocessed spectral reflectance. R raw reflectance (a), RLR 
the reciprocal logarithm of reflectance (b), FDRL first-order differential of the reciprocal logarithm of reflectance (c), SDRL second-order differential 
of the reciprocal logarithm of reflectance (d), FDR first-order differential of reflectance (e), SDR second-order differential of reflectance (f)
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transformations enhanced the correlation between spec-
tra data and LWC, whereas the application of differential 
transformation alone proved inadequate for establishing 
this correlation. This emphasizes the critical role of recip-
rocal transformation in attenuating background inter-
ference in spectral data [25]. Concerning feature band 
selection methods, CARS identified the fewest char-
acteristic bands, while LASSO yielded the most. This 

discrepancy can be ascribed to their differing method-
ologies and selection criteria. CARS utilizes an adaptive, 
iterative selection process that emphasizes the identifi-
cation of the  most  relevant wavelengths across multiple 
stages, while LASSO adopts a regularization strategy that 
inherently reduces the number of features by promoting 
sparsity within the model. Consequently, CARS permits 
more confined feature selection, identifying and retaining 

Fig. 6  Distribution of feature bands of different pre-processed spectral reflectance with the three featured band screening methods. R raw 
reflectance, RLR the reciprocal logarithm of reflectance, FDRL first-order differential of the reciprocal logarithm of reflectance, SDRL second-order 
differential of the reciprocal logarithm of reflectance, CARS competitive adaptive reweighted sampling, LASSO least absolute shrinkage and selection 
operator, UVE uninformative variable elimination. For each panel, the number of selected feature bands was shown
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fewer bands than LASSO in spectral analysis contexts 
[36, 63].

Among the machine learning regression methods used 
in this study, PLSR exhibited the most favorable perfor-
mance, particularly when integrated with feature band 
subsets selected via UVE. This finding aligns with prior 
research indicating that PLSR is well-suited for devel-
oping multivariate spectral prediction models for plant 
attributes [11, 75]. Although MLR demonstrated overall 
stability and strong generalization capabilities with the 
derived data, its validation performance was inferior to 
that of PLSR, suggesting that relatively complex model 
could achieve enhanced predictive robustness [7]. SVR 
performed adequately in certain instances; however, it 
proved entirely ineffective with the FDRL and SDRL-
transformed data. This limitation likely arises from the 
fact that, while both FDRL and SDRL transformations 
enhance the fine details of spectral signals, they can also 
lead to uneven feature distributions or the inappropri-
ate amplification or compression of feature magnitudes. 
These effects can undermine the performance of regres-
sion algorithms, such as SVR equipped with the RBF 
kernel, which is particularly sensitive to the scale and 
distribution of input features. As a result, this misalign-
ment can cause issues such as underfitting or misfitting. 
The poor performance of the SVR models combined 
with FDRL and SDRL transformation underscores the 
substantial impact of spectral reflectance preprocessing 

Table 3  Evaluation of LWC prediction models fitted by PLSR

The model with the highest R2 value for the calibration dataset was shown in 
bold

R raw reflectance, RLR the reciprocal logarithm of reflectance, FDRL first-order 
differential of the reciprocal logarithm of reflectance, SDRL second-order 
differential of the reciprocal logarithm of reflectance, CARS competitive adaptive 
reweighted sampling, LASSO least absolute shrinkage and selection operator, 
UVE uninformative variable elimination

Spectrally-
derived data

Feature band 
screening 
methods

Calibration 
(n = 454)

Validation 
(n = 120)

R2 RMSE R2 RMSE

R None 0.9934 0.0116 0.9656 0.0404

CARS 0.9925 0.0124 0.9763 0.0335

LASSO 0.9802 0.0202 0.9245 0.0598

UVE 0.9932 0.0118 0.9688 0.0384

RLR None 0.9938 0.0113 0.9497 0.0488

CARS 0.9933 0.0117 0.9806 0.0303

LASSO 0.9913 0.0133 0.9356 0.0552

UVE 0.9936 0.0114 0.9742 0.0349

FDRL None 0.9931 0.0119 0.9543 0.0465

CARS 0.9925 0.0124 0.9839 0.0276

LASSO 0.9923 0.0126 0.9431 0.0519

UVE 0.9925 0.0124 0.9853 0.0264

SDRL None 0.9896 0.0146 0.9182 0.0622

CARS 0.9897 0.0145 0.9508 0.0482

LASSO 0.9895 0.0147 0.9115 0.0647

UVE 0.9882 0.0155 0.9722 0.0363

Table 4  Evaluation of LWC prediction models fitted by SVR

The model with the highest R2 value for the calibration dataset was shown in bold

R raw reflectance, RLR the reciprocal logarithm of reflectance, FDRL first-order differential of the reciprocal logarithm of reflectance, SDRL second-order differential of 
the reciprocal logarithm of reflectance, CARS competitive adaptive reweighted sampling, LASSO least absolute shrinkage and selection operator, UVE uninformative 
variable elimination

Spectrally-derived data Feature band screening 
methods

Calibration (n = 454) Validation (n = 120)

R2 RMSE R2 RMSE

R None 0.9705 0.0246 0.9352 0.0554

CARS 0.9616 0.028 0.9078 0.0661

LASSO 0.9529 0.0311 0.8841 0.0741

UVE 0.9679 0.0256 0.9248 0.0597

RLR None 0.9793 0.0206 0.964 0.0413

CARS 0.9845 0.0178 0.9606 0.0432

LASSO 0.9757 0.0223 0.9387 0.0539

UVE 0.9851 0.0175 0.9468 0.0502

FDRL None −20.0427 0.6568 −15.684 0.8887

CARS −2.0746 0.251 −0.3743 0.2551

LASSO −19.246 0.6442 −38.9445 1.3751

UVE −8.8804 0.45 −10.3724 0.7337

SDRL None −3,401,226.87 264.0478 −3,400,301 401.2004

CARS −875,789.720 133.9877 −849,911.9 200.581

LASSO −4,670,267.21 309.4109 −2,675,497 355.8812

UVE −603,805.878 111.2535 −933,232.4 210.1831
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on the predictive performance of multivariate models 
[22, 47]. These results highlight the necessity of consid-
ering various combinations of methods for reflectance 
preprocessing, feature variable selection, and regression 
algorithms in the development of optimal predictive 
models.

Significance of visualizing water distribution 
across the leaf surface
The visualization of water distribution across the leaf 
surface provides insights into leaf-scale water-related 

physiology. Compared to fiber-optic spectrometers, 
hyperspectral cameras offer advantages in capturing 
both detailed spectral information and spatial variations, 
thereby providing additional insights for retrieving and 
visualizing plant physiological status [6]. In the study of 
plant water physiology, mapping the spatial distribution 
of water content within leaves contributes to the explora-
tion of intricate mechanisms related to foliar water trans-
port, allocation, storage, and utilization, thus providing 
intuitive evidence for investigating plant water relations 
under desiccation risks [54]. By observing variations in 
the spatial distribution of leaf water content under dif-
ferent levels of dehydration, the responsive patterns and 
resilience mechanisms of plants to drought stress can 
be investigated [9, 35]. Our findings indicate that mois-
ture content decreased more rapidly at the leaf margin, 
while regions around the midrib exhibited relatively 
strong water-holding capacity. This aligns with previous 
research quantifying leaf water profiles using neutron 
imaging, terahertz radiation, and hyperspectral reflec-
tance [10, 20, 48, 62]. The accelerated rate of water loss 
at the leaf margin can be attributed to heterogeneous 
lamina thickness and uneven distribution of veins, char-
acterized by thinner mesophyll and a less extensive vena-
tion network at the leaf edge, rendering the margin more 
susceptible to dehydration [76].

Mapping moisture distribution within leaves based on 
spectral prediction models and hyperspectral imagery 
opens up opportunities for monitoring drought stress 
in forest canopies and assessing forest health with 
increased temporal resolution and over extensive spa-
tial areas. A notable advantage of visualizing leaf water 
profiles using hyperspectral imagery lies in its non-con-
tact nature, distinguishing it from conventional physi-
ological measurements that rely on the physical contact 

Fig. 7  Measured vs. model-predicted scatter plots for leaf water 
content (LWC) of P. alba var. pyramidalis. The predicted values 
were produced using the best multivariate models. Data points 
and the corresponding fitted regression for the calibration dataset are 
shown in blue, and the validation dataset in red 

LWC = 0.6170 LWC = 0.5628 LWC = 0.4508 LWC = 0.3419LWC = 0.6682

Fig. 8  Contours of moisture content distribution across detached Populus alba var. pyramidalis leaves with contrasting surface-averaged water 
content. The value below each leaf contour indicates its surface-averaged water content (LWC)
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between sensors and measurement point or chemical 
analysis of detached samples in laboratory settings [34]. 
This noninvasive characteristic eliminates the need for 
contact-type analysis or destructive sampling, allowing 
for repeated measurements over time and thus facilitat-
ing the long-term in situ assessment and monitoring of 
drought stress dynamics, even at high temporal resolu-
tion [3, 62]. Importantly, the ability to detect early signs 
of water stress in leaves and through imaging technol-
ogy provides valuable information for forest managers, 
enabling them to identify areas at increased drought 
stress and associated mortality risk within forest eco-
systems and implement timely, targeted interventions 
to mitigate drought impacts on forest health [26, 39]. 
Furthermore, the development of these methodologies 
has the potential to enhance remote sensing applica-
tions, as hyperspectral cameras can be mounted on 
handheld, airborne, or satellite platforms to perform 
ground-, flight-, and space-based sensing of the water 
status of individual leaves, whole trees, and forest 
stands following the model transfer learning. This ena-
bles high-frequency monitoring of forest drought stress 
over extensive areas, providing valuable information for 
regional and global assessments of forest drought resil-
ience [24, 38].

Concluding remarks
The spectral prediction models developed in this study 
present an innovative, reliable method for determining 
LWC in plants, contributing to non-destructive monitor-
ing of drought stress levels and decline risks of vegetation 
in drought-prone areas. We identified two narrow-band 
indices that showed satisfactory LWC prediction accu-
racy, providing a straightforward and efficient solution 
for expeditiously estimating LWC in field conditions. 
While the predictive performance varied slightly with 
the combinations of methods for reflectance preproc-
essing, band selection, and regression, the developed 
multivariate models based on full-band spectrum were 
mostly highly robust in predicting LWC. The optimal 
multivariate model effectively depicted the leaf water 
profile, enhancing our understanding of leaf-scale water-
related physiology and contributing to the mapping of 
forest health conditions and associated risks of drought-
induced mortality. The prediction models developed 
based on hyperspectral imagery, along with the method 
for visualizing moisture content distribution across the 
leaf surface, serve as valuable tools for evaluating the 
impacts of heightened drought stress and implementing 
timely interventions to mitigate its effects on forest eco-
systems in drought-prone areas.
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