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ABSTRACT: In recent years, many neuroimaging
studies have applied artificial intelligence (AI) to facili-
tate existing challenges in Parkinson’s disease
(PD) diagnosis, prognosis, and intervention. The aim of
this systematic review was to provide an overview of
neuroimaging-based AI studies and to assess their
methodological quality. A PubMed search yielded
810 studies, of which 244 that investigated the utility
of neuroimaging-based AI for PD diagnosis, prognosis,
or intervention were included. We systematically cate-
gorized studies by outcomes and rated them with
respect to five minimal quality criteria (MQC) pertaining
to data splitting, data leakage, model complexity, per-
formance reporting, and indication of biological plausi-
bility. We found that the majority of studies aimed to
distinguish PD patients from healthy controls (54%) or

atypical parkinsonian syndromes (25%), whereas prog-
nostic or interventional studies were sparse. Only 20%
of evaluated studies passed all five MQC, with data
leakage, non-minimal model complexity, and reporting
of biological plausibility as the primary factors for qual-
ity loss. Data leakage was associated with a significant
inflation of accuracies. Very few studies employed
external test sets (8%), where accuracy was signifi-
cantly lower, and 19% of studies did not account for
data imbalance. Adherence to MQC was low across all
observed years and journal impact factors. This review
outlines that AI has been applied to a wide variety
of research questions pertaining to PD; however,
the number of studies failing to pass the MQC is
alarming. Therefore, we provide recommendations to
enhance the interpretability, generalizability, and
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clinical utility of future AI applications using neuroimaging
in PD. © 2024 The Author(s). Movement Disorders publi-
shed by Wiley Periodicals LLC on behalf of International
Parkinson and Movement Disorder Society.
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Parkinson’s disease (PD) is an age-related neurode-
generative disease associated with debilitating motor
deficits but also accompanied by nonmotor symptoms.1

Approximately 1% of the elderly population develops
PD, hallmarked by a gradual loss of dopaminergic neu-
rons in the substantia nigra.2 Diagnosis relies on clini-
cally detectable motor symptoms, with the Movement
Disorder Society-Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) serving as a clinical tool to assess
motor (II–IV) and nonmotor (I) symptoms.3 Despite the
high prevalence of PD, efficient early or differential
diagnoses, prognoses, and treatment strategies remain a
major clinical challenge. The heterogeneous disease
phenotype and overlapping symptoms with atypical
parkinsonian syndromes (APS) contribute to high mis-
diagnosis rates4,5 and hamper accurate prognoses. More-
over, by the time of a PD diagnosis, up to 70% of
dopaminergic neurons are already degenerated,2,6 signifi-
cantly reducing the potential effectiveness of intervention
therapies. For this reason, various neuroimaging modali-
ties were proposed and validated to enhance diagnostic
accuracy.7-9 Unfortunately, interpreting neuroimaging
data, especially when considering additional risk factors
for understanding individual PD trajectories, can be a
highly complex task and may require advanced auto-
mated solutions.
“Artificial intelligence” (AI) is an umbrella term for

powerful tools (eg, from machine or deep learning)
capable of integrating and interpreting the information
of diverse clinical datasets. AI can be defined as the
ability of computers to learn and perform tasks without
specific instructions based on data patterns.10 In recent
years, AI has garnered increasing attention in the field
of neuroimaging in PD, particularly with increasing
availability of data and advancing computational
resources. With their strong potential for detecting
complex associations within multidimensional (eg,
imaging) and/or multimodal data (eg, incorporating
imaging, genetic, and demographic data), AI can aid
diagnosis, estimate disease course trajectories, or con-
tribute to treatment planning. This can pave the way
for more patient-tailored (eg, precision medicine) rather
than uniform approaches in PD.11

However, with the ever-increasing number of studies
using neuroimaging-based AI techniques in PD,
maintaining an overview of potentially helpful applica-
tions for daily practice is becoming more challenging. It
has been repeatedly recommended that quality stan-
dards be ensured among medical AI studies12-14 to

achieve generalizable results and interpretable decision-
making. Without proper regulation, overfitting can
cause issues of generalizability. Overfitting occurs
when AI algorithms capture noise that is specific to
the training data, resulting in strong performance
during training but poor performance at the valida-
tion stage and real-world settings.15 Another com-
mon problem is data leakage, which happens when
information from data used for validation is introduced
into the training process.16-18 Additionally, overly com-
plex approaches that are trained on a relatively large
number of features are prone to overfitting as they are
likely to fit noise in the training data rather than
disease-specific patterns.19,20 Incomplete reporting of
model performance further prevents interpretability of
a model’s strengths and pitfalls.20 Together, these (mal)
practices have likely impeded the implementation of AI
into clinical routines. Although these issues are well
known, the quality of neuroimaging-based AI studies in
PD has not yet been systematically analyzed.
Therefore, the aims of this systematic review were

threefold: (1) to compile a comprehensive overview of
AI applications based on neuroimaging in PD, (2) to
evaluate the quality of existing AI research studies using
minimal quality criteria (MQC), and (3) to suggest
actionable recommendations to enhance the quality of
medical research utilizing AI.

Methods

All decisions were performed by two independent
raters; in cases of disagreement consensus was reached
by discussion. This review was not registered.

PubMed Search
A PubMed search was conducted on January 1,

2024, with the search term shown in Figure 1 (full sea-
rch term available in the Supplementary Materials,
M1), yielding 810 articles. The search term was deliber-
ately broad to capture an inclusive range of literature.
We established the following exclusion criteria based
on consultations with experts in the fields of
PD/neurology (T.E.) and AI (E.D.): articles had to be
original research articles (eg, no reviews or case
reports), written in English, and not be retracted. More-
over, the study had to be done in humans, and PD had
to be a stand-alone diagnosis (ie, PD could not be
grouped with other diseases as “parkinsonian
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syndromes”). Similarly, neuroimaging had to be the pri-
mary input modality for the AI model, which needed
to adhere to our definition of AI and serve a clinically

relevant research aim. Consequently, studies on AI-
based preprocessing or symptom classification and
those lacking a defined outcome were excluded.

FIG. 1. Visualization of PubMed search term and the respective exclusion criteria for current systematic review. Top: the search term incorporated three
main domains with the respective possible expressions: (1) the clinical condition of interest (Parkinson’s disease [PD]), (2) the techniques of interest
(artificial intelligence [AI]), and (3) the neuroimaging modality (eg, MRI [magnetic resonance imaging]). Bottom: exclusion criteria and number of studies
failing the criteria. [Color figure can be viewed at wileyonlinelibrary.com]

2132 Movement Disorders, Vol. 39, No. 12, 2024

D Z I A L A S E T A L

http://wileyonlinelibrary.com


Categorization of Research
According to their aims, papers were categorized into

diagnosis, prognosis, and intervention, with some
papers fitting into multiple categories.
The first category was diagnosis, which was further

subdivided into six subcategories:

1. Classification of PD versus healthy controls (HC, ie,
a cohort without neurological impairment)

2. Classification of PD versus APS (where PD was a
distinct group)

3. Identification of PD subtypes (eg, clinically
established subtypes like tremor dominant or new
biological PD subtypes; biological subtypes needed
to be related to clinically relevant explanatory vari-
ables like genetic variants)

4. Disease staging and symptom severity estimation
5. Classification of cognitive impairment
6. Classification of freezing of gait (FOG)

The second category was prognosis. Four subcate-
gories were defined:

1. Prediction of conversion to PD (ie, from prodromal
to clinical PD)/monitoring of PD (ie, changes from
clinical to biomarker-confirmed diagnosis)

2. Prediction of disease and symptom severity
3. Prediction of symptom occurrence
4. Conversion to PD dementia

The third category was therapeutic interventions.
Two subcategories were formed:

1. Drug therapy
2. Deep brain stimulation (DBS)

MQC
We defined MQC and applied them to all included

papers. The criteria were based on commonly applied
evaluation methods to assess medical AI approaches
and cover validity of methods at the implementation
level (MQC 1–3) and diligence of reporting at the inter-
pretation level (MQC 4 and 5):

1. Train/test split: data were split into separate cohorts
for training and evaluating the model. This criterion
was fulfilled if (at least) a training and a test set
existed, or if cross-validation was applied. This crite-
rion did not apply to unsupervised algorithms.

2. No data leakage: no information from the test set
or target variable was available to train the algo-
rithm or transform the training data (eg, this crite-
rion was not passed when feature selection was
based on the whole dataset rather than only on
training data).16-18

3. Minimal model complexity: the number of features
had to be smaller than that of individuals, or

samples included in the training set.19,20 This crite-
rion did not apply to deep learning–based models.

4. Generalizability: test or average cross-validation per-
formance was reported to infer model performance
on unseen data,16 without selective reporting of
favorable results. This criterion did not apply to
unsupervised algorithms.

5. Indication of biological plausibility: outlining how
strongly features contributed to the model’s perfor-
mance to ensure that these features can be inter-
preted in a biologically meaningful context.20

MQC could be rated as “passed” (✓), “failed” (O),
“not applicable” (NA), or “unclear” (?). Unclear indi-
cated that the raters could not rate the MQC due to the
paper lacking adequate information. MQC were evalu-
ated only for algorithms specific to the research aim of
the respective study. The full MQC details are pres-
ented in the Supplementary Materials (section M3).

Meta-Data
Next to assessing the quality of included studies, we

also recorded the aim (ie, outcome), modality, best-
performing model, most effective features, sample size,
and overall performance of each study’s best model. For
comparability, we reported accuracy (the most common
metric), where available, and otherwise area under the
curve (AUC) for classification; and r, r2, or the mean
absolute error (MAE) for regression approaches. If
cross-validation and test results were available,
according to best practices, we reported the test perfor-
mance of the model that performed best during cross-
validation. Although reporting of performance on exter-
nal test sets demonstrates generalizability, only a few
studies did so. Therefore, we reported performance on
test (ie, validation data derived from the same cohort as
the training data) and external test set (ie, additional val-
idation data derived from a different cohort than the
training data) when available. For comparability, we
specifically noted usage of Parkinson’s Progression
Markers Initiative (PPMI) data.

Statistical Analysis
Statistical analyses were conducted per study (ie, each

unique digital object identifier, n = 244), per sub-
category entry (ie, counting a study allocated to two
subcategories as two unique subcategory entries,
n = 284), or per study aim (ie, counting each of a
study’s aims within or across subcategories, n = 327).
For an example, see Supplementary Materials, section
M4. Within the “classification of PD vs. HC” sub-
category, we analyzed whether model accuracy was dif-
ferent between model types or modalities using a t test
weighted by sample size (at the level of study aims).
Only studies reporting an accuracy were included in
this analysis.
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To assess the methodological quality of studies, we
evaluated the percentage of studies meeting MQC at
the subcategory level (the same study never differed in
MQC across study aims within one category). To assess
whether recency or journal quality influences MQC
adherence, we assessed frequencies of MQC adherence
by year and impact factors, respectively, across sub-
category entries. Impact factors were retrieved via
Clarivate’s Journal Citation Reports (https://jcr.clarivate.
com/jcr/) for the publication year and arranged into qua-
ntiles. Finally, we examined which MQC indicate over-
fitting by comparing the accuracies of study aims (noting
that accuracies might vary across multiple aims within the
same subcategory) that passed versus those that did not
pass each implementation-level MQC (MQC 1–3). This
comparison was made using a 1-tailed t test (test:
“failed”/“unclear” > “yes”).

Bias Assessment
Our bias assessment strategy comprehensively

addressed three critical dimensions: comparability of
included studies, generalizability of results, and repro-
ducibility of findings.
First, when retrieved studies were screened, we

included only studies with a clearly defined AI method,
with neuroimaging features, in a distinct cohort of clini-
cally diagnosed PD patients, to address clinically rele-
vant diagnostic, prognostic, or interventional aims.
Whereas studies without neuroimaging features were
excluded, those that complemented neuroimaging with
other clinical features were not excluded. Second, we
investigated the generalizability of study results by
applying defined MQC, as described in the “PD- versus
HC-Specific Results” section, and by recording sample
sizes. We expanded the investigation of generalizability
beyond our five MQC by documenting metrics (bal-
anced accuracy or sensitivity + specificity) or practices

(eg, subsampling) appropriate for handling imbalanced
data.21 We assessed whether external test sets were
used for validation and analyzed accuracy drops
between test and external test sets using a paired t test.
Finally, reproducibility with respect to study setup was
scrutinized, including positron emission tomography
(PET) tracer and scanner type, magnetic resonance
imaging (MRI) scanner type, field strength, sequence,
and electrode system and recorder type for electroen-
cephalography (EEG) and magnetoencephalography
(MEG). In the cases of functional imaging, information
regarding activity (ie, resting or task) and eye status (ie,
eyes open or closed) was required.

Results
Identification of Studies for Current Review
We included 244 of the initially retrieved 810 studies in

the current systematic review (Fig. 1). Most commonly,
we excluded articles that were not original (n = 108), did
not focus on PD/include PD as a separate entity
(n = 118), or did not use AI methodology (n = 147).

Description of the Categorization and Content
of Studies

A total of 86% of studies reported at least one diag-
nostic aim, and 8% and 9% reported a prognostic and
an interventional aim, respectively. In total, 284 papers
were allocated to appropriate subcategories (several
subcategories per study were possible). PD versus HC
was the most prominent subcategory, with 54%
(n = 131) of studies assigned to this aim, followed by
PD versus APS (25% of studies, n = 60). Much fewer
studies were categorized as diagnostic, prognostic, or
interventional (<8% of studies per subcategory, n ≤ 18;
Fig. 2). All studies in the individual subcategories,

FIG. 2. Quantity of studies categorized under diagnosis, prognosis, and intervention, including subcategories. Some studies had multiple aims and
were thus assorted to several subcategories. APS, atypical parkinsonian syndromes; HC, healthy control; PD, parkinson’s disease [Color figure can be
viewed at wileyonlinelibrary.com]
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including outcomes, implementation details, and perfor-
mance, along with the MQC ratings can be accessed in
the Supplementary Materials, Tables R3–R14 (diagnosis:
R3–R8, prognosis: R9–R12, intervention: R13–R14). The
most frequently used model types were support vector
machines (SVMs, 46% of studies, n = 131), con-
volutional neural networks (CNNs, 17%, n = 47), and
ensemble learning (14%, n = 39). 88% (n = 250) of sub-
category entries used unimodal, and 12% (n = 34) used
multimodal neuroimaging data as input.

Diagnosis

Studies categorized under “classification of PD versus
HC” achieved accuracies of up to 100%,22-29 which is
further discussed in section "PD- versus HC-Specific
Results". The subcategory “classification of PD versus
APS” included mainly binary approaches (67%), aiming
to differentiate PD from specific or multiple combined
other APS. In a comprehensive study, Huppertz et al
demonstrated that PD can be distinguished not only from
individual APS (multiple systems atrophy-cerebellar type,
multiple systems atrophy-parkinsonian type, progressive
supranuclear palsy-richardson syndrome) dichotomously
(balanced accuracy ≥85%) but also in a multiclass para-
digm (all class accuracies ≥75%).30 Another study uti-
lized an ensemble of probabilistic binary classifiers to
build a multiclass paradigm, which successfully distin-
guished between PD and APS forms (accuracy = 88%–

94%).31 Studies labeled as “identification of PD sub-
types” applied either supervised methods to classify
known clinical phenotypes of PD (eg, postural/gait
vs. tremor dominant)32 or unsupervised methods to iden-
tify new subtypes associated with the clinical characteris-
tics of PD.33 Moreover, multiple studies demonstrated
the potential of using AI for “disease staging and symp-
tom severity estimation,” with accuracies of up to 99%
for classifying different stages (Hoehn & Yahr)34 and
correlation coefficients of up to 0.75 between true and
estimated current symptom severity.35 In the “classifica-
tion of cognitive impairment” subcategory, studies
showed that clinical stages of cognitive impairment can
be classified with high accuracy (accuracy = 92%–

100%),34,36-39 and severity of global cognitive impair-
ment (Mini-Mental State Examination) can be estimated
(r = 0.55).40 Finally, studies demonstrated the potential
of using AI on EEG data for real-time “classification of
freezing of gait” with accuracies of up to 86%.41,42 In
summary, neuroimaging-based AI methods accurately
captured different clinical aspects and may support differ-
ential diagnosis, disease subtyping, and staging in PD.

Prognosis

Two studies categorized under “conversion to
PD/monitoring of PD” outlined that [123I]-FP-CIT
SPECT scans may contain information to determine if

subjects without evidence of dopaminergic deficit
(SWEDD) will be recategorized to biomarker-confirmed
PD in the future.43,44 Moreover, CNNs based on [18F]-
FDG-PET may predict whether individuals with rapid
eye movement behavioral disorder (RBD) will progress
to PD with moderate accuracy (AUC = 72%).45 Simi-
larly, multiple studies labeled with “prediction of disease
and symptom severity” predicted either motor symptom
progression after 4 years (UPDRS-III decline, MAE
≤4.7)46,47 or overall disease progression after 3 years
(Hoehn & Yahr stages, accuracy = 84%).48 Addition-
ally, five studies investigated “prediction of symptom
occurrence.” Three studies predicted (accuracy = 73%–

77%) the occurrence of FOG within 5 seconds based on
EEG.49-51 Prediction into the more distant future was
achieved for the development of FOG52 or RBD.53

Finally, the development of mild cognitive impairment
(accuracy = 87%)54 or the conversion from mild cogni-
tive impairment to dementia (accuracy = 74%55/
AUC = 88%56) was anticipated using imaging in the
“prediction of cognitive decline” subcategory. To sum-
marize, neuroimaging-based AI anticipated short- and
long-term symptom and disease development, illustrating
great potential for prognosis and intervention.

Intervention

Studies in the subcategory “drug therapy” used
neuroimaging-based AI models to identify characteristic
changes in brain activity (EEG/MEG) in response to
dopaminergic treatment,25,57-60 to classify or predict the
occurrence of levodopa (L-dopa)–induced dyskinesias,61-63

or to classify or predict motor improvement from L-dopa
intake.33,64-67 Similarly, UPDRS-III improvement after
“deep brain stimulation” was highly accurately classi-
fied68,69 or even predicted from preoperative data70 in
several studies.70,71 Notably, SVM based on preoperative
T1-weighted MRI and demographic data predicted
motor, cognitive, and behavioral improvements after
DBS.72 Moreover, AI showed potential for the localiza-
tion of stimulation sites from EEG,73 functional MRI
(fMRI),74 or microelectrode recordings.75

PD- versus HC-Specific Results
Because PD versus HC was the most studied aim, we

considered all 113 studies reporting accuracy in this
subcategory to further explore which models and
modalities best captured PD-specific brain changes. Fre-
quently used model types were SVMs (41% of studies),
CNN (24%), ensemble learning (14%), and logistic
regression (7%), and their mean sample sizes were
155, 466, 213, and 204 individuals, respectively.
Weighted by sample size, ensemble learning methods
(μweighted = 94.1%, SDweighted = 4.9%) outperformed
other methods in the classification of PD, as assessed
using weighted t tests with Bonferroni correction
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(Fig. 3A; Supplementary Materials Figure R1 and
Table R1). The most frequently used modalities were
T1-weighted MRI (20% of studies), EEG (17%),

[123I]-FP-CIT SPECT (13%), and resting-state fMRI
(10%), with average sample sizes of 354, 73, 662,
and 102 individuals, respectively. Studies using

FIG. 3. Legend on next page.
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[123I]-FP-CIT SPECT (μweighted = 97.4%, SD = 2.1%)
were significantly more accurate compared to any other
modality after Bonferroni correction (all P < 0.005;
Fig. 3B; Supplementary Materials Figure R2 and
Table S2).
Differences in accuracy between other modalities were

not significant. However, most (15 of 17) [123I]-FP-CIT
studies used PPMI data, where (ab)normality is among
the inclusion/exclusion criteria for both groups, leading to
a strong circularity. The remaining two studies used clini-
cally diagnosed PD patients without biomarker confirma-
tion and still yielded accuracies of 96%76 and 100%,77

respectively. Supplementary Materials section R1 exhibits
the performance of all model or modality types, that is,
including those summarized as “other.”

MQC Results
Only 20% of subcategory entries passed all MQC,

with MQC 2 (no data leakage, 49% passed), MQC
5 (biological plausibility, 57%), and MQC 3 (minimal
model complexity, 57%) passed least frequently
(Fig. 4A). MQC 1 and 4 were passed by 95% and 92%
of subcategory entries, respectively. Failure to pass
implementation-level MQC (MQC 1–3, 33% passed)
was more frequently observed compared to failure to
pass interpretation-level MQC (MQC 4 and 5, 53%
passed). Most subcategory entries passed between three
and four MQC (Fig. 4B).
MQC 2 frequently failed due to test data influencing

feature selection, for example, because feature selection
was performed prior to splitting the data into training
and test sets, prior to cross-validation, or as recursive
feature elimination in the absence of a test set. In stud-
ies where multiple samples were acquired per subject,
such as EEG and fMRI, MQC 2 was also often failed
when authors did not report whether data of the same
subject was exclusively allocated to the training or test
set. MQC 3 was failed in numerous cases due to incom-
plete descriptions of feature extraction/selection
workflows. MQC 5 was failed in many cases where
authors listed the selected features before model training
but did not explain their importance to the final model
performance (eg, through feature weights or permutation
testing).

Investigating study quality over time, we observed that
there was no increase in the percentage of studies passing
all MQC per year, whereas there was a steep increase in
the quantity of studies that were published (Fig. 4B). We
also assessed whether MQC adherence covaried with the
general level of quality control, as indicated by the
impact factor of the journals. This analysis showed that,
whereas there was a trend toward more studies passing
MQC with higher-impact factors, MQC adherence was
generally low across bins (Fig. 4C). Finally, we investi-
gated whether model accuracy was significantly different
between study aims passing implementation-level MQC.
N = 225 study aims reported an accuracy of their
results. We found that studies with data leakage yielded
significantly higher accuracies compared to studies where
no data leakage was identified (87.5 � 10.9%
vs. 84.6 � 12.1%), indicating data leakage was a pri-
mary source of overfitting (t = �1.8, P = 0.035
[1 tailed], not significant after correction for multiple
comparison [α = 0.017]). Other differences were not
significant.

Bias Assessment beyond MQC
A total of 244 studies were deemed eligible for bias

assessment. Importantly, we excluded 11 studies as they
did not specify any research aim. Of the included stud-
ies, sample sizes ranged from 4 to 3188, with mean
sample sizes for CNN, SVM, and ensemble learning
approaches being 445, 128, and 246, respectively.
Generalizability was compromised due to few studies

passing our MQC and because some classification aims
(16%, n = 49) did not address data imbalance. Addi-
tionally, only 7% (n = 22) of aims validated their find-
ings in external test sets. Unsurprisingly, mean
performance in external test sets was significantly lower
than that in test sets from the original dataset (mean
difference = 5%, t = 3.1, P < 0.01).
Regarding reproducibility, several studies lacked

essential details; 46% (n = 32) of PET/SPECT, 20%
(n = 23) of structural MRI, and 6% (n = 2) of fMRI
did not indicate the scanner type, of which 91%, 87%,
and 100% used PPMI data, respectively. The tracer
was not specified in 6% (n = 4 [75%, n = 3 PPMI]) of
PET/SPECT studies. Field strength and sequences were

FIG. 3. Accuracy of PD (Parkinson’s disease) versus HC (healthy control) classification studies by (A) model type and (B) modality. (A) Accuracy of stud-
ies, sorted by model type (color) and sample size (size). Model types are sorted in alphabetical order. Studies of the same model type were also sum-
marized to a weighted mean and weighted standard deviation, with sample size serving as weights (indicated by vertical lines). *Ensemble models
performed significantly better (surviving Bonferroni correction, P < 0.005) than the remaining model types. (B) Accuracy of studies, sorted by modality
type (color) and sample size (size, same as in A). Modalities are sorted in alphabetical order. Studies of the same modality were also summarized to a
weighted mean and weighted standard deviation, with sample size serving as weights. *Significant differences (surviving Bonferroni correction, 10 com-
parisons - P < 0.005) were detected between accuracies obtained using [123I]-FP-CIT SPECT and any other modality using weighted t tests. Notes for
(A) and (B): sample sizes ranged from 21 to 2077 and were log transformed for plotting. Legend shows true (nontransformed) sample sizes. Only stud-
ies that reported accuracy were considered. If ranges were reported by studies, this figure shows the mean accuracy of these ranges. Only four most
frequent modalities/models are shown explicitly, whereas the remaining ones were grouped as “others.” Studies of all model and modality types
(including those summarized as “other”) are shown in Supplementary Materials Figures 1 and 2. CNN, convolutional neural network; SVM, support vec-
tor machine.
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not provided in 16% (n = 18) and 19% (n = 21) of
structural, as well as 6% (n = 2) and 9% (n = 3)
of fMRI studies. For fMRI studies, 9% (n = 3) lacked
activity status, and 44% (n = 14) did not report eye
status. Similarly, these details were missing in 5%
(n = 2) and 21% (n = 8) of EEG and MEG studies,
respectively. Additionally, 21% (n = 8) of EEG/MEG
studies lacked information about the electrode system.

Discussion

Recent years have seen rapid development and
increased accessibility of AI methods, leading to their
widespread application in neuroimaging research. In this
review, we systematically summarized and rated the qual-
ity of research papers using AI methods on neuroimaging
data in PD, specifically focusing on diagnosis, prognosis,
and therapeutic intervention outcomes. 54% of studies
were concerned with the differentiation of PD and HC,
whereas differential diagnosis and especially prognostic or
intervention applications were rarely investigated. To the
best of our knowledge, we are the first to assess the qual-
ity of such studies, revealing that the majority of studies—
an alarming 80%—failed to pass all common and mini-
mal quality standards of AI.

Methodology Misalignment and Clinical Impact
of PD-AI Research

With more than 50% of studies covering the “issue”
of differentiating PD from HC, the potential of AI and

its actual fields of application appears to be strongly
misaligned. Multiple studies claimed that PD versus HC
classification could support the early diagnosis of PD,
that is, the early identification of PD-related brain
changes in asymptomatic individuals. However, PD
patients included in such studies were often already in
advanced stages and showed clinically overt symptoms.
To evaluate the effectiveness of PD versus HC models
in identifying asymptomatic individuals at risk for PD,
clinical follow-up for diagnosis verification is necessary.
However, none of these studies included longitudinal
assessments. The clinical utility of papers in this cate-
gory is therefore severely limited. In our analyses, we
showed that ensemble learning as a model and [123I]-
FP-CIT SPECT as modality achieve almost perfect accu-
racy. Importantly, when stratification into PD or HC
groups is already supported using [123I]-FP-CIT
SPECT, as is the case in the PPMI study (https://www.
ppmi-info.org/study-design/study-cohorts#overview/),
their distinction based on the same modality is highly
circular, and clinical relevance is not granted. More-
over, HCs in studies hardly represent a population
likely to consult a neurologist for a potential diagnosis
of PD.78 Among individuals presenting to movement
disorders clinics, major challenges rely on correct diag-
nosis of a particular parkinsonian syndrome, that is,
differential diagnosis,4,5 personalized assessments/
subtyping and prognostic assessments,79,80 or the pre-
diction of therapeutic efficiency.81 Unfortunately, such
clinically relevant and more challenging aims were rare
in the current literature. The potential of AI for

FIG. 4. Minimal quality criteria (MQC) analysis. (A) Percentage of studies passing individual or all MQC. (B) Violin plot of the accumulated number of
MQC passed by each individual study. (C) Number of total studies published (gray shaded area) and percentage of studies passing all MQC (red line)
over the years. (D) Percentage of studies passing all MQC by impact factor. (E) Differences in accuracy between studies passing or failing individual or
all implementation-level MQC. [Color figure can be viewed at wileyonlinelibrary.com]
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multimodal integration and pattern recognition could
be more strongly exploited for these tasks. PD is known
to affect various levels of brain organization82,83;
thus, unimodal neuroimaging information, used by
the majority of studies assessed here, may restrict
information content on individual patients compared
to multimodal assessment.

Current State of Quality in PD-AI Research
Beyond a descriptive representation, we performed

quality assessments of all included studies in two areas,
that is, methodological soundness at the implementa-
tion level and diligence of reporting at the interpreta-
tion level. At the implementation level, we
demonstrated that studies frequently committed data
leakage or failed to provide sufficient evidence of avoid-
ance thereof (MQC 2). Moreover, numerous studies
applied overly complex models or lacked a clear
description of the number of features and participants
used in their workflows (MQC 3). Although advanced
techniques such as partial least squares regression have
been proposed to handle high dimensionality in small
training sets more efficiently than conventional AI algo-
rithms, this remains a topic of debate.84 Importantly, the
application of more advanced methods may only partially
resolve the issue. Therefore, minimal model complexity
remains an important aspect when model validity is
assessed. Studies passing implementation-level MQC
exhibited significantly lower accuracies than studies with
(potential) data leakage. This finding underscores the
assumption that data leakage induces overfitting; ie, it
artificially inflates performance.17,18 A major source of
data leakage was the allocation of multiple samples per
subject to both the training and test set. Indeed, a previ-
ous study showed that this practice can cause an over-
estimation of accuracy by about 50% in classifying PD
versus HC.18 Including overfitted AI models in clinical
practice, thus, could decrease rather than increase diag-
nostic accuracy, as clinicians may not be aware of the
erroneous behavior and adapt their diagnosis based on
the model output85—a process known as “automation
bias.” Beyond within-study data leakage, the frequent
usage of big databases such as PPMI also increases the
risk for “cross-literature data leakage”; that is, that feature
selection for studies using some database is done based on
prior literature employing partly the same data. However,
this latter issue pertains to research in general and may
even be less common in AI studies, where feature selection
tends to be data rather than literature driven.
At the interpretation level, studies often did not

report feature importance, thereby preventing the
assessment of biological plausibility. Especially in clini-
cal settings, it is important to understand and interpret
the decision-making process of models to confidently
integrate AI-generated information.85 Moreover,

feature importance is critical to form a conceptual
bridge between AI and neuroscience, allowing
neuroimaging-based models to deepen mechanistic
insights.20,86

Recommendations for Future Research
Based on the issues described earlier, we could identify

a tremendous gap between the clinical needs of PD man-
agement and the use of scientific resources in the realm
of neuroimaging-based AI research. This gap pertains to
both study aims and quality standards. Therefore, we
recommend fostering interdisciplinary collaboration
between clinicians and engineers, wherein clinicians
should be consulted to identify relevant research
questions, and engineers should ensure correct and
high-quality solutions to these needs. Admittedly, a com-
prehensive assessment of quality standards in AI-based
studies requires considerable specific expertise even when
provided with a catalog like the MQC we put forward
here. It may still be surprising that even high-impact
journals did not predominantly publish high-quality AI
studies. Therefore, journal editorial boards should also
promote awareness on the importance of AI quality stan-
dards during the review process. For example, reviewers
could be prompted to indicate if they recommend an
additional AI expert review.
We demonstrated that a fifth of studies did not

account for data imbalance and only a minority of
studies used external test sets. Whereas our MQC
aimed to investigate the bare minimum of AI quality
standards, AI applications aimed to translate into clini-
cal tools are critical to account for both these issues to
prove the generalizability of the results. One should
account for data imbalance, for example, by
subsampling, ie, reducing the number of individuals
from one class to that of the smallest class, or by
reporting adequate metrics (eg, balanced accuracy, F1
score, or area under the precision–recall curve). Exter-
nal test sets, that is, test sets acquired at a different site
with potentially different scanning protocols or diag-
nostic criteria, are of central importance to demonstrate
the generalizability. In cases where external test sets are
unavailable, permutation testing provides an alternative
to test whether a model is overfitted.87,88 Some train–
test division procedures are more prone to overestima-
tions of accuracy than others. It was proposed to prefer
nested cross-validation or train–test split without cross-
validation, especially in small datasets (n < 1000).16

Moreover, instead of a simple train–test split,
multiple splits (training/validation/test) are preferable.89

Generalizability is also constrained by different
preprocessing/feature extraction techniques, which are
often extensive and not well described. End-to-end AI
solutions, wherein raw neuroimages are fed to AI
models, would circumvent this source of bias. Finally,
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we recommend that analysis pipelines should be graphi-
cally visualized in AI publications, starting with feature
selection, including train–test splitting or cross-
validation, and ending with the final outcome. This
practice has immensely facilitated understanding differ-
ent pipelines and assessing MQC adherence in our
investigations.

Limitations
Some limitations of the current systematic review

should be acknowledged. Even though we used a broad
search term, we might have overlooked some new,
highly specific neuroimaging-based AI applications in
this rapidly evolving field. Recent developments enabled
non-imaging PD biomarkers, such as from bodily fluids.
Although neuroimaging offers the advantage of spatial
information of abnormality, it may be worthwhile for
future studies to extend the input modality (imaging or
fluid biomarkers) depending on availability in clinical
practice and the specific research objective. Although
we provide a catalog of quality indicators, we recognize
that the evaluation of MQC requires expertise, which
may not be ubiquitously available. Given the extensive
evaluation procedure, there is also a time lag between
the conducted analyses and publication. Nonetheless,
we have shown that quality remains low even in the
most recent literature. Finally, our criteria are a first
step and cover basic methodological requirements for
AI studies rather than the whole picture. To ensure
high-quality research in the dynamic field of
neuroimaging-based AI research, there may soon be a
need to update and complement such criteria.

Conclusion

In conclusion, we showed that there is a wide array
of possible applications of neuroimaging-based AI for
PD, yet current resources are often used on tasks with
questionable clinical relevance. It thus seems critical to
enhance communication between engineers and clini-
cians. Moreover, in this first-of-its-kind meta-analysis,
we demonstrated that the quality of neuroimaging-
based AI studies in PD is alarmingly low, especially at
the implementation level. We therefore recommend to
strengthen quality control of AI studies before they are
published, optimally both during study design and at
the review stage. By fostering high-quality, interdisci-
plinary collaborations in AI research, more reliable,
interpretable, and clinically relevant neuroimaging tools
can ultimately advance clinical management of PD.
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