Skip to main content
. 2024 Dec 18;20:184. doi: 10.1186/s13007-024-01312-1

Table 4.

Evaluation of LWC prediction models fitted by SVR

Spectrally-derived data Feature band screening methods Calibration (n = 454) Validation (n = 120)
R2 RMSE R2 RMSE
R None 0.9705 0.0246 0.9352 0.0554
CARS 0.9616 0.028 0.9078 0.0661
LASSO 0.9529 0.0311 0.8841 0.0741
UVE 0.9679 0.0256 0.9248 0.0597
RLR None 0.9793 0.0206 0.964 0.0413
CARS 0.9845 0.0178 0.9606 0.0432
LASSO 0.9757 0.0223 0.9387 0.0539
UVE 0.9851 0.0175 0.9468 0.0502
FDRL None −20.0427 0.6568 −15.684 0.8887
CARS −2.0746 0.251 −0.3743 0.2551
LASSO −19.246 0.6442 −38.9445 1.3751
UVE −8.8804 0.45 −10.3724 0.7337
SDRL None −3,401,226.87 264.0478 −3,400,301 401.2004
CARS −875,789.720 133.9877 −849,911.9 200.581
LASSO −4,670,267.21 309.4109 −2,675,497 355.8812
UVE −603,805.878 111.2535 −933,232.4 210.1831

The model with the highest R2 value for the calibration dataset was shown in bold

R raw reflectance, RLR the reciprocal logarithm of reflectance, FDRL first-order differential of the reciprocal logarithm of reflectance, SDRL second-order differential of the reciprocal logarithm of reflectance, CARS competitive adaptive reweighted sampling, LASSO least absolute shrinkage and selection operator, UVE uninformative variable elimination