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A B S T R A C T   

Background: Extracardiac conduit Fontan procedure (ECFP) employing a Gore-Tex conduit has been widely used 
for patients with single ventricle physiology; however, the long-term status of the conduit is unknown. We 
investigated the changes in a Gore-Tex conduit after ECFP and the factors associated with its narrowing. 
Methods: We conducted a retrospective analysis of 86 patients who underwent ECFP between January 1995 and 
December 2008 and had cardiac computed tomography (CT) during the follow-up period. 
Results: The median patient age at ECFP was 2.8 years (range 1.6–9.7), and a cardiac CT was obtained at 13.1 ±
3.4 years later. The minimum conduit area decreased by approximately two-thirds of the original due to calci-
fication, pseudointimal hyperplasia, thrombus, and luminal irregularity. The normalized minimum conduit area 
was influenced by the time interval from ECFP and normalized original conduit area at ECFP. An oversized 
conduit was associated with a narrowing of both its sides and a high frequency of pseudointimal hyperplasia or 
mural thrombus. The ratio of minimum conduit-to-inferior vena cava areas was lower in patients with chronic 
liver disease than in those with a normal liver. The maximum percent stenosis of the conduit correlated with 
oxygen pulse and heart rate during peak exercise. 
Conclusions: Using a larger conduit at ECFP resulted in a larger minimum conduit area at follow-up. However, 
oversizing requires careful monitoring for stenosis near anastomotic sites and the occurrence of pseudointimal 
hyperplasia or thrombus.   

1. Introduction 

The extracardiac conduit Fontan procedure (ECFP) is the most 
frequently used surgical method for patients with single ventricle 
physiology [1,2]. Due to its structural advantages, energy loss and 
incidence of late-onset atrial arrhythmia is low compared with atrio-
pulmonary and lateral tunnel Fontan procedure [3–5]. However, as the 
conduit is a synthetic material with no growth potential, there are 
concerns regarding its inherent thrombogenicity and relatively small 
diameter for body growth. Significant conduit obstruction sometimes 
occurs, leading to chronic ascites and exercise intolerance [6–9]. Car-
diovascular intervention or surgery is necessary to alleviate this 
obstruction [6,9–11]. Nonetheless, the temporal changes in the conduit 

after ECFP and its associated factors remain unknown. 
Cardiac computed tomography (CT) has high spatial resolution and 

an extremely short scanning time. It can provide an accurate assessment 
of cardiac and extracardiac structures in patients who are unable to 
undergo cardiac magnetic resonance (MR) imaging or have MR- 
incompatible devices or metallic implants [12–15]. Advances in CT 
technology with low radiation dose protocol can reduce radiation 
exposure for patients with Fontan circulation. As homogenous opacifi-
cation of extracardiac conduit can be achieved with delayed scanning or 
dual injection protocol, cardiac CT is useful for evaluating changes in the 
conduit after ECFP [16,17]. 

Therefore, our objective was to assess patients who have undergone 
cardiac CT after ECFP, examining changes in conduit shape, identifying 
factors influencing conduit narrowing, and exploring association 
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between conduit changes and patients’ clinical status. 

2. Methods 

2.1. Patients 

A total of 135 patients who underwent the ECFP at our institution 
between January 1, 1995, and December 31, 2008, were retrospectively 
reviewed, and patients who underwent ECFP with a Gore-Tex conduit 
and cardiac CT until December 31, 2019, were included. After excluding 
patients without cardiac CT data suitable to analyze the conduit, 86 
patients were included (Supplementary Fig. 1). The cardiac CT images 
acquired before stent implantation or conduit replacement were 
analyzed in three cases: one patient who had percutaneous transcatheter 
stent implantation and two patients who underwent surgical conduit 
replacement. 

Demographic data, such as sex, primary cardiac diagnosis, type of 
situs, cardiac position, ventricular dominance, presence of apicocaval 
juxtaposition, and presence of bilateral bidirectional cavopulmonary 
connection, were obtained from patients’ medical records. Perioperative 
details, including age, weight, body surface area, conduit diameter, 
creation of fenestration, and type of concomitant surgeries, were 
collected. The conduit was considered oversized when its diameter was 
at least 30% larger than the estimated inferior vena cava (IVC) diameter 
based on a regression equation against weight, noted in Steinberg et al. 
[18]. Age, weight, body surface area, use of antithrombotic drugs, and 
elapsed time since ECFP at the time of cardiac CT were also identified. 
The study protocol conforms to the ethical guidelines of the 1975 
Declaration of Helsinki as reflected in a priori approval by the Institu-
tional Review Board of Seoul National University Hospital (IRB number: 
2108-019-1241). The requirement for informed consent was waived due 
to the retrospective design. 

2.2. Cardiac CT 

Cardiac CT was performed using a dual-source CT scanner or mul-
tidetector CT scanner (SOMATOM Definition Flash, Siemens Healthi-
neers, Erlangen, Germany [n = 73]; SOMATOM Definition, Siemens 
Healthineers [n = 11]; Philips iCT, Philips Healthcare, Amsterdam, 
Netherlands [n = 1]; or LightSpeed Ultra, General Electric Healthcare, 
Chicago, IL, USA [n = 1]) with following scanning parameters: slice 
thickness, 0.75− 1.25 mm; increment, 0.5− 1.0 mm; tube voltage, 
80− 120 kV (peak); and gantry rotation time, 0.285− 0.886 s. We 
analyzed the conduit by using a delayed acquisition of cardiac CT be-
tween 2 and 4 min to achieve a homogeneous contrast enhancement of 
the conduit and IVC, aiming to reduce streaming artifacts. The param-
eters of the conduit and IVC were measured using a picture-archiving 
and communication system viewer (INFINITT PiViewSTAR, INFINITT 
Healthcare, Seoul, Republic of Korea) and available three-dimensional 
software (Xelis, INFINITT Healthcare). 

The smallest cross-sectional area of the conduit and cross-sectional 
area of IVC were measured. The minimum conduit area was normal-
ized to the body surface area. The maximum percent stenosis was 
calculated as a decrease in the minimum conduit area compared to the 

original conduit area. The location of the minimum conduit area was 
divided into upper, middle, and lower thirds. The aspect ratio quantified 
the deviation of an ellipse from a perfect circle; it was calculated as the 
ratio of minor axis to major axis diameter at the minimum conduit area. 
This calculation helped to assess the degree of conduit compression. 
Tortuosity, defined as a ratio of the total length of the conduit to the 
linear distance between the conduit extremes, was also calculated 
(Supplementary Fig. 2). Finally, the presence of luminal irregularity, 
calcification, pseudointimal hyperplasia, or mural thrombus was 
assessed in the cross-sectional image with the minimum conduit area. 

2.3. Liver imaging studies 

The results of the liver imaging studies, performed at the nearest time 
within 2 years of the cardiac CT, were investigated. Based on liver im-
aging, such as liver ultrasound, CT, MR, and medical records, the pa-
tients were determined to have a normal liver, chronic liver disease 
(CLD), or hepatocellular carcinoma, according to a prior study by 
Nandwana et al. [19]. 

2.4. Cardiopulmonary exercise test 

The results of the cardiopulmonary exercise test (CPET), performed 
at the nearest time within 2 years of the cardiac CT, were investigated. 
CPET was carried out on treadmills or a cycle ergometer (General 
Electric T-2100, GE Healthcare, Chicago, IL, USA; VIAsprint 150P, 
Ergoline, Bitz, Germany). Expired gas was collected and analyzed using 
a metabolic cart (VMAX Encore 29, Carefusion, San Diego, CA, USA). 
The variables measured by the CPET, included for analysis, were peak 
oxygen consumption (VO2), peak ventilatory equivalent for carbon di-
oxide (VE/VCO2), oxygen pulse, resting and peak heart rate, resting and 
peak oxygen saturation, forced vital capacity, forced expiratory volume 
in 1 s, and maximal work. The tests with maximal effort, defined as a 
respiratory exchange ratio of 1.05 or higher, were included in the 
analysis. 

2.5. Statistical analysis 

Descriptive variables are presented as mean ± SD or median (range), 
depending on the normality of distribution. Categorical variables are 
presented as numbers and percentages. Chi-square test or Fisher exact 
test was performed for categorical variables. Student’s t-test, Man-
n–Whitney U test, one-way analysis of variance, Kruskal-Wallis test, 
rank analysis of covariance (ANCOVA), Pearson’s correlation analysis, 
or Spearman’s rank correlation analysis was performed for continuous 
variables where appropriate. Univariate and multivariable linear 
regression analyses were performed to determine the predictors of 
normalized minimum conduit area. P < 0.05 was considered statistically 
significant. Data manipulation and statistical analyses were performed 
using SPSS 25.0 (IBM Corp, Armonk, NY, USA). 

3. Results 

3.1. Baseline characteristics 

The demographic and clinical data are depicted in Table 1. A total of 
86 patients with extracardiac Gore-Tex conduit were followed up for 
15.4 ± 2.8 years. A quarter of the patients were female, and the most 
common cardiac diagnosis was complete atrioventricular septal defect. 
The median patient age at ECFP was 2.8 years (range 1.6–9.7), and a 
cardiac CT were performed at 13.1 ± 3.4 years after ECFP. 

3.2. Cardiac CT 

The median minimum conduit area normalized for the body surface 
area was 126.3 (32.6–278.4) mm2/m2, and the minimum absolute 

Abbreviations list 

ECFP Extracardiac conduit Fontan procedure 
CT Computed tomography 
MR Magnetic resonance 
IVC Inferior vena cava 
CLD Chronic liver disease 
CPET Cardiopulmonary exercise test  
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conduit area decreased to approximately two-thirds of the original 
conduit area. The normalized minimum conduit area was correlated 
with the ratio of the minimum conduit-to-IVC areas (Rs = 0.708, p <
0.001), maximum percent stenosis (Rs = − 0.419, p < 0.001), and aspect 
ratio (Rs = − 0.295, p = 0.006) (Supplementary Fig. 3). Tortuosity was 
correlated with the aspect ratio (Rs = 0.380, p < 0.001), but not with the 
other parameters. The most prevalent location of the minimum conduit 
area was the middle third. The normalized original conduit area was 
smaller in the middle third group than in the other two groups (Sup-
plementary Table 1). Presence of calcification was the most common 

mechanism for the narrowing of the conduit area (64, 74.4%) (Supple-
mentary Fig. 4). 

Age at the time of ECFP in the 22–24 mm group was higher than that 
in the 16–18 mm (p < 0.001) and 20 mm groups (p = 0.037) (Supple-
mentary Table 2). The body surface area at ECFP in the 22–24 mm group 
was larger than that in the 16–18 mm group (p = 0.027). With a larger 
original conduit diameter, both the normalized original and normalized 
minimum conduit area at follow-up cardiac CT were larger (Fig. 1). 
There were no significant differences in the maximum percent stenosis 
and ratio of the minimum conduit-to-IVC areas among the 16–18 mm, 
20 mm, and 22–24 mm groups. 

Body weight at ECFP was lower in the oversized group than in the 
non-oversized group, although the age at ECFP was similar in both 
groups (Table 2). Both the normalized original and normalized mini-
mum conduit area at follow-up cardiac CT were larger in the oversized 
group than in the non-oversized group. The location of the minimum 
conduit area differed between the two groups; the most prevalent 
location was the lower third in the oversized group and the middle third 
in the non-oversized group. Although the frequency of luminal irregu-
larity and calcification did not differ between the two groups, pseu-
dointimal hyperplasia or mural thrombus were more common in the 
oversized group than in the non-oversized group (84.1% [37/44] vs. 
50.0% [21/42], p = 0.001). 

Results of the univariate and multivariable regression analyses for 
predictors of normalized minimum conduit area are shown in Table 3. 
Both the normalized original conduit area and the time interval between 
ECFP and cardiac CT were independent predictors of a normalized 
minimum conduit area. Cardiovascular anatomic variables, aspirin or 
warfarin use, and timing of ECFP were not associated with the 
normalized minimum conduit area. 

3.3. Association of the conduit with clinical status 

Liver imaging studies were performed in 74 patients within 2 years of 
the cardiac CT. Sixty-three patients were found to have radiologic 
findings of CLD, while 11 patients had normal findings. No patients were 
diagnosed with hepatocellular carcinoma. Patients with normal radio-
logical findings had a larger normalized minimum conduit area and a 
higher minimum conduit-to-IVC area ratio than patients with CLD 
(Supplementary Table 3). After rank ANCOVA with the time interval 
between ECFP and liver imaging studies, the ratio of the minimum 
conduit-to-IVC areas remained higher in patients with normal radiologic 
findings than in patients with CLD (p = 0.016). 

Among the 54 patients who completed a CPET, 43 achieved maximal 
effort (Supplementary Table 4). The parameters of the conduit were not 
correlated with peak VO2 or VE/VCO2. The maximum percent stenosis 
was correlated with oxygen pulse (%predicted) (Rs = − 0.315, p =
0.039) and peak heart rate (bpm) (Rs = 0.358, p = 0.018). The 
maximum conduit stenosis tended to be greater in the 27 patients with 
an oxygen pulse of <80% at peak exercise than in the 16 patients with 
≥80%; however, this was not statistically significant (36.7 [23.7–79.1] 
versus 29.9 [23.9–45.7], p = 0.053). 

4. Discussion 

This study demonstrated several findings regarding long-term 
change to the conduit after ECFP using cardiac CT. First, the minimum 
conduit cross-sectional area decreased to approximately two-thirds of 
the original conduit area by calcification, pseudointimal hyperplasia, 
thrombus, and luminal irregularity. Second, the normalized original 
conduit area and elapsed time after ECFP affected the normalized 
minimum conduit area during long-term follow-up. Third, an oversized 
conduit was associated with narrowing of upper and lower conduit sides 
and high frequency pseudointimal hyperplasia or mural thrombus. 
Fourth, several associations between conduit stenosis and chronic liver 
disease and exercise intolerance were demonstrated. 

Table 1 
Baseline characteristics, operative data, and conduit parameters.  

Variable Value 

Female 22 (25.6) 
Cardiac position 
Levocardia 69 (80.2) 
Mesocardia or Dextrocardia 17 (19.8) 
Cardiac situs 
Solitus 66 (76.7) 
Inversus 5 (5.8) 
Ambiguous 15 (17.5) 
Dominant ventricle 
Left ventricle 26 (30.2) 
Right ventricle 42 (48.8) 
Biventricle 18 (21.0) 
Apicocaval juxtaposition 25 (29.1) 
Primary cardiac diagnosis 
Complete atrioventricular septal defect 18 (20.9) 
Tricuspid atresia 12 (13.9) 
Double inlet right ventricle 10 (11.6) 
Mitral atresia 10 (11.6) 
Double inlet left ventricle 9 (10.5) 
Double outlet right ventricle 8 (9.3) 
Criss-cross heart 4 (4.7) 
Hypoplastic left heart syndrome 4 (4.7) 
Pulmonary atresia with intact ventricular septum 3 (3.5) 
Corrected transposition of the great arteries 2 (2.3) 
Other 6 (7.0) 
Operative data 
Age at Fontan procedure, year 2.8 (1.6–9.7) 
Weight at Fontan procedure, kg 13.7 (10.0–25.7) 
Body surface area at Fontan procedure, m2 0.59 (0.47–0.97) 
Bilateral bidirectional cavopulmonary connection 21 (24.4) 
Conduit diameter (area) 

16 mm (803.8 mm2) 4 (4.6) 
18 mm (1017.4 mm2) 16 (18.6) 
20 mm (1256.0 mm2) 41 (47.7) 
22 mm (1519.8 mm2) 24 (27.9) 
24 mm (1808.6 mm2) 1 (1.2) 

Normalized original conduit area, mm2/m2 540.3 (261.7–694.0) 
Creation of fenestration 28 (32.6) 
Diameter of fenestration, mm 4.0 (4.0–6.0) 
Concomitant surgeries 34 (39.5) 
Conduit parameters on cardiac CT 
Interval from Fontan procedure, year 13.1 ± 3.4 
Weight on cardiac CT, kg 55.2 ± 16.9 
Body surface area on cardiac CT, m2 1.61 (0.76–2.22) 
Minimum conduit area, mm2 201.8 ± 49.6 
Normalized minimum conduit area, mm2/m2 126.3 (32.6–278.4) 
Maximum percent stenosis, % 33.6 (6.9–79.1) 
Minimum conduit area/IVC, % 45.6 (10.8–95.2) 
Aspect ratio 1.43 (1.04–8.98) 
Tortuosity, % 104.5 (100.3–131.5) 
Location of the minimum conduit area 

Upper third 16 (18.6) 
Middle third 42 (48.8) 
Lower third 28 (32.6) 

Mechanism for narrowing of the conduit 
Luminal irregularity 20 (23.3) 
Calcification 64 (74.4) 
Pseudointimal hyperplasia or mural thrombus 58 (67.4) 

Data are expressed as mean ± standard deviation, median (range), or number 
(%). 
CT = computed tomography, IVC = inferior vena cava. 
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This study demonstrated that the minimum conduit cross-sectional 
area decreased to approximately two-thirds of the original conduit 
area, consistent with findings from previous studies [20,21]. Patel and 
colleagues reported a median percentage decrease in the minimum 
conduit cross-sectional area, as measured by cardiac MR or angiography, 
of 33% (IQR 25–41%) during a mean follow-up of 9.6 years [21]. In a 
study by Lee and colleagues, the mean percentage decrease in the 
mid-conduit cross-sectional area was 14.3% at an average of 36.1 
months after the Fontan procedure, with the limitation that the mea-
surement was not taken at its narrowest point [20]. The mechanisms 
underlying conduit stenosis is complex and not yet fully understood. 
Calcification, thrombus, pseudointimal hyperplasia, and luminal irreg-
ularity were observed at the minimum conduit area in this study. Since 
Gore-Tex is a prosthetic material, the likelihood of pseudointimal peel 

formation in the conduit has been reported [22]. Inherent thromboge-
nicity is an additional concern; the prevalence of silent thromboembo-
lism in the conduit was found to be 13% [23]. However, this study found 
no significant relationship between the thromboprophylaxis method and 

Fig. 1. Comparison of conduit parameters based on the original conduit diameter. 
(A) normalized minimum conduit area (B) maximum percent stenosis, and (C) ratio of minimum conduit-to-inferior vena cava areas. 

Table 2 
Comparison of conduit parameters between patients with oversized and non- 
oversized conduits.  

Variable Oversized (n =
44) 

Non-oversized (n 
= 42) 

p value 

Age at Fontan procedure, year 2.8 (1.6–5.8) 2.7 (1.8–9.7) 0.766 
Weight at Fontan procedure, 

kg 
13.0 (10.4–18.2) 14.1 (10.0–25.7) 0.010 

Body surface area at Fontan 
procedure, m2 

0.58 (0.49–0.73) 0.60 (0.47–0.97) 0.056 

Simple cardiac situs and 
position 

29 (65.9) 30(71.4) 0.581 

Apicocaval juxtaposition 13 (29.5) 12 (28.6) 0.921 
Bilateral bidirectional 

cavopulmonary connection 
12 (27.3) 9 (21.4) 0.528 

Normalized original conduit 
area, mm2/m2 

600.4 
(524.0–694.0) 

475.1 
(261.7–556.9) 

<0.001 

Interval from Fontan 
procedure, year 

13.0 ± 3.6 13.1 ± 3.2 0.0871 

Minimum conduit area, mm2 227.1 ± 38.2 175.2 ± 46.5 <0.001 
Normalized minimum conduit 

area, mm2/m2 
148.6 
(88.6–278.4) 

109.9 
(32.6–208.6) 

<0.001 

Maximum percent stenosis, % 34.5 (20.3–56.7) 33.1 (6.9–79.1) 0.809 
Minimum conduit area/IVC 

area, % 
47.7 (21.9–95.2) 41.0 (10.8–73.3) 0.010 

Aspect ratio 1.41 (1.04–2.30) 1.46 (1.11–8.98) 0.766 
Tortuosity, % 103.8 

(100.3–115.8) 
104.9 
(100.3–131.5) 

0.063 

Location of the minimum 
conduit area   

0.019 

Upper third 11 (25.0) 5 (11.9)  
Middle third 15 (34.1) 27 (64.3)  
Lower third 18 (40.9) 10 (23.8)  

Mechanism for narrowing of the conduit 
Luminal irregularity 11 (25.0) 9 (21.4) 0.695 
Calcification 32 (72.7) 32 (76.2) 0.713 
Pseudointimal hyperplasia 
or mural thrombus 

37 (84.1) 21 (50.0) 0.001 

Data are expressed as mean ± standard deviation, median (range), or number 
(%). 
n = number; IVC = inferior vena cava. 

Table 3 
Univariate and multivariable linear regression analyses for different predictors 
of the normalized minimum conduit area.  

Variable Univariate regression 
analysis 

Multivariable regression 
analysis 

Slope (95% CI) p value Slope (95% 
CI) 

p value 

Female 3.67 (− 20.67 
to 28.01) 

0.150 –  

Mesocardia or 
dextrocardia 

1.83 (− 24.86 
to 28.51) 

0.892 –  

Isomerism − 11.33 
(− 39.22 to 
16.57) 

0.422 –  

Simple cardiac situs and 
position 

5.29 (− 17.58 
to 28.16) 

0.647   

Dominant ventricle 
Biventricle Reference    
Left ventricle − 19.14 

(− 49.07 to 
10.80) 

0.207 –  

Right ventricle − 21.85 
(− 49.35 to 
5.66) 

0.118 –  

Apicocaval 
juxtaposition 

− 13.77 
(− 36.71 to 
9.18) 

0.236 –  

Bilateral bidirectional 
cavopulmonary 
connection 

− 18.78 
(− 43.18 to 
5.62) 

0.130 –  

Use of antithrombotic drugs 
No medication Reference    
Aspirin − 15.76 

(− 86.10 to 
54.57) 

0.657 –  

Warfarin 3.55 (− 70.96 
to 78.06) 

0.925 –  

Age on Fontan 
procedure, year 

5.18 (− 2.55 to 
12.91) 

0.186 –  

Weight at Fontan 
procedure, kg 

− 0.70 (− 5.10 
to 3.71) 

0.754 –  

Age on cardiac CT, year − 5.59 (− 8.54 
to − 2.64) 

<0.001   

Normalized original 
conduit area, mm2/ 
m2 

0.22 
(0.11–0.33) 

<0.001 0.23 
(0.13–0.32) 

<0.001 

Fenestration − 9.89 (− 32.47 
to 12.69) 

0.386 –  

Follow-up duration, 
year 

− 3.07 (− 6.81 
to 0.67) 

0.067 –  

Interval from Fontan 
procedure, year 

− 6.43 (− 9.29 
to − 3.57) 

<0.001 − 6.65 (− 9.20 
to − 4.10) 

<0.001 

CT = computed tomography. 
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conduit stenosis. This result is in line with several studies that have also 
recognized that antiplatelet agents have an anti-thrombotic effect 
comparable to that of anticoagulation therapy [24–26]. Compression by 
surrounding structures can also distort the shape of the conduit, given 
that the aspect ratio of the conduit correlated with the normalized 
minimum conduit area. 

The normalized minimum conduit area at follow-up was affected by 
the normalized original conduit area and the elapsed time after ECFP. As 
the maximum percent stenosis does not depend on the original conduit 
size in this study and previous studies, the normalized original conduit 
area affected the normalized minimum conduit area [20–22]. This result 
should not be overgeneralized to suggest that a large conduit is superior 
to a smaller one, as functional hemodynamics were not evaluated in this 
study. Itatani and colleagues reported that a conduit diameter of 16 mm 
and 18 mm is optimal for Fontan patients with a mean age of 36 months, 
considering energy loss and stagnation volume [27]. However, Rjinberg 
and colleagues suggested that a 16–20 mm conduit become undersized 
for adolescent Fontan patients, showing a significantly smaller mean 
conduit cross-sectional area normalized for conduit flow rate than other 
surrounding vessel and reporting blood flow acceleration from the IVC 
toward the conduit [28–30]. The effect of the elapsed time after ECFP on 
conduit stenosis was also interpreted cautiously because it was likely to 
be correlated with body surface area, not with minimum conduit area. 
As the patients grew, the median body surface area increased from 0.59 
m2 at ECFP to 1.61 m2 at cardiac CT. The association with elapsed time 
after ECFP and conduit stenosis was controversial in previous studies 
[20–22,31,32]. The decrease in the minimum conduit cross-sectional 
area at mean follow up of 9.6 years were not associated with elapsed 
time after ECFP [21]. There was no significant difference in the mean 
cross-sectional area of the conduit at 1 month and 5.2 years after ECFP 
[32]. Fogel and colleagues demonstrated that the ratio of the minimum 
conduit area per the average conduit area increased over time in ado-
lescents aged over 13 years [31]. 

The minimum conduit area in an oversized conduit is more 
commonly located on both sides than in the middle. Moreover, surgical 
anastomosis between an oversized conduit and a relatively small IVC or 
pulmonary artery was difficult to achieve, leaving these sites vulnerable 
to postoperative stenosis. An oversized conduit was associated with a 
high incidence of pseudointimal hyperplasia and thrombus in this study. 
An oversized conduits have unfavorable hemodynamics stemming from 
a size discrepancy, such as turbulence and stagnation, associated with 
conduit thrombosis [27,33]. Thus, the Fontan pathway in patients with 
an oversized conduit should be monitored during follow-up for potential 
anastomotic stenosis and the occurrence of pseudointimal hyperplasia 
and thrombus. 

Even after correcting the time elapsed after ECFP, which was 
significantly associated with Fontan-associated liver disease, patients 
with radiological findings of CLD had a lower ratio of minimum conduit- 
to-IVC areas [34,35]. Resistance of the conduit and energy loss, 
dependent on the diameter of conduit stenosis, was significantly corre-
lated with hepatic fibrosis in recent studies [7,36,37]. Therefore, an 
increased resistance of the stenotic conduit can increase hepatic 
congestion and cause liver fibrosis progression. 

The relationship of conduit stenosis with exercise intolerance was 
not clarified in this study. The parameters of the conduit were not 
correlated with peak VO2, in contrast to findings in previous studies [21, 
29,38]. Patel and colleagues demonstrated a correlation between min-
imum Fontan cross-sectional area, indexed to body surface area, and % 
predicted VO2 [21]. This disparity might be attributed to the present 
study not accounting for anatomical factors such as pulmonary artery 
morphology and blood flow distribution, nor considering the impact of 
overweight/obesity and physical activity [36,39–41]. Only maximal 
percent stenosis of the conduit was weakly correlated with the oxygen 
pulse and peak heart rate. Oxygen pulse is a surrogate of stroke volume; 
it is well-known that stroke volume and heart rate at peak exercise are 
lower in patients with Fontan circulation than in the normal population 

[42,43]. Since there is no subpulmonic ventricle present after ECFP, 
cardiac output is elevated mainly by muscle pump during exercise, and 
an increase in heart rate causes a proportional decrease in stroke volume 
in Fontan circulation [42,44–46]. Resistance of the Fontan pathway, 
dependent on conduit stenosis, has a negative impact on the increase in 
cardiac output during exercise in patients with single ventricular phys-
iology [7,29,36,47]. Additionally, narrowing of the Fontan pathway is 
also associated with exercise-related energy loss [8,27]. Thus, lesser 
stenosis of the conduit might help patients with Fontan circulation to 
maintain a greater stroke volume at a relatively appropriate heart rate 
during exercise. 

There are some limitations with this study. First, a retrospective 
design was adopted and did not include patients without cardiac CT 
findings. Since cardiac CT was not a routine part of surveillance; thus, 
not all patients underwent regular cardiac CT assessments, those who 
did undergo cardiac CT were more likely to have issues related to the 
Fontan pathway, introducing a selection bias. Second, although cardiac 
CT could provide details of anatomical variables such as calcification or 
thrombus, unlike cardiac MR, it did not provide information regarding 
blood flow and conduit resistance. Third, the determination of Fontan- 
associated liver disease relied solely on radiologic data, without 
including liver pathology via biopsy, various laboratory data, or 
advanced imaging, such as elastography. Fourth, only a limited number 
of CPETs with maximal effort and liver imaging studies, conducted 
within 2 years of the cardiac CT, had insufficient power to demonstrate a 
strong correlation between conduit narrowing and exercise intolerance 
or chronic liver disease. Lastly, since the mechanisms of Fontan-related 
adverse outcomes, such as Fontan-associated liver disease and exercise 
intolerance, are multifactorial, the effects of conduit stenosis should be 
determined after consideration of other important contributors. 

In conclusion, employing a larger conduit at ECFP results in a larger 
minimum conduit area at follow-up. However, oversizing requires 
careful monitoring for stenosis near anastomotic sites and for occurrence 
of pseudointimal hyperplasia or thrombus. Cardiac anatomic variables 
and the thromboprophylaxis method are not associated with conduit 
narrowing. There are some associations between conduit stenosis and 
the clinical status of Fontan circulation, including hepatic complications 
and exercise intolerance, but further studies are needed to investigate 
this. 
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