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Abstract 

Background  Sperm-associated antigen 5 (SPAG5) is a mitotic spindle protein crucial for coordinating the separation 
of sister chromatids into daughter cells. Increasing evidence suggests that SPAG5 is overexpressed in various malig-
nancies, functioning as an oncogene. However, research specifically examining SPAG5 in esophageal cancer remains 
limited.

Methods  In this research, we leveraged bioinformatics techniques to evaluate the expression and prognostic signifi-
cance of SPAG5 in a variety of cancer types. We conducted Gene Set Enrichment Analysis (GSEA) to elucidate the rela-
tionship between SPAG5 and cancer characteristics. Additionally, we investigated the correlation between SPAG5 
expression and immune cell infiltration utilizing the TIMER2.0 platform. The TIDE platform was used to assess 
the impact of SPAG5 on the effectiveness of immunotherapy and to screen for potential therapeutic drugs. We 
employed qRT-PCR and immunohistochemistry staining to ascertain the expression of SPAG5 in esophageal cancer 
tissue. Through cellular functional experiments, we examined the influence of SPAG5 expression on the proliferation, 
apoptosis, invasion, and migration of esophageal cancer cells. The Pathscan Stress Signaling Antibody Array was uti-
lized to probe the potential molecular mechanisms of SPAG5.

Results  SPAG5 exhibits high levels of expression in various cancers, encompassing esophageal cancer, and its pres-
ence indicates an unfavorable prognosis. SPAG5 is primarily enriched in pathways associated with cellular proliferation 
and demonstrates a correlation with immune gene expression as well as the infiltration of immune cells. Suppression 
of SPAG5 expression in esophageal cancer cells not only inhibits cell proliferation, but also attenuates cell invasion 
and migration while inducing cellular apoptosis. The depletion of SPAG5 results in a decline in the levels of critical 
signaling proteins.

Conclusion  SPAG5 plays a pivotal role in esophageal cancer cell proliferation, apoptosis, and metastasis 
within the tumor microenvironment, making it a promising therapeutic target.
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Introduction
Esophageal cancer is ranked sixth in terms of global can-
cer incidence rate and is a highly aggressive and lethal 
tumor [1]. In China, esophageal squamous cell carcinoma 
(ESCC) represents 70% of global cases and is the fourth 
most prevalent cancer in the country [2]. Although 
surgery can provide certain therapeutic benefits for 
early-stage esophageal squamous cell carcinoma, many 
patients are typically diagnosed after missing the oppor-
tunity for surgical intervention [3]. Curative concurrent 
chemoradiotherapy is the recommended treatment for 
locally advanced esophageal squamous cell carcinoma 
that is inoperable [4]. Furthermore, immunotherapy, a 
promising treatment approach, is expected to enhance 
long-term survival rates in patients [5, 6]. Despite signifi-
cant progress in esophageal cancer treatment, the over-
all prognosis remains unfavorable, with a 5-year survival 
rate below 25% [7]. Consequently, it is crucial to compre-
hend the potential molecular mechanisms involved in 
the occurrence and development of esophageal cancer, 
identify new prognostic molecular markers, and develop 
novel treatment strategies. These endeavors are vital 
for improving the survival duration of esophageal can-
cer patients and represent essential avenues for future 
research.

The sperm-associated antigen 5 (SPAG5), also known 
as astrin, maps to Ch17q11.2 and encodes a protein 
that binds to microtubules and localizes to the centro-
some, playing an important role in promoting the fidel-
ity of the mitotic process [8, 9]. In normal cells, SPAG5 
forms a molecular switch by interacting with other pro-
teins, regulating the kinetochore-microtubule dynam-
ics to ensure the proper separation of sister chromatids 
into daughter cells [10]. Loss of SPAG5 leads to spin-
dle checkpoint arrest, resulting in the formation of 
multipolar spindles and the disruption of sister chro-
matid cohesion [11]. SPAG5 has also been shown to 
be involved in the development of various tumors. 
Studies have reported the overexpression of SPAG5 in 
multiple cancers, including gastric cancer [12], breast 
cancer [13], gliomagenesis [14], lung adenocarcinomas 
[15] and bladder cancer [16], with a strong correlation 
to tumor growth, metastasis, and poor prognosis. Yuan 
found that downregulation of SPAG5 can significantly 
inhibit cell proliferation and growth by blocking the G2 
phase/mitosis phase (G2/M) of the cell cycle and induc-
ing cell apoptosis [17]. Similarly, in hepatocellular car-
cinoma, Yu-Feng Yang discovered that SPAG5 interacts 
with the centrosomal protein 55 (CEP55), significantly 
promoting tumor growth and metastasis through the 
phosphatidylinositol 3-kinase/protein kinase B (PI3K/
AKT) signaling pathway [18]. Our previous research 
demonstrated that in ESCC, the expression of miR-363 

is significantly downregulated, which subsequently reg-
ulates the proliferation and invasion of esophageal can-
cer cells by negatively modulating SPAG5 expression 
[19]. Although these findings imply that SPAG5 serves 
as a critical oncogene, its precise role in ESCC remains 
unclear and warrants further investigation.

This study systematically analyzed the potential role 
and mechanisms of SPAG5 in pan-cancer, focusing 
particularly on the association between SPAG5 expres-
sion and tumor prognosis, immune infiltration, and its 
biological functions and pathways. The results suggest 
that SPAG5 has significant potential as a biomarker for 
tumor prognosis and as a therapeutic target. Given the 
current lack of research on SPAG5 in esophageal can-
cer, we examined its effects on the proliferation, apop-
tosis, invasion, and metastasis of esophageal cancer 
cells. We also conducted enrichment analysis, immune 
cell infiltration analysis, and drug sensitivity assess-
ments. The findings indicate that SPAG5 expression 
enhances the proliferation and invasion of esophageal 
cancer cells and effectively predicts their response to 
immunotherapy. Our study contributes to a better 
understanding of the mechanisms underlying SPAG5’s 
role in cancer, serving as a reference for future targets 
in tumor therapy and the prediction of immunotherapy 
efficacy.

Methods
Data processing and gene expression analysis
RNA sequencing (RNA-seq) data and clinical informa-
tion of 33 tumor types were acquired from the Cancer 
Genome Atlas (TCGA) database (https://​portal.​gdc.​can-
cer.​gov/) and the Genotype-Tissue Expression (GTEx) 
database (https://​commo​nfund.​nih.​gov/​GTEx) through 
UCSC XENA (https://​xena.​ucsc.​edu/) [20]. The data 
were downloaded and subjected to log2 transformation 
and standardization for the purpose of assessing the dif-
ferential expression of SPAG5 between tumor samples 
and normal control groups. Statistical analysis was con-
ducted using the R software, and the resulting outcomes 
were visualized through the utilization of the “ggplot2” 
package.

Prognostic analysis of SPAG5
The prognostic evaluation of SPAG5 expression was 
performed using Kaplan–Meier and univariate Cox 
regression analyses. The Cox regression analysis utilized 
continuous variables, while the Kaplan–Meier analysis 
classified SPAG5 expression levels into binary categories. 
Subsequently, log-rank p-values and hazard ratios (HRs) 
were visualized through a heatmap.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://commonfund.nih.gov/GTEx
https://xena.ucsc.edu/
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Identification of DEGs and enrichment analysis 
in pan‑cancer
Tumor patients were categorized into high-expres-
sion and low-expression groups based on the median 
expression level of SPAG5, utilizing pan-cancer RNA-
seq data obtained from TCGA database. “DESeq2” 
package was utilized to perform differential expression 
analysis and obtain the log2-fold change (log2FC) and 
adjusted p-values for each gene across different can-
cer types. Genes meeting the criteria of log2FC > log2 
and p < 0.05 were designated as differentially expressed 
genes (DEGs). Subsequently, Gene Set Enrichment 
Analysis (GSEA) was conducted using the “Cluster-
Profiler” package in R to identify the key signaling 
pathways potentially involving SPAG5 in various can-
cer types [21]. Obtain the GSE53625 dataset from the 
Gene Expression Omnibus (GEO) database (“https://​
www.​ncbi.​nlm.​nih.​gov/​geo/”) to perform gene ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis, in order to 
further investigate the impact of SPAG5 expression on 
cancer-related pathway activity in esophageal cancer. 
Data visualization was performed using the “ggplot2” 
package.

Analysis of immune‑related characteristics of SPAG5
Download pan-cancer immune cell infiltration data from 
the Tumor Immune Estimation Resource 2.0 (TIMER2.0) 
database (http://​timer.​cistr​ome.​org/) in TCGA for ana-
lyzing the correlation between SPAG5 expression and 
infiltration levels of various immune cell types in pan-
cancer, including B cells, CD4+ T cells, CD8+ T cells, 
dendritic cells (DCs), macrophages, neutrophils, natural 
killer cells, monocytes, and mast cells [22]. Furthermore, 
the TIMER2.0 database was used to analyze the correla-
tion between SPAG5 expression and immune checkpoint 
genes, along with other immune-related genes including 
major histocompatibility complex genes, chemokines, 
and their receptors. The findings were visually repre-
sented using heatmaps. The relative abundance of 22 
immune cell populations in the cohort of esophageal 
cancer patients was estimated using the cell-type iden-
tification by estimating relative subsets of RNA tran-
scripts (CIBERSORT) algorithm. Comparisons were 
made to evaluate the variations in immune cell infiltra-
tion between the high and low-expression groups of 
SPAG5. Furthermore, a spearman correlation analy-
sis was employed to examine the relationship between 
SPAG5 expression and immune cell infiltration in esoph-
ageal cancer. The obtained results will be visualized using 
box plots and bubble plots, generated using the “ggplot2” 
package.

In addition, the “ESTIMATE” algorithm in the “IOBR” 
package is used to estimate the content of stromal cells 
and immune cells in tumor tissues [23]. Through the 
computation of immune scores and stromal scores, the 
level of tumor purity is predicted for each tumor sample. 
Spearman correlation analysis is employed to assess the 
correlation between SPAG5 and ESTIMATE scores, as 
well as tumor purity. Furthermore, the obtained results 
are visualized using the “ggplot2” package in R.

Immunotherapy prediction of SPAG5 in ESCC
We retrieved an independent esophageal cancer cohort 
from the GEO database and calculated the tumor 
immune dysfunction and exclusion (TIDE) score for this 
cohort using an online tool (http://​tide.​dfci.​harva​rd.​edu/​
login/) [24, 25]. A higher TIDE score is associated with 
a reduced response to immune checkpoint inhibition 
therapy. By comparing the differences in TIDE scores 
between patients with high and low SPAG5 expression, 
we assessed the ability of SPAG5 to predict the effective-
ness of immune checkpoint inhibition therapy.

Estimation of drug response
The “oncoPredict” package was used to predict the thera-
peutic response of patients with esophageal cancer to a 
total of 538 distinct anticancer drugs [26]. The half-max-
imal inhibitory concentration (IC50) was used to assess 
the sensitivity of these drugs. Furthermore, the correla-
tion between drug response and SPAG5 expression was 
determined using Pearson correlation, focusing on the 
top 20 drugs.

Cell culture
Human esophageal squamous carcinoma cell lines (TE-1, 
EC9706, and Eca-109) were cultured in Dulbecco’s modi-
fied Eagle’s medium (Corning Cellgro, Manassas, Vir-
ginia) supplemented with 10% fetal bovine serum (FBS) 
(Gibco BRL, Grand Island, New York).All cells were incu-
bated at 37 °C in a humidified incubator with 5% CO2.

Quantitative reverse transcription‑polymerase chain 
reaction (qRT‑PCR)
Total RNA was extracted using Trizol reagent (Pufei Bio-
technology, Shanghai, China), followed by messenger 
RNA (mRNA) purification. Then, reverse transcription 
was performed utilizing the Moloney murine leukemia 
virus (MMLV) (Promega, Madison, Wisconsin). qRT-
PCR analysis was conducted on the LightCycler 480 II 
RT-PCR system using SYBR Premix Ex Taq (Takara, 
Kyoto, Japan) to quantitatively determine the abundance 
of SPAG5 mRNA, with GAPDH serving as the internal 
control. The reaction conditions were as follows: 95 °C for 
15 s, 95 °C for 5 s, 60 °C for 30 s, for a total of 45 cycles. 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://timer.cistrome.org/
http://tide.dfci.harvard.edu/login/
http://tide.dfci.harvard.edu/login/
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The primers for SPAG5 were 5ʹ-TTG​AGG​CCC​GTT​TAG​
ATA​CCA-3ʹ (forward) and 5ʹ-GCT​TTC​CTT​GGA​GCA​
ATG​TAGTT-3ʹ (reverse), and for GAPDH: 5ʹ-TGA​CTT​
CAA​CAG​CGA​CAC​CCA-3ʹ (forward) and 5ʹ-CAC​CCT​
GTT​GCT​GTA​GCC​AAA-3ʹ (reverse). The 2−ΔΔCt method 
was used to calculate relative gene expression levels.

Lentivirus packaging and infection
We designed short hairpin RNA (shRNA) sequences 
that specifically target the SPAG5 mRNA (NM_006461) 
sequence, represented as: 5ʹ-CCG​GCC​ATG​CAA​CTG​
GAT​TAT​ACA​ACT​CGA​GTT​GTA​TAA​TCC​AGT​TGC​
ATG​GTT​TTTG-3ʹ. A scrambled shRNA was used as a 
negative control. A single-stranded DNA oligonucleotide 
was utilized to construct the shRNA sequence, which was 
later cloned into the GV115 plasmid vector (GeneChem 
Corporation, Shanghai, China). The recombinant plas-
mid was validated through DNA sequencing. Then, fol-
lowing this, the pHelper1.0 and pHelper2.0 vectors, along 
with the recombinant plasmid, were co-transfected into 
293T cells using Lipofectamine 2000 (Invitrogen, Carls-
bad, CA) and incubated for 48 h. The infectious lentivi-
rus vector (LV) was collected, centrifuged, and filtered. 
In our study, we designated the recombinant LV express-
ing SPAG5-shRNA as shSPAG5, and the LV expressing 
scrambled shRNA as shCtrl. To determine the infection 
titer, we performed a serial dilution titer assay, yielding 
viral titers of 5 × 108 TU/ml for shSPAG5 and 6 × 108 TU/
ml for shCtrl in the medium. TE-1 cells were seeded at 
a density of 2 × 105 cells/well in a six-well plate and then 
infected with shSPAG5 or shCtrl until reaching 80–90% 
confluence. The infection efficiency was evaluated 72  h 
post-infection using a fluorescence microscope.

Immunohistochemical analysis
The expression of SPAG5 was assessed immunohis-
tochemically in 14 pairs of ESCA tissues and adjacent 
tissues. The tissue samples were initially fixed in neu-
tral buffered formalin and then embedded in paraffin. 
Sequential tissue sections, measuring 4 μm in thickness, 
were then mounted on positively charged glass slides 
and underwent deparaffinization and rehydration. A rab-
bit monoclonal anti-SPAG5 antibody (Sigma-Aldrich), 
diluted at 1:500, was employed in the staining process. 
As a negative control, an unrelated rabbit serum was uti-
lized. Two independent observers, unaware of the clini-
cal and follow-up data, objectively evaluated the staining 
results and resolved any discrepancies through consen-
sus. Five random fields were examined using an optical 
microscope, assigning scores based on the percentage 
of positive cells: 0 denoted 0%, 1 represented 1–25%, 2 
stood for 26–50%, 3 indicated 51–75%, and 4 signified 
> 76%. Staining intensity was graded as 0 for no staining, 

1 for straw yellow, 2 for brown, and 3 for dark brown. The 
final staining index was calculated as the multiplication 
of the staining intensity score and the positive cell pro-
portion score.

Western blot assay
After thawing on ice for 15 min, TE-1 cells were centri-
fuged at 4  °C for 15  min. The protein concentration of 
the samples was determined using the BCA protein assay 
kit (Beyotime, Shanghai, China) and adjusted to 2 μg/μl. 
The protein lysates were subjected to separation using a 
10% sodium dodecyl sulfate polyacrylamide gel electro-
phoresis (SDS-PAGE), followed by their transfer onto 
polyvinylidene difluoride (PVDF) membranes (Millipore, 
Burlington, MA). The membranes were then blocked 
with 5% non-fat milk for 1  h, followed by an overnight 
incubation at 4 °C with a 1:2000 dilution of mouse anti-
Flag antibody (Sigma-Aldrich, St. Louis, MO) and mouse 
anti-GAPDH antibody (SantaCruz, Santa Cruz, CA). 
Subsequently, the membranes were washed with TBST, 
and after 2 h of incubation, they were further processed 
with a 1:2000 dilution of goat anti-mouse IgG antibody 
(SantaCruz). Finally, the protein bands were detected 
using pierce electrochemiluminescence (ECL) substrate 
(Thermo Fisher Scientific, Rockford, IL).

Cell growth assay
TE-1 cells infected with shSPAG5 and shCtrl were seeded 
at a density of 2,000 cells per well in a 96-well plate and 
incubated for 1–5  days. Daily live cell counts were per-
formed with the Celigo imaging cytometer (Nexcelom 
Bioscience, Lawrence, MA) over 5 consecutive days. 
Finally, the obtained cell count data generated a compre-
hensive cell growth curve.

MTT assay
Two thousand infected cells were seeded into a 96-well 
plate and cultured for 5  days. Each well received daily 
treatment with a 5  mg/ml concentration of L3-(4,5-
dimethylthiazol-2-yl)−2,5-diphenyltetrazolium bromide 
(MTT) (Genview, Craigieburn, Victoria, Australia). Sub-
sequently, the plate was incubated for 4  h under opti-
mal conditions. Afterward, 100  μl of dimethyl sulfoxide 
(DMSO) was added to dissolve the formazan crystals 
generated by viable cells. After shaking for 5  min, the 
absorbance at 490  nm was measured using an ELISA 
reader (Tecan Infinite, Tecan GmbH, Groedig, Austria).

Annexin V assay
TE-1 cells infected with lentivirus were cultured in a 
6-well plate until reaching a confluence of over 70%. Sub-
sequently, the cells were collected and washed with ice-
cold phosphate buffered saline (PBS) at 4 °C, followed by 
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centrifugation to remove the supernatant. The resulting 
cell pellets were resuspended in 200μL of binding buffer. 
Next, 10  μl of V-APC membrane-associated protein 
(eBioscience, San Diego, California, USA) was added to 
the suspension. The cells were incubated at room tem-
perature in the dark and subsequently analyzed using a 
machine.

Caspase‑3/7 activity
TE-1 cells infected with lentivirus were inoculated into 
a 96-well plate and cultured for 5 days in a CO2 incuba-
tor at a temperature of 37 °C. Subsequently, each well was 
treated with 100 μl of Caspase-Glo reagent and incubated 
at room temperature for a period of 2 h. Finally, lumines-
cence readings were obtained using an enzyme-linked 
immunosorbent assay (ELISA) reader (Tecan Infinite, 
Tecan GmbH, Groedig, Austria).

Wound‑healing assay
TE-1 cells infected with lentivirus were seeded into a 
96-well plate in three rounds, each containing 5 × 104 
cells. Upon reaching 90% confluence, the growth medium 
was replaced with a solution containing 0.5% FBS. A 
scratch was created at the center of the bottom of each 
well using a designated scratch tool. Subsequently, the 
cell layer underwent gentle washing with PBS. Fluores-
cence microscopy images were captured at time points 
0 and 8 h post-scratching and later used to calculate the 
ability of cell migration.

Transwell migration and invasion assay
The TE-1 cells, infected with lentivirus, were seeded at a 
density of 1 × 105 per well in culture dishes with or with-
out matrix gel (Corning Costar, Cambridge, MA, USA). 
After incubating for 48 h, non-migratory and non-inva-
sive cells were eliminated using a cotton swab. Following 
this, migrating and invasive cells were fixed, stained with 
crystal violet solution (Shanghai Yuan Ye Biotechnology 
Co., Ltd., China), and quantified using a microscope.

Pathscan intracellular signaling array
A cell lysis buffer was formulated to attain a concentra-
tion between 0.2 and 1  mg/ml upon cell collection and 
lysis. The PathScan Antibody Array Kit (Danvers, MA) 
was then employed at room temperature to quantify the 
levels of crucial signal transduction proteins in TE-1 cells 
exhibiting reduced SPAG5 expression.

Statistical analysis
Each experiment was replicated three times. The t-test 
was utilized to determine the significance of differ-
ences between the shSPAG5 and shCtrl groups in cellu-
lar assays. The prognosis of SPAG5 was evaluated using 

univariate Cox regression analysis. Survival analysis was 
conducted using the Kaplan–Meier method and the log-
rank test. The statistical significance was determined at a 
level of p < 0.05. The statistical analyses were performed 
using SPSS software (version 22.0) and GraphPad Prism 
software (version 8.0).

Results
Differential expression levels of SPAG5 in pan‑cancer
As shown in Fig.  1A, the data from the GTEx database 
indicate that SPAG5 is expressed in the majority of nor-
mal tissues, with the highest expression levels observed 
in the testes and bone marrow. Further comparison of 
SPAG5 expression in tumor tissues and normal tissues 
was conducted using the TCGA database. The findings 
exhibit a significant upregulation of SPAG5 expression 
in tumor tissues compared to their normal counterparts 
in bladder urothelial carcinoma (BLCA), breast invasive 
carcinoma (BRCA), cholangiocarcinoma (CHOL), cervi-
cal and endocervical cancers (CESC), colon adenocarci-
noma (COAD), esophageal carcinoma (ESCA), head and 
neck squamous carcinoma (HNSC), liver hepatocellular 
carcinoma (LIHC), lung adenocarcinoma (LUAD), lung 
squamous cell carcinoma (LUSC), pancreatic adenocar-
cinoma (PAAD), pheochromocytoma and paraganglioma 
(PCPG), prostate adenocarcinoma (PRAD), uterine cor-
pus endometrial carcinoma (UCEC), and stomach ade-
nocarcinoma (STAD) (Fig.  1B). Notably, higher SPAG5 
levels were observed in normal tissues in kidney chro-
mophobe (KICH), kidney renal papillary cell carcinoma 
(KIRP), and thyroid carcinoma (THCA). Furthermore, 
the analysis of paired samples indicated an increased 
expression of SPAG5 in cancerous tissues when com-
pared to neighboring normal tissues (Fig.  1D). We con-
ducted an integration of the TCGA and GTEx databases, 
revealing a significant upregulation of SPAG5 in various 
cancer types, such as adrenocortical carcinoma (ACC), 
BRCA, BLCA, COAD, CESC, lymphoid neoplasm diffuse 
large B-cell lymphoma (DLBC), ESCA, glioblastoma mul-
tiforme (GBM), LUAD, LIHC, lung squamous cell carci-
noma (LUSC), ovarian serous cystadenocarcinoma (OV), 
PAAD, PRAD, STAD, melanoma (SKCM), thymoma 
(THYM), uterine carcinosarcoma (UCS) and UCEC 
(Fig.  1C). In conclusion, SPAG5 is highly expressed in 
most tumors.

SPAG5 expression is correlated with prognosis
The pan-cancer prognosis analysis heatmap reveals a 
strong correlation between SPAG5 expression and can-
cer outcomes across various tumor types (Fig.  2A). 
Univariate Cox regression analysis demonstrates that 
elevated SPAG5 levels pose a risk for patients with ACC, 
KICH, KIRP, kidney renal clear cell carcinoma (KIRC), 
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LIHC, lower grade glioma (LGG), LUAD, mesothe-
lioma (MESO), PAAD, PRAD, SKCM, sarcoma (SARC), 
THCA, UCEC and uveal melanoma (UVM) (Fig.  2B). 
Surprisingly, SPAG5 acts as a protective factor in THYM 
patients. Additionally, Kaplan–Meier survival analysis 
confirms that increased SPAG5 expression is significantly 
associated with shortened overall survival (OS) in sev-
eral cancers, including ACC, CHOL, KICH, KIRP, KIRC, 
LIHC, LUAD, LGG, MESO, OV, PAAD, SKCM, SARC, 
THCA, UVM, and UCEC (Fig. 2C). In contrast, it indi-
cates improved prognosis in READ, THYM, and UCS. 
For progression-free interval (PFI), high SPAG5 expres-
sion is associated with a poor prognosis in ACC, BLCA, 
KIRP, KICH, LIHC, LGG, LUAD, PAAD, PRAD, MESO, 
SARC, UCEC, and UVM (Supplemental Fig.  1). The 
analysis results for disease-specific survival (DSS) and 
disease-free interval (DFI) also demonstrate that elevated 
SPAG5 expression is a significant risk factor for various 
cancers. In summary, high SPAG5 expression is associ-
ated with unfavorable outcomes in various cancers.

Gene set enrichment analysis of SPAG5 in pan‑cancer
The relationship between SPAG5 expression and can-
cer-related signaling pathways was investigated using 
GSEA enrichment analysis to gain deeper insights into 
the molecular mechanisms underlying SPAG5’s involve-
ment in cancer development. The findings revealed a 

strong association between SPAG5 expression and cell 
proliferation pathways. Figure 3A demonstrates a signifi-
cant positive correlation between SPAG5 expression and 
multiple key pathways in the majority of cancers, includ-
ing DNA replication, cell cycle regulation, oocyte matu-
ration, homologous recombination, G2/M checkpoint 
control, and the mechanistic target of rapamycin com-
plex 1 (mTORC1) signaling pathway. It is worth noting 
that SPAG5 expression was enriched in pathways related 
to spermatogenesis and mitotic spindle, consistent with 
the origin and biological function of SPAG5. Further-
more, the GSEA analysis based on the KEGG signaling 
pathway validated the above results. The expression level 
of SPAG5 is significantly enriched in multiple pathways 
related to cellular proliferation, including DNA repli-
cation, the cell cycle, oocyte meiosis, mismatch repair, 
and homologous recombination (Fig.  3B). In summary, 
SPAG5 has the potential to promote the onset and pro-
gression of various tumors through its influence on cell 
proliferation.

Correlation between SPAG5 expression and immune 
characteristics in pan‑cancer
To investigate the relationship between SPAG5 expres-
sion and tumor immunity, we conducted a correla-
tion analysis using the TIMER2.0 database to analyze 
the expression of SPAG5 and the infiltration level of 
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Fig. 1  Differential expression levels of SPAG5 in pan-cancer. A Comparison of SPAG5 expression in different normal tissues based on GTEx 
database. B Comparison of SPAG5 expression between tumor and normal samples in pan-cancer based on TCGA database. C Comparison of SPAG5 
expression between tumor and normal samples based on TCGA and GTEx database. D Comparison of SPAG5 expression between tumor and paired 
normal samples based on TCGA database (ns, p ≥ 0.05; *p < 0.05, **p < 0.01, ***p < 0.001)
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Fig. 2  Association between SPAG5 expression and prognostic. A Summary of the correlation between expression of SPAG5 with overall survival 
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Meier models. B The single-factor Cox regression analysis of SPAG5 in pan-cancer. C The Kaplan–Meier overall survival curves of SPAG5 in pan-cancer
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immune cells in various cancer samples. The results 
revealed a significant correlation between SPAG5 
expression and the infiltration of diverse immune cells 
across different tumor samples (Fig. 4). Interestingly, we 
observed a negative correlation between SPAG5 expres-
sion and the infiltration levels of CD4+ T cells, CD8+ 
T cells, neutrophils, B cells, and dendritic cells in most 
tumors, while a positive correlation was found with the 
infiltration levels of myeloid-derived suppressor cells 

(MDSCs). Notably, abnormal infiltration of distinct 
macrophage types was observed in various tumors. For 
instance, SPAG5 expression exhibited a positive corre-
lation with the infiltration level of M1 macrophages in 
BRCA, HNSC, KIRC, LGG, LIHC, LUAD, LUSC, OV, 
PRAD, STAD, and THCA, and also with the infiltration 
level of M2 macrophages in BRCA, HNSC, and PRAD. 
We further employed the “ESTIMATE” algorithm to 
estimate the proportion of stromal cells and immune 
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Fig. 3  Functional annotation of SPAG5 in pan-cancer. A The HALLMARK gene set enrichment analysis of SPAG5 in pan-cancer. B The KEGG gene set 
enrichment analysis of SPAG5 in pan-cancer
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Fig. 4  Correlation between SPAG5 expression and the immune cell infiltration levels in pan-cancer
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cells in pan-cancer samples. Additionally, we used this 
algorithm to predict the tumor purity of each individual 
tumor sample. The analysis of the results revealed that 
the expression of SPAG5 exhibited a negative correla-
tion with the immune and stromal scores in the major-
ity of tumor types (Supplemental Fig.  2). However, 
there was a significant positive correlation between the 
expression of SPAG5 and tumor purity.

Moreover, we investigated the association between 
SPAG5 expression and immune-related gene expres-
sion, including immune checkpoint genes, major his-
tocompatibility complex (MHC) genes, chemokines, 
and their receptors. Our research findings indicate that 
the expression of SPAG5 is positively correlated with 
immune checkpoint genes such as programmed cell 
death protein 1 (PDCD1), indoleamine 2,3 dioxygenase 1 
(IDO1), programmed cell death 1 ligand 2 (PDCD1LG2), 
T cell immunoreceptor with immunoglobulin and ITIM 
domain(TIGIT) and CD276 in cancers including GBM, 
HNSC, KIRC, LGG, LIHC and PCPG (Fig. 5D). Further-
more, in most cancer types, the expression of SPAG5 
exhibited a strong correlation with the expression of 
various chemokines, their receptors, and MHC genes 
(Fig. 5A–C). In conclusion, SPAG5 potentially exerts its 
role in shaping the tumor immune microenvironment 

through interaction with immune cells and its influence 
on the expression of immune-related molecules.

Value of SPAG5 in the screening, diagnosis and treatment 
of ESCC
This study investigates the role of SPAG5 expression 
in the pathogenesis and progression of ESCC, with the 
aim of determining its potential value in ESCC screen-
ing, diagnosis, and treatment. We first evaluated SPAG5 
expression levels in ESCC tissues through immunohis-
tochemistry, revealing a higher expression in ESCC tis-
sues compared to adjacent non-tumor tissues (Fig.  7A). 
Subsequently, we examined the potential roles of SPAG5 
in ESCC. GO enrichment analysis showed significant 
enrichment of SPAG5 expression in biological processes 
such as chromosome segregation, DNA replication, 
and organelle assembly (Fig.  6A). This was corrobo-
rated by KEGG and GSEA enrichment analyses, which 
indicated a strong association between SPAG5 expres-
sion and cell proliferation-related pathways, including 
DNA replication, the cell cycle, and the mTOR signal-
ing pathway (Fig.  6B–D). These findings suggest that 
SPAG5, being highly expressed in ESCC, may contribute 
to ESCC pathogenesis and progression by promoting cell 
proliferation.
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Fig. 5  Correlation between SPAG5 and immune genes expression in pan-cancer. The Spearman correlation heatmap shows the correlation 
between SPAG5 expression and chemokine receptors (A), major histocompatibility complex genes (B), chemokines (C) and immune checkpoint 
genes (D) in pan-cancer. Red represents positive correlation and blue represent negative correlation (*p < 0.05, **p < 0.01, ***p < 0.001)
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Given the emerging importance of immunotherapy 
in esophageal cancer treatment, we further investigated 
the relationship between SPAG5 expression and immune 
cell infiltration. CIBERSORT analysis revealed that high 
SPAG5 expression is associated with decreased infil-
tration of activated CD4+ T cells and increased infil-
tration of activated DCs, activated NK cells, and M2 
macrophages (Fig.  6E). Correlation analysis confirmed 

these associations (Fig. 6F), suggesting that high SPAG5 
expression may induce an immunosuppressive state in 
ESCC, potentially affecting immunotherapy outcomes. 
We also assessed the impact of SPAG5 expression on the 
response to immune checkpoint inhibitors (ICIs) using 
the TIDE database, finding that high SPAG5 expression 
is associated with a lower immunotherapy response rate 
(Fig.  6G). Additionally, our analysis of the relationship 
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Fig. 6  Value of SPAG5 in the screening, diagnosis and treatment of ESCC. A Enrichment of gene ontology (GO) terms for SPAG5 in ESCC. B 
Enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) terms for SPAG5 in ESCC. C Gene set enrichment analysis of KEGG gene 
sets for SPAG5 in ESCC. D Gene set enrichment analysis of HALLMARK gene sets for SPAG5 in ESCC. E Differences of 22 immune cell subtypes 
in the high and low SPAG5 expression groups in ESCC. F Correlation between SPAG5 expression and the degree of immune cell infiltration in ESCC. 
G Proportional differences in treatment response rates to anti-PD-1 therapy between high and low SPAG5 groups in ESCC patients (ns, p ≥ 0.05; 
*p < 0.05, **p < 0.01, ***p < 0.001)
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between SPAG5 expression and the efficacy of various 
chemotherapy drugs suggested that SPAG5 may enhance 
sensitivity to drugs such as docetaxel, paclitaxel, erlo-
tinib, gemcitabine, and sorafenib (Supplementary Fig. 3). 
In conclusion, SPAG5 may serve as a promising bio-
marker for cancer treatment, playing a pivotal role in 
guiding clinical drug selection and predicting the efficacy 
of immunotherapy in esophageal cancer.

Exploring the impact of SPAG5 on ESCC cell function
SPAG5 mRNA is expressed in TE-1, EC9706, and Eca-
109 cell lines, with the highest expression observed in 
TE-1 cells (Fig.  7B). Consequently, lentivirus-medi-
ated RNA interference (RNAi) was employed to silence 
SPAG5 in TE-1 cells. Western blot analysis (Fig. 7C) and 
qRT-PCR (Fig. 7D) confirmed the effective reduction of 
SPAG5 expression through lentivirus-mediated RNAi. To 
further investigate the impact of SPAG5 expression on 
cell growth, lentivirus-infected TE-1 cells were cultured 
for 5 consecutive days, and proliferation was assessed 
daily using Celigo imaging. The results indicated a signifi-
cant decrease in the growth curve of the shSPAG5 group 
compared to the shCtrl group (Fig. 7F). Moreover, MTT 
assays revealed a significant inhibition of cell viability 
upon SPAG5 silencing (Fig. 7F), confirming the inhibitory 
effect of SPAG5 knockdown on TE-1 cell proliferation. 
Caspase-3/7 activity analysis was performed to assess 
the influence of SPAG5 on cell apoptosis. As depicted in 
Fig. 7E, caspase-3/7 activity significantly increased in the 
LV-shSPAG5-infected group compared to the LV-shCtrl-
infected group. FACS analysis also demonstrated a signif-
icant increase in the percentage of apoptotic cells in TE-1 
cells transfected with SPAG5-shRNA-LV, indicating that 
SPAG5 knockdown can induce apoptosis in ESCC cells 
(Fig. 7G).

Scratch wound healing and Transwell migration assays 
were then utilized to evaluate the impact of SPAG5 on 
cell migration. The wound healing assay results showed 
that SPAG5 depletion significantly attenuated the migra-
tion capability of TE-1 cells (Fig.  7H). The Transwell 
migration assay also revealed a substantial decrease in 
invasion and migration ability in TE-1 cells infected with 

LV-shSPAG5 (Fig.  7I), suggesting that SPAG5 can pro-
mote invasion and migration of ESCC cells.

Lastly, the PathScan Antibody Array Kit was used to 
explore the potential mechanisms through which SPAG5 
may contribute to esophageal cancer. The results demon-
strated that SPAG5 knockdown significantly reduced the 
expression of various proteins involved in cancer phe-
notype-associated signaling pathways, including platelet 
endothelial cell adhesion molecule-1 (PECAM-1), vimen-
tin, CD44, proliferating cell nuclear antigen (PCNA), p27 
Kip1, neural cadherin (N-cadherin), vascular endothe-
lial-cadherin (VE-cadherin), retinoblastoma protein 
(Rb), survivin, human epidermal growth factor receptor 
2 (HER2) and mesenchymal–epithelial transition fac-
tor (Met) (Fig. 7J). Conversely, the expression of proteins 
involved in stress and apoptosis signaling pathways, such 
as stress-activated protein kinases/Jun amino-terminal 
kinases (SAPK/JNK), SMAD family member 2 (Smad2), 
checkpoint kinase 2 (Chk2), p38 mitogen-activated pro-
tein kinase (p38 MAPK) and phosphorylated transform-
ing growth factor-β-activated kinase 1 (p-TAK1) showed 
a significant decrease, while the expression of Bcl-2-as-
sociated death promoter (Bad), extracellular signal-regu-
lated kinase 1/2 (ERK1/2), tumor protein p53 (p53) and 
cleaved poly ADP-ribose polymerase (PARP) showed a 
significant increase (Fig. 7K). In conclusion, SPAG5 may 
exert its effects by modulating proteins involved in cell 
proliferation and apoptosis.

Discussion
In this study, we conducted a comprehensive analysis 
to examine the expression patterns and prognostic rel-
evance of SPAG5 in various types of tumors. The findings 
revealed a significant upregulation of SPAG5 expres-
sion in the majority of tumors, demonstrating a strong 
association with unfavorable prognosis. Previous stud-
ies have reported that a rise in copy number variations 
contributes to the upregulation of SPAG5, which is linked 
to a decrease in overall survival rate among breast can-
cer patients [27]. Furthermore, heightened expression 
of SPAG5 was observed in tissues of cervical and gas-
tric cancers, showing a close correlation with decreased 

Fig. 7  Exploring the impact of SPAG5 on ESCC cell function. A Immunohistochemical expression of SPAG5 in ESCC and corresponding 
adjacent normal tissues. B Expression of SPAG5 mRNA in TE-1, Eca-109, and EC9706. The expression of SPAG5 in TE-1 cells transfected with LV‐
shSPAG5 was measured by Western blotting (C) and qRT-PCR (D). E The effect of SPAG5 knockout on apoptosis of TE-1 cells was studied 
by caspase-3/7 assay. F The effect of SPAG5 knockdown on the viability of TE-1 cells was investigated by the Celigo assay and MTT assay. G The 
percentage of apoptotic cells in TE-1 cells transfected with SPAG5-shRNA-LV was detected by FACS analysis. H The impact of SPAG5 knockdown 
on the migration ability of ESCC cells was investigated through wound healing experiments. I The effect of SPAG5 knockdown on the migration 
and invasive ability of TE-1 cells was investigated through Transwell assays. J The changes in cancer phenotype-related signaling pathways in TE-1 
cells after SPAG5 knockdown. K The changes in stress and apoptosis-related signaling pathways in TE-1 cells after SPAG5 knockdown (ns, p ≥ 0.05; 
*p < 0.05, **p < 0.01, ***p < 0.001)

(See figure on next page.)
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patient survival [17, 28]. Immunohistochemical analysis 
further validated a substantial increase in SPAG5 expres-
sion in esophageal cancer tissues. Therefore, it can be 
inferred that SPAG5 plays a role as an oncogene in esoph-
ageal cancer and has the potential to serve as a promising 
target for cancer gene therapy.

Sperm-associated antigen 5 (SPAG5) is vital for the 
functionality and dynamic regulation of the mitotic 
spindle, mitotic progression, and chromosomal segrega-
tion accuracy [29]. Current studies have confirmed that 
SPAG5 is significantly overexpressed in HCC tissues, 
and its suppression inhibits HCC cell multiplication 
and induces apoptosis [30]. Similarly, knocking down 
SPAG5 in glioblastoma inhibits cell proliferation and 
colony formation while promoting apoptosis [14]. Nev-
ertheless, investigations into SPAG5’s mechanism within 
esophageal cancer remain scarce. Therefore, we con-
ducted further investigations on the influence of SPAG5 
on the proliferation and migration of esophageal cancer 
cells. Our findings indicate that suppressing the expres-
sion of SPAG5 impedes both the proliferation and inva-
sion of ESCC cells while promoting apoptotic cell death. 
Through a series of experimental analyses using Celigo 
and MTT methods, we found that the growth curve of 
the shSPAG5 group decreased significantly, providing 
strong evidence that SPAG5 expression promoted cell 
proliferation. Similarly, our Transwell experiments estab-
lished that knockdown of SPAG5 adversely affects the 
migration and invasion capacity of ESCC cells. Moreover, 
our investigations utilizing Caspase-3/7 activity detec-
tion and FACS analysis confirm that downregulation of 
SPAG5 induces apoptotic cell death specifically in ESCC 
cells. Furthermore, enrichment analysis reveals the con-
nection between the dysregulation of SPAG5 expression 
and multiple biological pathways associated with cell 
proliferation, including cell cycle regulation, oocyte mei-
osis, DNA replication, G2/M checkpoint, and mTORC1 
signaling. These findings collectively support the crucial 
contribution of SPAG5 dysregulation in the growth, inva-
sion, and migration processes of esophageal cancer cells.

Then we used the PathScan Antibody Array Kit to 
explore the potential mechanisms of SPAG5 in promot-
ing esophageal cancer progression. Notably, SPAG5 
downregulation considerably decreased the expression 
of multiple proteins in ESCC cells, including PECAM-
1, Vimentin, CD44, p-TAK1, PCNA, Smad2, p27 Kip1, 
N-Cadherin, VE-Cadherin, Rb, Survivin, HER2/ErbB2, 
Met, SAPK/JNK, p38 MAPK and Chk2. Among these, 
p27 Kip1 is a cell cycle regulatory protein that primar-
ily suppresses the transition from G1 to S phase and also 
regulates the G2/M process and cell division completion 
through CDK-dependent or independent mechanisms, 
thereby influencing essential functions such as cell cycle 

regulation, cell migration, and cell proliferation [31, 32]. 
Survivin, a cellular apoptosis protein family constituent, 
protects cells from apoptosis and regulates mitosis [33]. 
Abnormal overexpression of survivin in cancer is associ-
ated with advanced diseases, increased tumor recurrence 
rates, shortened overall survival, and resistance to chem-
otherapy and radiotherapy [34]. Furthermore, HER2 
overexpression has been detected in gastric and esopha-
geal cancers, making it a prominent target for anticancer 
therapy [35]. These results suggest that SPAG5 may exert 
its function by regulating proteins associated with cell 
proliferation and apoptosis.

Research has demonstrated the pivotal role of infiltrat-
ing immune cells in the tumor microenvironment in initi-
ating and advancing tumor progression, thereby exerting 
a notable impact on the prognosis of cancer patients [36]. 
Consequently, we conducted a comprehensive analysis to 
investigate the relationship between SPAG5 and immune 
cell infiltration. The outcomes revealed a significant asso-
ciation between aberrant infiltration of the majority of 
immune cells and the expression of SPAG5 across vari-
ous malignancies. Notably, in esophageal cancer, there 
was a substantial positive correlation observed between 
the expression of SPAG5 and M2 macrophages. M2 mac-
rophages are capable of secreting a range of anti-inflam-
matory and pro-tumor factors, thereby facilitating tumor 
proliferation, metastasis, angiogenesis, drug resistance, 
and contributing to the establishment of an immuno-
suppressive microenvironment [37]. Specifically, the 
secretion of matrix metallopeptidase 9 (MMP9) and vas-
cular endothelial growth factor A (VEGFA) by M2 mac-
rophages fosters neovascularization, while activation of 
the nuclear factor kB (NF-kB) signaling pathway through 
the cytokine interleukin-1beta (IL-1β) secretion enhances 
the epithelial–mesenchymal transition (EMT) process, 
promoting the migration and invasion of ESCC cells 
[38]. Additionally, we explored the association between 
SPAG5 and immune-related genes, revealing a significant 
positive correlation between SPAG5 expression and sev-
eral immune checkpoint genes, including PDCD1, IDO1, 
PDCD1LG2, TIGIT and CD276. Programmed cell death 
protein 1 (PDCD1) is an immune checkpoint receptor 
expressed in activated T cells, involved in regulating the 
function of effector CD8+ T cells and promoting the 
differentiation of CD4 + T cells into regulatory T cells 
[39, 40]. Similarly, CD276 (B7-H3), a member of the B7 
superfamily, plays a role in modulating T cell-mediated 
immune responses [41]. These findings highlight the 
possible association between SPAG5 and the regulation 
of the tumor microenvironment, potentially influencing 
anti-tumor immune-based therapies. Subsequent investi-
gation further uncovered that patients with high SPAG5 
expression in esophageal cancer exhibited diminished 
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response rates to PD-L1 treatment compared to those 
with low expression levels. These findings underscore the 
involvement of SPAG5 in tumor immune regulation, pro-
moting tumor development, and suggest its potential as 
a promising biomarker for immune checkpoint blockade 
therapy in ESCC.

Our research demonstrates that SPAG5 is signifi-
cantly involved in the pathogenesis and development of 
esophageal cancer. However, the current study has sev-
eral limitations. We have initially explored the potential 
mechanisms of SPAG5 in esophageal cancer; neverthe-
less, its specific molecular pathways and regulatory net-
works have not been completely clarified. Future research 
should include in  vivo experiments with animal mod-
els of esophageal cancer to confirm the role of SPAG5 
in disease progression. Despite using a large amount of 
pan-cancer RNA sequencing data, the sample size spe-
cific to esophageal squamous cell carcinoma is still lim-
ited. It is necessary to collect a wider range of samples 
from esophageal cancer patients in different geographi-
cal, genetic, and lifestyle contexts. This will help assess 
SPAG5’s expression patterns and prognostic implications 
in esophageal cancer more comprehensively.

Conclusion
In summary, SPAG5 is overexpressed in various can-
cers and is closely associated with poor patient progno-
sis. In ESCC, its overexpression is crucial for promoting 
cancer cell proliferation, metastasis, and resistance to 
apoptosis. Additionally, it influences the effectiveness of 
immunotherapy by altering the tumor immune microen-
vironment. These findings suggest that SPAG5 could be a 
highly promising therapeutic target.
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