Skip to main content
. 2024 Dec 18;20:184. doi: 10.1186/s13007-024-01312-1

Table 2.

Evaluation of LWC prediction models fitted by MLR

Spectrally-derived data Feature band screening methods Calibration (n = 454) Validation (n = 120)
R2 RMSE R2 RMSE
R None 0.9961 0.009 0.8539 0.0831
CARS 0.9932 0.0118 0.9779 0.0323
LASSO 0.9802 0.0202 0.9245 0.0598
UVE 0.9945 0.0106 0.8911 0.0718
RLR None 0.996 0.009 0.8719 0.0779
CARS 0.9941 0.011 0.9754 0.0341
LASSO 0.9927 0.0123 0.9349 0.0555
UVE 0.9948 0.0104 0.9139 0.0638
FDRL None 0.9954 0.0097 0.9423 0.0523
CARS 0.9936 0.0115 0.98 0.0307
LASSO 0.9944 0.0107 0.9448 0.0511
UVE 0.994 0.0111 0.9743 0.0349
SDRL None 0.9943 0.0108 0.936 0.055
CARS 0.9929 0.0121 0.9531 0.0471
LASSO 0.994 0.0111 0.9301 0.0575
UVE 0.9901 0.0142 0.9479 0.0497

The model with the highest R2 value for the calibration dataset was shown in bold

R raw reflectance, RLR the reciprocal logarithm of reflectance, FDRL first-order differential of the reciprocal logarithm of reflectance, SDRL second-order differential of the reciprocal logarithm of reflectance, CARS competitive adaptive reweighted sampling, LASSO least absolute shrinkage and selection operator, UVE uninformative variable elimination