Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Jul;150(1):41–45. doi: 10.1042/bj1500041

The accumulation of aspartate in the presence of ethanol in rat liver.

M Stubbs, H A Krebs
PMCID: PMC1165701  PMID: 1201007

Abstract

1. Isolated hepatocytes were used to establish the reasons for the accumulation of aspartate, previously observed when the isolated rat liver was perfused with ethanol in the presence of alanine or ammonium lactate. 2. The isolated cells did not form aspartate when incubated with alanine and ethanol, but much aspartate was formed on incubation with ammonium lactate and ethanol. 3. Urea was the main nitrogenous product on incubation with alanine, in contrast with the perfused liver, where major quantities of NH4+ are also formed. When the formation of urea was nullified by the addition of urease, alanine plus ethanol caused aspartate formation, indicating that aspartate formation depends on the presence of critical concentrations of NH4+. 4. The accumulated aspartate was present in the cytosol. Ethanol halved the content of 2-oxoglutarate in the cytosol and more than trebled that of glutamate in the mitochondria. 5. The findings support the assumption that 2-oxoglutarate formed by the mitochondrial aspartate aminotransferase is not translocated to the cytosol in the presence of ethanol and NH4+, because it is rapidly converted into glutamate, the dehydrogenation of ethanol providing the required NADH. Aspartate, however, is translocated to the cytosol and accumulates there because of the lack of stoicheiometric amounts of oxoglutarate.

Full text

PDF
41

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cornell N. W., Lund P., Hems R., Krebs H. A. Acceleration of gluconeogenesis from lactate by lysine (Short Communication). Biochem J. 1973 Jun;134(2):671–672. doi: 10.1042/bj1340671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cornell N. W., Lund P., Krebs H. A. The effect of lysine on gluconeogenesis from lactate in rat hepatocytes. Biochem J. 1974 Aug;142(2):327–337. doi: 10.1042/bj1420327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hems R., Lund P., Krebs H. A. Rapid separation of isolated hepatocytes or similar tissue fragments for analysis of cell constituents. Biochem J. 1975 Jul;150(1):47–50. doi: 10.1042/bj1500047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Krebs H. A., Hems R., Lund P. Accumulation of amino acids by the perfused rat liver in the presence of ethanol. Biochem J. 1973 Jul;134(3):697–705. doi: 10.1042/bj1340697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LaNoue K. F., Bryla J., Bassett D. J. Energy-driven aspartate efflux from heart and liver mitochondria. J Biol Chem. 1974 Dec 10;249(23):7514–7521. [PubMed] [Google Scholar]
  7. LaNoue K. F., Walajtys E. I., Williamson J. R. Regulation of glutamate metabolism and interactions with the citric acid cycle in rat heart mitochondria. J Biol Chem. 1973 Oct 25;248(20):7171–7183. [PubMed] [Google Scholar]
  8. Lardy H. A., Paetkau V., Walter P. Paths of carbon in gluconeogenesis and lipogenesis: the role of mitochondria in supplying precursors of phosphoenolpyruvate. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1410–1415. doi: 10.1073/pnas.53.6.1410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Veech R. L., Guynn R., Veloso D. The time-course of the effects of ethanol on the redox and phosphorylation states of rat liver. Biochem J. 1972 Apr;127(2):387–397. doi: 10.1042/bj1270387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. WADA H., MORINO Y. COMPARATIVE STUDIES ON GLUTAMIC-OXALACETIC TRANSAMINASES FROM THE MITOCHONDRIAL AND SOLUBLE FRACTIONS OF MAMMALIAN TISSUES. Vitam Horm. 1964;22:411–444. doi: 10.1016/s0083-6729(08)60346-5. [DOI] [PubMed] [Google Scholar]
  11. Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES