Skip to main content
. 2024 Dec 18;20:184. doi: 10.1186/s13007-024-01312-1

Table 3.

Evaluation of LWC prediction models fitted by PLSR

Spectrally-derived data Feature band screening methods Calibration (n = 454) Validation (n = 120)
R2 RMSE R2 RMSE
R None 0.9934 0.0116 0.9656 0.0404
CARS 0.9925 0.0124 0.9763 0.0335
LASSO 0.9802 0.0202 0.9245 0.0598
UVE 0.9932 0.0118 0.9688 0.0384
RLR None 0.9938 0.0113 0.9497 0.0488
CARS 0.9933 0.0117 0.9806 0.0303
LASSO 0.9913 0.0133 0.9356 0.0552
UVE 0.9936 0.0114 0.9742 0.0349
FDRL None 0.9931 0.0119 0.9543 0.0465
CARS 0.9925 0.0124 0.9839 0.0276
LASSO 0.9923 0.0126 0.9431 0.0519
UVE 0.9925 0.0124 0.9853 0.0264
SDRL None 0.9896 0.0146 0.9182 0.0622
CARS 0.9897 0.0145 0.9508 0.0482
LASSO 0.9895 0.0147 0.9115 0.0647
UVE 0.9882 0.0155 0.9722 0.0363

The model with the highest R2 value for the calibration dataset was shown in bold

R raw reflectance, RLR the reciprocal logarithm of reflectance, FDRL first-order differential of the reciprocal logarithm of reflectance, SDRL second-order differential of the reciprocal logarithm of reflectance, CARS competitive adaptive reweighted sampling, LASSO least absolute shrinkage and selection operator, UVE uninformative variable elimination