Abstract
Axis tissues, root and shoot, of germinating pea seedlings actively synthesize sterol from [2-14C]mevalonate during the first 3 days of germination. In addition to the intermediates of sterol synthesis, cycloartenol and 24-methylenecycloartanol, these tissues also form the triterpene beta-amyrin. The cyclase catalysing the formation of cycloartenol from oxidosqualene is about four times as active as that for beta-amyrin synthesis. 2. Sterol synthesis in the cotyledon is negligible, but cycloartenol and 24-methylenecycloartanol, as well as beta-amyrin, are synthesized there. Oxidosqualene cyclase activity in this tissue is 2.6 times as active for beta-amyrin synthesis as for cycloartenol synthesis. 3. Comparison of the relative amounts of 14C in cycloartenol and 24-methylenecycloartanol in the axis tissues and cotyledons of 3-day-old seedlings point to relatively active cycloartenol-S-adenosylmethionine methyltransferase systems in both axis tissues and a poorly active system in the cotyledon. 4. The role of beta-amyrin synthesis in the germinating pea seedling is discussed.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAISTED D. J., CAPSTACK E., Jr, NES W. R. The biosynthesis of beta-amyrin and beta-sitosterol in germinating seeds of Pisum sativum. Biochemistry. 1962 May 25;1:537–541. doi: 10.1021/bi00909a027. [DOI] [PubMed] [Google Scholar]
- Baisted D. J. Sterol and triterpene synthesis in the developing and germinating pea seed. Biochem J. 1971 Sep;124(2):375–383. doi: 10.1042/bj1240375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett R. D., Lieber E. R., Heftmann E. Time Course of Steroid Biosynthesis and Metabolism in Haplopappus heterophyllus. Plant Physiol. 1967 Jul;42(7):973–976. doi: 10.1104/pp.42.7.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bush P. B., Grunwald C. Sterol Changes during Germination of Nicotiana tabacum Seeds. Plant Physiol. 1972 Jul;50(1):69–72. doi: 10.1104/pp.50.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grunwald C. Effects of free sterols, steryl ester, and steryl glycoside on membrane permeability. Plant Physiol. 1971 Nov;48(5):653–655. doi: 10.1104/pp.48.5.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heintz R., Benveniste P. Plant sterol metabolism. Enzymatic cleavage of the 9beta, 19beta-cyclopropane ring of cyclopropyl sterols in bramble tissue cultures. J Biol Chem. 1974 Jul 10;249(13):4267–4274. [PubMed] [Google Scholar]
- Kasprzyk Z., Sliwowski J., Boleslawska-Kokosza D. The variations of triterpenoids in germinating seeds of Calendula officinalis. Acta Biochim Pol. 1970;17(1):11–18. [PubMed] [Google Scholar]
- Kemp R. J., Mercer E. I. Studies on the sterols and sterol esters of the intracellular organelles of maize shoots. Biochem J. 1968 Nov;110(1):119–125. doi: 10.1042/bj1100119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wojciechowski Z. A., Goad L. J., Goodwin T. W. S-adenosyl-L-methionine-cycloartenol methyltransferase activity in cell-free systems from Trebouxia sp. and Scenedesmus obliquus. Biochem J. 1973 Oct;136(2):405–412. doi: 10.1042/bj1360405. [DOI] [PMC free article] [PubMed] [Google Scholar]