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ABSTRACT: Background: Glucocerebrosidase
1 (GBA1) mutations are associated with reduced sur-
vival in Parkinson’s disease but their effect on survival
in dementia with Lewy bodies (DLB) is unclear.
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Objective: To assess the impact of GBA1 mutations
on survival among Ashkenazi Jews with DLB, while
controlling for APOE status.
Methods: One hundred and forty participants from
Tel Aviv Medical Center, Israel were genotyped for
GBA1 mutations and APOE polymorphisms. Survival
rates and follow-up cognitive screening scores were
analyzed.
Results: GBA1 mutation carriers had a two-fold
increased risk of death (HR = 1.999), while APOE sta-
tus did not independently affect survival. In a subset
of patients with available clinical data (N = 63), car-
riers of the APOE ε4 allele showed faster cognitive
deterioration, while GBA1 mutation carriers also
declined more rapidly albeit not significantly.
Conclusion: Understanding the genetic effects on
survival and progression is crucial for patient
counseling and inclusion in clinical trials. © 2024
The Author(s). Movement Disorders published by
Wiley Periodicals LLC on behalf of International
Parkinson and Movement Disorder Society.

Dementia with Lewy bodies (DLB) is a clinically het-
erogeneous neurodegenerative disease characterized
by the accumulation of Lewy bodies and neurites and
often by concomitant Alzheimer’s disease (AD) pathol-
ogy.1 Mutations in the GBA1 gene are the most com-
mon genetic factor associated with Parkinson’s disease
(PD) and are frequent among patients with DLB.2-4 Pre-
vious studies show that PD and DLB patients with
GBA1 mutations have younger motor symptom onset
and a more severe disease phenotype.5,6 In PD, carriers
of GBA1 mutations have a more aggressive disease
course, with faster progression and reduced sur-
vival7-10; however, the effect of GBA1 mutations on
survival in DLB is still unclear, with conflicting results
in the literature.11,12 The APOE ε4 allele is a significant
risk factor for developing AD,13 and is the top hit in
genome association studies in DLB.14 A study examin-
ing the influence of these genetic factors in PD demon-
strated that carriers of either GBA1 mutations or the
APOE ε4 allele had faster cognitive decline and were at
a higher risk of progressing to dementia than non-
carriers. Furthermore, carriers of both genetic factors
had the most significant risk of progressing to demen-
tia.15 In a previous study in our cohort, which included
follow-up data until the start of 2020, we did not find a
clear effect on cognitive deterioration of either factor.5

We were also unable to examine survival due to insuffi-
cient years of follow-up. The aim of the current study
was to examine the effects of these common genetic fac-
tors on survival and progression in a cohort of Ashke-
nazi Jewish (AJ) patients with DLB, known to have
high carrier rates of GBA1 mutations.4

Methods

Study protocols were approved by the Institutional
Review Board (IRB) Committees for Genetic Studies.
Participants provided informed consent. Survival analy-
sis included consecutively recruited patients with DLB
of AJ descent, who attended the Tel Aviv Medical
Center between July 2013 and November 2023. Base-
line research evaluation, including comprehensive neu-
ropsychological and motor testing, was conducted for
all patients. The results of these evaluations for 100 of
the patients included in this study appeared in our pre-
vious publication.5 Follow-up Mini-Mental State Exam-
ination (MMSE) data were collected in routine clinic
visits, which varied between 4 and 22 months and were
not conducted at set intervals. Due to the tertiary
nature of our center, patients were also followed up in
the community, with less frequent visits to the hospital
clinic. Death was confirmed via the Israeli National
Registry in which date but not cause of death are
available.
Genotyping of founder GBA1 mutations was performed

as previously described.16 Briefly, patients were tested for
the 84GG, IVS2 + IG > A, p.N370S, p.L444P, p.V394L,
p.R496H, and 370Rec GBA1 mutations, using the
“Gaucher Kit” (Catalog number 800672, Savyon Diagnos-
tics, Ashdod, Israel, https://www.savyondiagnostics.com/
product/nanochip-gaucher). The E326K and T369M
GBA1 variants were genotyped using gene-specific
TaqMan assay, followed by Sanger sequencing of poly-
merase chain reaction (PCR) products, to confirm car-
riers. GBA1 pathogenic variants were divided into three
groups: (1) non-Gaucher disease (GD) causing (E326K
and T369M), (2) variants associated with mild Gaucher
disease (N370S and R496H), and (3) variants associated
with severe Gaucher disease (84GG, Ivs2, V349L).17

Existence of the LRRK2 G2019S mutation was also
examined. All samples were genotyped for rs429358 and
rs7412, using TaqMan assays (C___3084793_20 and
C____904973_10, respectively; Applied Biosystems) to
establish their APOE haplotypes. Samples that carried E2
or E4 haplotypes were also Sanger sequenced as a second
independent method to confirm ApoE haplotypes. Primers
used to amplify the ApoE specific fragment for sequencing
were: forward 50 GGCACGGCTGTCCAAGGAGCT 30

and reverse 50 GCCCCGGCCTGGTACACTGC 30.

Statistical Analysis
Descriptive statistics (means, standard deviations,

Student’s t-test, and ANOVA for continuous vari-
ables; proportions, frequencies, and chi-square test
for categorical variables) were used to compare the
demographics of GBA1 carriers and non-carriers. In
survival analyses, time to event was defined as sur-
vival in months. Participants were censored at the age

Movement Disorders, Vol. 39, No. 12, 2024 2281

E F F E C T O F C O M M O N G E N E T I C F A C T O R S O N S U R V I V A L I N D L B

https://www.savyondiagnostics.com/product/nanochip-gaucher/
https://www.savyondiagnostics.com/product/nanochip-gaucher/


of our last contact if they did not reach an event
(death). We used log-rank tests and Cox proportional
hazards models, adjusted for sex and age at symptom
onset, to compare survival between GBA1 carriers
and non-carriers and between APOE ε4 carriers and
non-carriers.
In order to assess deterioration in MMSE scores per

year on an individual basis, we subtracted the last
MMSE score recorded for each patient from the first
MMSE score recorded and divided it by years of
follow-up. We used an analysis of covariance
(ANCOVA) with GBA1 mutations and APOE poly-
morphisms as between-subject factors and the deterio-
ration per year as the dependent variable, with age at
onset, disease duration until first MMSE, sex, and years
of education as covariates. Eta squared served to esti-
mate effect size. All analyses were conducted with
Statistical Package for the Social Sciences (SPSS) soft-
ware (Version 29; SPSS, Inc., Chicago, IL, USA), and
the alpha level was set at 0.05.

Results
Participants’ Survival Analysis

One hundred and forty patients (n = 106, 75.7% men)
were included in the survival analysis. Of these,
45 (32.1%) were carriers of mutations in the GBA1 gene,
38 carried mutations considered to be mild and 5 carried
mutations considered severe, 1 was heterozygote for the
T369M variant, and 1 was heterozygote for the E326K

variant. Forty-two (30%) patients were carriers of an
APOE ε4 allele and, of these, 11 patients (7.8%) were
carriers of both a GBA1 mutation and the APOE ε4
allele (Table 1). There were no LRRK2 mutation carriers
in the cohort. One of the patients who was a GBA1
mutation carrier ended her life by assisted suicide over-
seas and was therefore excluded from further analyses.
During the 2013–2023 period, 54 of the remaining
139 patients died, 20 of whom were GBA1 mutation car-
riers. Multivariable analysis, performed after adjusting
for sex and age at onset, showed a significantly increased
risk of death in GBA1 carriers compared with non-
carriers (hazard ratio [HR] = 1.999, P = 0.02; Fig. 1).
APOE status had no independent effect on survival or
age of onset (HR = 1.226, P = 0.482). The effect of
GBA1 mutations on survival persisted, albeit with
borderline significance, even when the severe mutation
carriers were excluded (HR = 1.830, P = 0.05), demon-
strating an effect of all GBA1 mutations on survival.
Most patients died in the community, and therefore exact
cause of death was unavailable in hospital records. As
was found in previous studies, whole-group analysis
demonstrated that the GBA1 mutation carriers were
younger at symptom onset (mean [SD] age, 66.93
[8.56]vs. 70.37 [6.20] years; t = 2.394, P = 0.020).
Within the group of patients who died (N = 54), age
of onset did not differ significantly between GBA1
and non-GBA1 carriers (mean [SD] 68.4 [9.06]
vs. 71.63 [6.131] years; t = 1.415, P = 0.168) nor did
age at death (mean [SD] 76.2 [7.66] vs. 79.14 [6.2];
t = 2.780, P = 0.15).

TABLE 1 Patient demographics.

Parameter
GBA1 mutation
carriers (n = 45)

GBA1 non-carriers
(n = 95) P-value

Sex (male) 32 (71.11%) 73 (76.84%) 0.53*

APOE ε4 carriers 11 (24.44%) 31 (32.63%) 0.43*

ε3/ε4 carriers 9 (20.00%) 29 (30.52%)

ε4/ε4 carriers 2 (4.44%) 2 (2.10%)

Age at onseta (years) (n = 139) 66.93 [8.56] 70.37 [6.20] 0.02**

Died (n = 140) 21 (46.66%) 34 (35.78%)

Patients who died (n = 54)

Survival after diagnosis until death (months) 93.60 [30.80] 90.17 [33.43] 0.71**

Age at death (years) 76.20 [7.66] 79.14 [6.20] 0.15**

Age at onseta (years) 68.40 [9.06] 71.63 [6.13] 0.16**

Sex (male) 12 (57.14%) 28 (82.35%) 0.18*

APOE ε4 carriers 6 (28.57%) all of them ε3/ε4 carriers 13 (38.23%) all of them ε3/ε4 carriers 0.57*

*Chi-square test.
**Independent sample two-sided t-test.
aAge at onset refers to age at symptom onset.
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Participants’ Follow-Up Analysis
Follow-up MMSE data were available for 63 of the

140 participants. Of these subjects, 19 were carriers of
GBA1 mutations, 15 were carriers of APOE ε4 polymor-
phisms, and 8 patients were carriers of both genetic fac-
tors. Average disease duration at baseline was 37.57
months (SD 25.75). Average number of clinic visits was
3.78 (SD 1.90), and average time between visits was
13.7 months (SD 8.5). Average follow-up time
was 36.7 months (SD 22.62). Average deterioration on
the MMSE per year was 0.22 (SD 0.31) points.
ANCOVA revealed that carriers of the APOE ε4 allele
had a faster cognitive deterioration than non-carriers:
3.90 vs. 2.04 per year, F(1,62) = 5.32, P = 0.025,
ŋ2 = 0.88. Carriers of the GBA1 mutation deteriorated
more rapidly compared with non-carriers with a trend
towards significance: 3.44 vs. 2.17 per year, F(1,62)
= 3.85, P = 0.055, ŋ2 = 0.066. The interaction between
the two mutations was not significant: F(1,62) = 2.03,
P = 0.159, ŋ2 = 0.036.

Discussion

We found that AJ patients with DLB who are car-
riers of GBA1 mutations had a two-fold increased
mortality risk. While some prior studies have not
shown reduced survival in DLB patients with GBA1
mutations, our findings align with numerous studies
in PD patients that indicated reduced survival among

GBA1 mutation carriers.7,8 In the present cohort, we
found no main effect of the APOE ε4 allele on sur-
vival, in contrast to another study that found both a
lower MMSE at baseline and a shorter disease dura-
tion among APOE ε4 carriers,11 with no effect of
GBA1 mutations. Differences in the type of GBA1
mutation across cohorts may explain the variations.
The Dutch cohort had more E326K carriers, a milder
variant unrelated to Gaucher disease in homozygous
form. In contrast, our AJ cohort were mainly N370S
carriers which is linked to type 1 Gaucher disease.
Furthermore, the Dutch study did not find a more
severe cognitive syndrome in GBA1 mutation car-
riers, unlike other cohorts,3,5,18 and thus patients
might have been less severely affected at baseline.
Another study on survival in patients with DLB has
shown that the APOE ε4 allele was associated with
shorter survival, but only in individuals with lower
hippocampal volumes at baseline.12

An analysis of a subgroup of patients for which
clinical follow-up data were available demonstrated
that the presence of the APOE ε4 allele was associ-
ated with faster cognitive deterioration. Pathological
studies indicate that the APOE ε4 allele is indepen-
dently associated with more severe Lewy body
pathology, regardless of AD pathology levels. This
suggests that APOE ε4 may modify processes favor-
ing Lewy body pathology spread.19 A recent study
that used a real-time quaking-induced conversion
(RT-QuIC) assay found that alpha-synuclein seeding

FIG. 1. Cox proportional hazard regression for survival in months from diagnosis in GBA1 mutation carriers and non-carriers adjusted for sex and age
at onset. [Color figure can be viewed at wileyonlinelibrary.com]
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was exacerbated by APOE ε4 in a small cohort of
LBD brains with minimal AD pathology.20 The
impact of the APOE ε4 allele on alpha-synuclein
spread might explain our observation of accelerated
progression in carriers. Nevertheless, the APOE ε4
carriers did not show reduced survival. A possible
explanation for this finding is that the main cause of
death in DLB may not be directly related to the level
of cognitive decline but to the severity of the motor
dysfunction. Studies have shown that DLB patients
with a higher burden of AD pathology tend to have a
higher prevalence of the APOE ε4 allele. This associ-
ation was linked to poorer cognitive performance
compared with patients with a lower burden of AD
pathology.21-23

GBA1 mutations are associated with more diffuse
neocortical Lewy bodies in PD24 and DLB,25 which
could explain the increased mortality. However, in
DLB, the GBA1 mutation carriers have also been
shown to have less coexistent amyloid pathology,26

implying that survival in this disease may be mediated
primarily by alpha-synuclein pathology, a crucial con-
sideration for designing trials of disease-modifying ther-
apies. Our previous findings revealed that DLB patients
with GBA1 mutations have a more severe disease phe-
notype4,5 and that the APOE ε4 allele acted in a com-
plex interaction so that patients who carried both
genetic risk factors had a more severe cognitive and
motor involvement at presentation. However, the
impact of these two common genetic factors on survival
and clinical progression in patients with DLB was
unclear. Here we demonstrate a clear impact on sur-
vival of GBA1 mutations and an impact of APOE ε4
polymorphisms on cognitive progression but not on
survival. Further studies will need to examine whether
different types of GBA1 mutations have a differential
impact. The main limitation to our study is the limited
cognitive follow-up data that were available, potentially
resulting in underpowered analysis. The frequency of
follow-up may have been influenced by disease severity;
however, all patients diagnosed with DLB were offered
follow-up at the hospital, which aligns with their typical
preference and therefore we believe it is unlikely that
this introduced bias into our study. Another limitation
is the absence of confirmatory post-mortem pathology,
with diagnoses relying on clinical criteria and
supporting features. This is likely to have led to an
underdiagnosis of cases as previously described.27 A
further limitation is that the cause of death was not
available for most patients and that due to the
wide variation in the number of clinic follow-up visits
and time points only the overall deterioration per year
could be calculated. One of the main strengths of the
study is the clinical follow-up available for these

patients that allowed for high clinical diagnostic
accuracy.

Conclusions

In this study we aimed to examine the effect of the two
most common genetic factors associated with DLB,
GBA1 mutations and APOE polymorphisms, on survival
and clinical progression. The effect of various genetic fac-
tors on survival is key for assessing prognosis, planning
clinical trials, developing disease-modifying treatments,
and advancing personalized clinical approaches. The pre-
cise effect of these genetic factors and possible interac-
tions with other genetic aspects should be further
explored with the use of advanced biomarkers for assess-
ment of different pathologies in vivo.
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