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Abstract 

Radiotherapy and immunotherapy have already become the primary form of treatment for non-small-cell lung cancer 
(NSCLC), but are limited by high radiotherapy dose and low immune response rate. Herein, a multi-pronged strategy 
using a radio-immuno-enhancer (ZnO–Au@mSiO2) is developed by inducing tumor cells apoptosis and reprograming 
the immunosuppressive tumor microenvironment (TME). The radio-immuno-enhancer employed Au as a radiosen-
sitizer, transition Zn ions as immune activators, which not only tremendously enhances the anti-proliferative activity 
of radiotherapy toward cancer cells, but also activates the immune response with multi-targets to let “exhausted” T 
cells “back to life” by triggering immunogenic cell death (ICD), immune checkpoint blockade (ICB) that target PD-1/
PD-L1 and cGAS-STING under X-ray irradiation with a low dosage. The in vivo results demonstrate desirable antitumor 
and immunogenic effects of radio-immuno-enhancer-mediated immune activation by increasing the ratio of cyto-
toxic T cells (CTLs) and helper T cells. This work provides a feasible approach for future development of effective transi-
tion metal ion-activated radio-immunotherapeutic agents.
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Graphic Abstract

Introduction
Non-small-cell lung cancer (NSCLC) is among the 
most deadly cancers, and has a poor prognosis [1, 2]. 
Radiation therapy (RT) is a widely used primary treat-
ment modality for NSCLC that uses high-energy ioniz-
ing radiation with high dose to cause damage to tumor 
cells. As its therapeutic effect depends on the radio-
therapy dose, it can cause acute lung injury and pulmo-
nary fibrosis, affecting the prognosis [3–5]. Extensive 
studies have confirmed that immunotherapy is also an 
effective therapeutic strategy for NSCLC [1, 6–8]. The 
reversal of this impairment of immune system and the 
activation of the suppressed immune system could 
inhibit the growth of cancer cells or fully eliminate 
them. The scope of immunotherapy includes immuno-
genic cell death (ICD) response, immune checkpoint 
blockade (ICB) therapy, vaccines and adjuvants, which 
have provided a major breakthrough for the treatment 
of tumors [9–14]. Radiotherapy induces the occur-
rence of ICD, which could stimulate the release of 
tumor-associated antigens (TAAs) and the induction 

of damage-associated molecular patterns (DAMPs). 
These promote the activation and migration of den-
dritic cells (DCs), which then prime T cells for systemic 
anti-tumor immune responses [13, 15–17]. How-
ever, radiation-induced systemic immune responses 
are insufficient to meet clinical needs. There are few 
reports of radiotherapy-mediated immune activation 
[18–20], indicating there are huge challenges as well as 
enormous room for improvement.

The cyclic GMP-AMP synthase-stimulator of inter-
feron genes (cGAS-STING) pathway, as a crucial part in 
innate immunity, is an important target for tumor ther-
apy [21, 22]. Briefly, the cGAS/STING pathway can be 
activated by double-stranded DNA (dsDNA) to promote 
the secretion of type I interferons (IFNs), and induce 
the translocation of nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) to the nucleus, 
which together induces the expression of inflammatory 
cytokines, thereby enhancing the specific killing effect 
on tumor cells. [23–26] As a vital component of liv-
ing organisms, metal ions play an essential role in life 
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processes, and they are ideally suited as signaling mol-
ecules for the immune system. Metal ions, such as Mn 
and Zn, have recently been developed as immunologic 
adjuvants to activate the cGAS-STING pathway [27–30]. 
Besides, nuclear damage and mitochondrial damage 
caused by radiotherapy have the potential to initiate the 
cGAS/STING pathway [31–33]. In several phase I/II tri-
als, immune checkpoint inhibitors (ICIs) could effectively 
prevent recurrence and metastasis of NSCLC [34, 35]. 
Programmed death protein 1 (PD1) is a common immu-
nosuppressive molecule on the surface of T cells. When 
it binds to its ligand, programmed cell death ligand 1 
(PDL1), it participates in the immune evasion of tumors, 
leading to treatment failure. PD-1/PD-L1 inhibitors play 
an important role in the first- and second-line treatment 
of NSCLC, providing a new strategy and a key step for 
the treatment of NSCLC [36–38]. DNA enzymes could 
recognize specific mRNA sequences and cleave the tar-
get PD-L1 mRNA, thereby regulating the expression of 
PD-L1 in tumor cells. Designing responsively activated 

DNA enzymes can also improve the efficiency of targeted 
cutting of PD-L1 mRNA [39–42]. DNA enzymes with 
specificity for metal ions, such as Mn or Zn, are widely 
used in the diagnosis and treatment of tumors [43–45]. 
Immunotherapy has shown high clinical success rates, 
however, the efficacy of monotherapy is largely restrained 
by insufficient immune activation and the immunosup-
pressive tumor microenvironment (TME).

Herein, a synergistic strategy aiming to enhance the 
antitumor effects of radiotherapy and immunotherapy 
for NSCLC was designed (Scheme  1). Mesoporous sil-
ica-encapsulated gold (Au@mSiO2) nanoparticles were 
designed as carriers of DNAzyme. ZnO was employed to 
block off the mesopore to stabilize the loaded DNAzyme, 
and ZnO was decomposed into free Zn ions to activate 
both DNAzyme and cGAS-STING. In  vitro and in  vivo 
investigations demonstrated that the radio-immuno-
enhancers under X-ray irradiation could enhance oxi-
dative stress and ICD, cause tumor cell apoptosis and 
activate the tumor immune response. This work provides 

Scheme 1  Scheme illustration of the ZnO–Au@mSiO2 NPs for cancer immunotherapy. Mesoporous silica-encapsulated gold (Au@mSiO2) 
nanoparticles were used as carriers for Zn2+-dependent DNAzyme, which can act to degrade PD-L1, only after being activated by Zn2+. ZnO, 
as a double activator for DNAzyme and cGAS-STING, was used as a “caretaker” to block off the pore of the SiO2 for stability and safety (ZnO–Au@
mSiO2). The nanoparticles exposed to X-ray could enhance oxidative stress and immunogenic cell death (ICD), which would cause tumor cell 
apoptosis and activate the tumor immune response; the released Zn2+ in acidic microenvironment activate the cGAS-STING signaling pathway 
for further amplifying the immune response, and activate DNAzyme for regulating PD-1/PD-L1 immunosuppression
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a novel approach for enhancing NSCLC therapy via an 
effective metal ion-activated radio-immunotherapeutic 
strategy. The synergistic effect of the combined treatment 
modality of radiotherapy and ICI has been demonstrated 
in clinical trials. However, persistent immune activa-
tion may also lead to the development of pneumonia. In 
our design, Zn2+ can achieve pH-responsive controlled 
release, thereby reducing the incidence of sustained 
immune activation. In addition, fluorescence imaging 
of ZnO–Au@mSiO2 showed that there would be aggre-
gation in the lung, which is a good condition for lung 
cancer treatment. This provides ideas for future clini-
cal treatments, which could reduce the incidence of late 
toxic reactions to combination therapy while improving 
tumor control and overall survival [46, 47].

Results
Preparation and characterization of ZnO–Au@mSiO2 
nanoparticles
After DNAzymes were loaded in mesoporous silica 
(mSiO2) with a gold core (Au @mSiO2), ZnO clusters 
were employed to encapsulate the mesopores to block the 
release of DNAzymes and food additive polyacrylic acid 
(PAA) were then coated on surface to obtain biocompat-
ible ZnO–Au@mSiO2 (Figs.  1a–c, S1), which exhibited 
excellent stability in media (Figure S2). The characteri-
zations of UV–vis absorption spectroscopy, DLS, zeta 
potential results and wide-angle X-ray diffraction (XRD) 
confirmed the successful synthesis of biocompatible 
ZnO–Au@mSiO2 (Fig. 1d–f, S3).

The cumulative release kinetics of the Zn2+ were 
detected in simulated solutions (pH 7.4 and pH 5.8). 
Analyzing results of free Zn2+ in solutions indicated that 
51.7% of Zn2+ were released in acidic phosphate buffer 

a

b c d

e f g

h

25 nm

C N O

Au Zn Si

25 nm

0 10 20 30 40 50
0

20

40

60

80

100

Zn
+2

esaeleR

Time (h)

 ZnO-mSiO2@Au pH=5.8
 ZnO-mSiO2@Au pH=6.5
 ZnO-mSiO2@Au pH=7.4

0

50

100

150

200

250

300

)
mn(

eziS

AuZnO

mSiO 2@
Au

ZnO-mSiO 2@
Au

100 nm

TEOS

DNAzyme ZnO NPs

PAA

i

-20

-10

0

10

20

30

)V
m(

ateZ

ZnO
ZnO-NH 2

mSiO 2@
Au

mSiO 2@
Au-NH 2

mSiO 2@
Au-COOH

ZnO-mSiO 2@
Au

PAA-ZnO-mSiO 2@
Au

Fig. 1  Preparation and characterization of ZnO–Au@mSiO2. a Synthetic route of ZnO–Au@mSiO2 nanocomposites. b TEM imaging of ZnO–Au@
mSiO2 nanoparticles. c STEM mapping analysis of ZnO–Au@mSiO2. d UV–vis absorption spectra of ZnO–Au@mSiO2. e The hydrodynamic diameter 
of structures. f Zeta potentials of structures. g Release of Zn2+ from ZnO–Au@mSiO2 under different conditions (pH 5.8, pH 6.5 and pH 7.4). h 
Schematic diagram of Zn2+ release leading to activation of DNAzyme to cleavage target mRNA. i Gel electrophoresis images showing DNAzyme 
efficiency for substrate cleavage
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saline (pH 5.8 PBS) within 48  h incubation, while only 
17.7% of Zn2+ were released in normal condition (pH 
7.4 PBS) (Fig.  1g). The release of Zn2+ activated DNA-
zyme to downregulate targeted mRNA (Figs. 1h, S4). Gel 
electrophoresis results revealed that the concentration-
dependent of Zn2+ enhanced the cleavage efficiency of 
DNAzyme (Fig. 1i). Only in the presence of both DNA-
zyme and Zn2+, the targeted mRNA (PD-L1) bands were 
completely cleaved.

In vitro inhibition of tumor cell growth
It has been shown that nanoparticles exhibit size-
dependent uptake by tumor cells. Nanoparticles with 
sizes ranging from 10 to 150 nm are considered to have 
the best EPR results. In addition, NPs > 30 nm in size tend 
to accumulate at the tumor site. Neutral and ampho-
teric ion-charged particles exhibit low plasma clearance, 
which leads to increased tumor uptake. NPs with nega-
tive zeta potential or neutral potential can achieve their 
long circulation in  vivo. Particle size, shape and zeta 
potentials were also effective in the cytotoxicity of nan-
oparticles. Spherical nanoparticles are less toxic than 
fibrous nanoparticles, and neutral particles are less cyto-
toxic than charged nanoparticles [48–50]. The excellent 
biocompatibility of PAA coating ensured the efficient 
endocytosis of ZnO–Au@mSiO2 by Lewis lung tumor 
cells (LLC) (Fig. 2a). X-ray irradiation and released Zn2+ 
in tumor cells led to the generation of reactive oxygen 
species (ROS), and the combination of X-ray irradiation 
and released Zn2+ generated more ROS (Fig. 2b). Quanti-
tative analyses demonstrated that the ROS concentration 
generating with ZnO–Au@mSiO2 plus X-ray treatment 
is approximately 2.7-fold, 3.6-fold and 1.6-fold amplified 
than that of PBS, X-ray irradiation, and ZnO–Au@mSiO2 
group, respectively (Fig.  2c). ROS generation induced 
intracellular lipid peroxidation of ZnO–Au@mSiO2 plus 
X-ray irradiation was 26.1-fold higher than PBS, which 
was primarily attributed to more ROS production via 
both high-Z radiosensitization and the effect of Zn2+ 
(Fig. 2d).

Obviously, these induced significant cytotoxicity on 
tumor cells. Under the concentration of 200  μg/mL 
(ZnO–Au@mSiO2), the cell viability was 80.7 ± 13.4%. 
And the tumor cellular viability was sharply dropped to 
45.7 ± 8.6% by the additional X-ray irradiation (Fig.  2e). 
Notably, normal human liver cells (LO2 cells) showed 
excellent tolerance to ZnO–Au@mSiO2, manifesting its 
negligible cytotoxicity to normol cells (Fig. 2e). The apop-
tosis rate of LLC cells in ZnO–Au@mSiO2 + X-ray group 
(41.4%) is much higher than that of PBS group (3.6%) 
(Figs. 2f, S5).

Radiation promotes the release of double-stranded 
DNA (dsDNA) from the nucleus and triggers the expo-
sure of mitochondrial DNA (mtDNA) in the cytoplasm. 
Both of them are potent mediators for the initiation of 
the cGAS-STING pathway and subsequent transcription 
of type I interferon [33, 51–53]. The cGAS-STING path-
way can synergize with the ROS-mediated ICD effect to 
trigger a more effective immune response (Fig. 3a) [54].

ROS has been reported to cause severe damage to cells 
resulting in reduced mitochondrial membrane poten-
tial (MMP) [55]. Compared to other groups, ZnO–Au@
mSiO2 + X-ray treated cells displayed distinctly increased 
green fluorescence and clearly declined red fluorescence 
using JC-1 assay, suggesting significant mitochondrial 
dysfunction (Fig.  3b, c). The fluorescence intensity of 
mitochondria labelled by Mito-tracker green decreased 
from 60.1 ± 2.4% (PBS) to 37.9 ± 3.9% (ZnO–Au@
mSiO2 + X-ray) (Fig. 3d). Moreover, the bio-TEM images 
of LLC cells treated with ZnO–Au@mSiO2 plus X-ray 
demonstrated mitochondrial enlargement, swelling, and 
vacuolar degeneration of the mitochondrial cristae which 
drastically reduced its activity (Fig. 3e).

Apart from causing organelle damage such as mito-
chondrial damage, radiation also cause DNA damage in 
the nucleus. The extent of damage to the nucleus in the 
cell was evaluated by a variety of methods. Nuclear DNA 
damage was then assessed using immunofluorescence 
staining of γ-H2AX. The expression of γ-H2AX were 
significant higher in ZnO–Au@mSiO2 plus X-ray group 
than in all Control groups, which was attributed to the 

Fig. 3  In vitro effects of mitochondrial damage, DNA damage, and proliferation ability. a Schematic diagram of the cGAS-STING signaling pathway 
induced by Zn2+ and RT in tumor cells. b CLSM observation on the changes in the mitochondrial membrane potential of LLC cells after incubation 
with different treatment. The blue, red, and green colors indicate cell nucleus, and JC-1 aggregates and monomer, respectively (scale bar, 
30 μm). c Flow cytometry analysis of mitochondrial membrane potentials using JC-1 after different treatments. d Active mitochondria were 
stained by mitochondrial probe Mito-Tracker Green after treatment with different groups and detected by FCM. e TEM images of mitochondrial 
morphological changes of LLC cells with different treatments (scale bar, local images: 1 μm, enlarged cell sections images: 200 nm). f The 
immunofluorescence images of γ-H2AX induced by DNA damage (scale bar, 10 μm). g The photographs of colony formation assay of LLC cells 
treated with PBS and different concentration of ZnO–Au@mSiO2 under various radiation doses (0, 2, 4, 6 and 8 Gy). h Colony formation rate 
after treatment with ZnO–Au@mSiO2. i Cell cycle analysis of LLC cells treated with PBS and ZnO–Au@mSiO2 with or without X-ray and j analysis 
of flow cytometry

(See figure on next page.)
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combination effect of X-ray irradiation and Zn2+ release 
(Fig. 3f ). The cell cloning assay was performed to evaluate 
the impact on tumor cell proliferation for a long period 

of time. The results showed that ZnO–Au@mSiO2-medi-
ated RT was able to inhibit the long-term proliferative 
activity of tumor cells, which provided a reference for the 
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right choice of radiation dosage basis for subsequent ani-
mal experiments (Fig. 3g, h).

Cell cycle distribution of LLC cells after treating with 
ZnO–Au@mSiO2 and X-ray was analyzed using PI stain-
ing. ZnO–Au@mSiO2 caused the arrest of cells in the 
G2/M phase, convoyed by a decreased cell distribution 
in the G1 phase (Fig. 3i). The percentage of G2/M phase 
cells was obviously increased to 23.5% after treated with 
ZnO–Au@mSiO2 compared with PBS group (16.4%) 
(Fig.  3j). Cells are sensitive to radioactivity, while the 
cells are in the G2 phase. As expected, ZnO–Au@mSiO2 

plus X-ray treatment caused a further larger G2/M phase 
arrest (80.6%) than only X-ray treatment (69.7%) (Fig. 3j). 
These results indicated that ZnO–Au@mSiO2 + X-ray 
treatment might induce cell cycle arrest and prevent the 
cell clones from progressing through the cell cycle, delay-
ing cell division.

As reported, Zinc finger structural domains in the 
binding region of cGAS and DNA enable the recogni-
tion of double-stranded DNA, while Zn2+ enhances 
DNA-induced phase separation of cGAS and increases 
the catalytic activity of cGAS synthetase [21, 56, 57]. This 
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promotes the synthesis of second messengers (cGAMP) 
and the activation of the downstream TANK bind-
ing kinase 1 (TBK1) and interferon regulatory factor 3 
(IRF3), leading to the production of type I interferon 
(IFNs), thus enhancing the specific killing effect (Fig. 4a). 
Therefore, the related down-regulation of proteins such 
as phosphorylated TBK1 (p-TBK1), TBK1 and IFN β was 
assessed using Western blotting after treating in DC 2.4 
cells. The protein level of IFN β under ZnO–Au@mSiO2 

treatment was significantly elevated compare to the PBS 
group (Fig.  4b), which indicated that Zn2+ ions had an 
activation effect on cGAS-STING signaling pathway. 
Meanwhile, similar change trend was observed in phos-
pho-TBK 1 (p-TBK 1) protein expression level (Fig. 4b). 
To further evaluate the activation capacity of ZnO–Au@
mSiO2 for cGAS-STING signal pathway, quantitative 
polymerase chain reaction (qPCR) was used to detect the 
expression of related mRNA including STING, IFN β and 
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TNF-α in DC 2.4 cells. According to the results obtained, 
ZnO–Au@mSiO2 treatment significantly increased the 
expression of STING, IFN β and TNF-α in DC 2.4 cells 
(Figs.  4c, S6), which further validated that ZnO–Au@
mSiO2 could effectively activate the STING signal.

Zn2+ acts as an immune adjuvant to activate the cGAS-
STING signal pathway, meanwhile, it can also turn on the 
DNA enzyme to degrade PD-L1 mRNA. In our design, 
DNAzyme was employed to cleave PD-L1 mRNA, while 
Zn2+ acted as a metal cofactor for DNAzyme activa-
tion. To confirm this self-activating gene regulation, we 
first evaluated the degradation effect by Western blot-
ting. The PD-L1 protein expression level was downregu-
lated in ZnO–Au@mSiO2-treated cells (Fig.  4d). The 
qPCR further explored the PD-L1 mRNA expression, 
and the results were consistent (Fig.  4e). Importantly, 
neither Zn2+ nor the DNAzyme alone could reduce the 
expression of PD-L1 (Fig. 4e). In brief, Zn2+ as a cofactor, 
could upregulate the DNAzyme to cleave PD-L1 mRNA, 
achieving the aim of silencing the PD-L1 gene and regu-
lating the tumor immunosuppressive microenvironment.

It has been reported that radiotherapy could induce 
significant ICD in tumor tissues [15]. In order to evalu-
ate the ability of ZnO–Au@mSiO2 to induce ICD in vitro, 
the release of ICD markers, such as calreticulin (CRT) 
and high mobility group box 1 (HMGB1) was examined. 
The results showed that ZnO–Au@mSiO2 plus X-ray 
irradiation significantly promoted the expression of CRT 
and released HMGB1 compared with other experimental 
groups (Fig. 4f ). Meanwhile, the qPCR obtained consist-
ent results (Fig. 4g, h). All the above results indicated that 
ZnO–Au@mSiO2 plus X-ray irradiation caused a higher 
degree of ICD than only ZnO–Au@mSiO2 or X-ray irra-
diation treatment.

In vivo biodistribution and anti‑tumor efficacy
Blood biochemistry and hematology analysis of healthy 
C57BL/6 mice after ZnO–Au@mSiO2 administration 
showed that the relevant indicators were within the 
normal range (Figure S7, Table  S1). The biodistribu-
tion of ZnO–Au@mSiO2 was assessed in the subcuta-
neous LLC tumor model. The circulation of ZnO–Au@
mSiO2 in the bloodstream was found to follow the classi-
cal model (one-compartment model), and the calculated 
blood half-time was 2.6 ± 0.5 h, which are more beneficial 
for long-term tumor accumulation (Fig.  5a). The tumor 
accumulation of Cy5.5-labeled ZnO–Au@mSiO2 NPs 
clearly indicated obvious fluorescence signals in tumor 
regions after 3 h post-injection, and reached at the maxi-
mum peak at 12 h post-injection (Figs. 5b, c, S8).

After validating biosafety and tumor accumulation on 
subcutaneous LLC tumor model in C57BL/6 mice, anti-
tumor effects were investigated in  vivo (Fig.  5d). When 

the tumor volume reached nearly 60 mm3, mice were 
randomly divided into four groups (n = 3): PBS (Group 
1), PBS + X-ray (Group 2), ZnO–Au@mSiO2 (Group 
3), ZnO–Au@mSiO2 + X-ray (Group 4). The injection 
dose of ZnO–Au@mSiO2 was 20  mg/kg. At 12  h post-
injection, the tumors in Group 2 and 4 were irradiated 
with X-ray (4  Gy). On Day 7, the same procedure was 
repeated.

Compared to PBS, Group 2 and Group 3 showed mod-
erate suppression of tumor growth (Figs. 5e, S9). Dramat-
ically, complete tumor growth inhibition was observed 
in Group 4, i.e. ZnO–Au@mSiO2 plus X-ray irradiation 
(Fig.  5e, yellow curve). In all treatments, no significant 
weight loss was found (Fig. 5f ), indicating low side effects 
of the ZnO–Au@mSiO2. Hematoxylin and eosin (H&E) 
staining of major organs (heart, liver, spleen, lungs, and 
kidneys) showed no obvious pathological changes, fur-
ther implying the low systemic toxicity of ZnO–Au@
mSiO2 (Figure S10).  Tumor growth in Group 4 was 
completely inhibited, leading to elimination, so only 
Groups 1–3 were compared. The results of H&E stain-
ing of tumors showed that the cell density, cell apoptosis 
and necrosis in the tumor tissue sections of the Group 2 
and Group 3 were reduced, manifesting the effectiveness 
of ZnO–Au@mSiO2 for treating subcutaneous tumors 
(Fig. 5g).

In vivo antitumor immune responses
Inspired by the superior therapeutical efficacy, we further 
explored the antitumor immune response. Tumor growth 
in Group 4 was completely inhibited, leading to elimina-
tion, and tumors from Groups 1–3 were used for protein 
extraction for Western blotting and immunofluorescence 
sections (Fig.  5h, i). The immunofluorescence images of 
PD-L1 showed that fluorescence signals of ZnO–Au@
mSiO2 were significantly reduced compared to other 
groups, demonstrating a decrease in PD-L1 expression 
(Fig. 5h). STING activation was also validated by Western 
blotting. The monotherapy group (radiotherapy group 
(X-ray) and ZnO–Au@mSiO2 group) showed a remark-
able increase of IFN β and phosphorylation of TBK1 
(p-TBK1), indicating that radiotherapy and ZnO–Au@
mSiO2 could also contribute to the STING pathway acti-
vation (Fig.  5i). This has been attributed to the nuclear 
and mitochondrial damage induced by radiotherapy and 
the properties of Zn as an immune adjuvant.

We hypothesized that the ZnO–Au@mSiO2-mediated 
immune activation mediated by ICD and STING pathway 
may promote the maturation of DCs. For the purpose, we 
examined mature DCs in lymph nodes and spleen. The 
Group 3 showed moderately promoted DC maturation, 
owning to the STING pathway activation, while Group 
4 exhibited an apparent increase in the percentage of 
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activated DCs in lymph nodes (Fig.  6a, b). The results 
were consistent in the spleen (Fig. 6c, d). Mature DC cells 
contribute to subsequent activation of T cells, which are 
important immune cells for tumor inhibition. An obvi-
ous difference was found in the proportion of cytotoxic T 
cells (CTL, CD3+CD8+) among the Group 1 (0.7 ± 0.5%) 
and Group 3 (9.7 ± 1.1%) in the spleen (Fig. 6e, f ). There 
was also a statistical difference in the results for T cells 
(CD3+CD4+) (Fig.  6g). We also detected the expression 
of TNF-α and Granzyme in serum treated with ZnO–
Au@mSiO2 + X-ray. The expression level of ZnO–Au@
mSiO2 + X-ray group increased, which enhanced the 
anti-tumor immune response in  vivo through positive 
feedback, indicating the activation of body immunity 
(Fig.  6h, i). In summary, a robust anti-tumor immune 
response was observed in the reinforced immune 
microenvironment, suggesting the synergistic effects of 
Zn2+-based cGAS-STING, PD-L1 inhibition and ICD 
targeted immunotherapy.

Conclusion
In summary, this work presented a radio-immuno-
enhancer that integrates radiotherapy and immune 
checkpoint therapy with immunoadjuvant therapy 
to improve the limitations of low immune response 
induced by mono-immunotherapy and enhance its 
anti-tumor efficacy. In  vitro experiments demon-
strated that the oxidative stress response triggered by 
radiotherapy increased the intracellular ROS content, 
induced damage, and resulted in the occurrence of 
ICD. The released Zn2+ not only activated Zn-specific 
DNAzyme to cleave PD-L1 mRNA which can reduce 
immunosuppression and achieve immune checkpoint 
therapy, but also triggered the cGAS-STING signaling 
pathway that may enhance the expression of inflam-
matory cytokines and the activity of cytotoxic T cells. 
In  vivo experiments demonstrated excellent anti-
tumor activity with significant inhibition of tumor 
growth. This radio-immuno-enhancer can overcome 
the clinical side effects of high radiation dose of radio-
therapy and low immune response of single-immuno-
therapy, reducing the incidence of sustained immune 
activation and providing a promising therapeutic strat-
egy for anti-tumor immunotherapy of NSCLC through 
radioenhancers.
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