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Abstract 

Oral squamous cell carcinoma (OSCC) is a prevalent oral malignancy, which poses significant health risks with a high 
mortality rate. Regulatory T cells (Tregs), characterized by their immunosuppressive capabilities, are intricately linked 
to OSCC progression and patient outcomes. The metabolic reprogramming of Tregs within the OSCC tumor microen-
vironment (TME) underpins their function, with key pathways such as the tryptophan-kynurenine-aryl hydrocarbon 
receptor, PI3K-Akt-mTOR and nucleotide metabolism significantly contributing to their suppressive activities. Target-
ing these metabolic pathways offers a novel therapeutic approach to reduce Treg-mediated immunosuppression 
and enhance anti-tumor responses. This review explores the metabolic dependencies and pathways that sustain Treg 
function in OSCC, highlighting key metabolic adaptations such as glycolysis, fatty acid oxidation, amino acid metabo-
lism and PI3K-Akt-mTOR signaling pathway that enable Tregs to thrive in the challenging conditions of the TME. 
Additionally, the review discusses the influence of the oral microbiome on Treg metabolism and evaluates potential 
therapeutic strategies targeting these metabolic pathways. Despite the promising potential of these interventions, 
challenges such as selectivity, toxicity, tumor heterogeneity, and resistance mechanisms remain. The review con-
cludes with perspectives on personalized medicine and integrative approaches, emphasizing the need for continued 
research to translate these findings into effective clinical applications for OSCC treatment.
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Introduction
Oral squamous cell carcinoma (OSCC) is the most prev-
alent malignancy of the oral cavity, accounting for over 
90% of oral cancers [1]. It represents a significant global 
health challenge, with higher incidences reported in 
regions like Southeast Asia and Europe, largely attrib-
uted to risk factors such as betel quid chewing, alcohol 
consumption, and tobacco use [2]. According to recent 
epidemiological estimates, OSCC contributes to approxi-
mately 389,000 new cases and 188,000 deaths annu-
ally worldwide [3]. Despite advancements in diagnostic 
and therapeutic strategies, the 5-year survival rate for 
OSCC remains at approximately 50%, largely due to late-
stage diagnosis, frequent recurrences, and resistance to 
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conventional therapies [4, 5]. Given its aggressive pro-
gression, substantial global burden, and the limitations 
of current therapies, there is an urgent need to develop 
more effective treatment strategies.

Regulatory T cells (Tregs), known for their immuno-
suppressive functions, play a pivotal role in the tumor 
microenvironment (TME) of OSCC (Fig. 1). While Tregs 
are essential for maintaining immune homeostasis, 
tumors often exploit these cells to evade immune surveil-
lance [6]. In OSCC, Tregs suppress the the activity of var-
ious effector immune cells, including natural killer (NK) 
cells, dendritic cells (DCs), and B cells, simultaneously 
enhancing the immunosuppressive effects of cells such 
as tumor-associated neutrophils and myeloid-derived 
suppressor cells (MDSCs) [6–10]. This dual functional-
ity makes Tregs a critical factor in the progression and 
immune evasion of OSCC.

Current research underscores the significant impact 
of Tregs on patient outcomes in OSCC, but several chal-
lenges remain. Studies have highlighted the importance 

of metabolic reprogramming in Tregs, which is essential 
for their function and survival within the TME. Key met-
abolic pathways, such as glycolysis, fatty acid oxidation, 
amino acid metabolism, and the PI3K-Akt-mTOR sign-
aling pathway, enable Tregs to adapt to the harsh condi-
tions of the TME, characterized by hypoxia and nutrient 
deprivation [11, 12]. Additionally, the oral microbiome 
plays a critical role in modulating Treg metabolism, add-
ing complexity to the metabolic landscape of OSCC. 
Despite these insights, the precise mechanisms by which 
these metabolic pathways influence Treg function in 
OSCC remain poorly understood.

This review explores the metabolic dependencies of 
Tregs in OSCC and examines how targeting these path-
ways could pave the way for novel therapeutic strate-
gies. By disrupting the metabolic support that sustains 
Treg function, it may be possible to enhance anti-tumor 
immunity and improve patient outcomes. However, 
the translation of these strategies into clinical prac-
tice is fraught with challenges. Key obstacles include 

Fig. 1 Regulatory T cells as central modulators of immune dynamics in the tumor microenvironment of OSCC. The tumor microenvironment 
(TME) of oral squamous cell carcinoma (OSCC) represents a complex immunological landscape where regulatory T cells (Tregs) emerge as critical 
orchestrators of immunosuppression. Through multiple mechanisms, Tregs effectively suppress anti-tumor immune responses by inhibiting 
the cytotoxic functions of natural killer (NK) cells and  CD8+ cytotoxic T lymphocytes (CTLs), while simultaneously suppressing the pro-inflammatory 
activities of M1 macrophages. By secreting immunosuppressive cytokines, primarily IL-10 and TGF-β, Tregs impair dendritic cell (DC) maturation 
and antigen presentation, promoting the development of tolerogenic DCs. Additionally, Tregs enhance the immunosuppressive functions 
of myeloid-derived suppressor cells (MDSCs) and tumor-associated neutrophils (TANs), thereby further inhibiting CTLs responses and contributing 
to tumor progression. This immunosuppressive network is reinforced by reciprocal interactions between Tregs, M2-polarized macrophages, 
and regulatory B cells (Bregs), creating self-sustaining circuits that foster tumor immune escape. Cancer-associated fibroblasts (CAFs) contribute 
by secreting chemokines that recruit Tregs and producing factors that stabilize their function. Additionally, the reduced Th17/Treg ratio observed 
in OSCC correlates with heightened immune tolerance and advanced disease progression. TME: tumor microenvironment; OSCC: oral squamous 
cell carcinoma; Treg: regulatory T cell; NK: natural killer; CTL: cytotoxic T lymphocyte; DC: dendritic cell; MDSC: myeloid-derived suppressor cell; TAN: 
tumor-associated neutrophils; Breg: regulatory B cell; CAF: cancer-associated fibroblast
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achieving selectivity in targeting Tregs without impair-
ing other immune cells, managing tumor heterogene-
ity, and overcoming resistance mechanisms. The future 
of OSCC treatment may lie in integrative and person-
alized approaches. By combining metabolic targeting 
with other therapeutic modalities, it may be possible to 
develop more effective and tailored interventions, offer-
ing renewed hope for improved management of this chal-
lenging malignancy.

Metabolic adaptations of regulatory T cells 
in the TME of OSCC
Tregs play a crucial role in shaping the immunosuppres-
sive environment of OSCC. Their metabolic program-
ming is essential for maintaining their function and 
survival within the TME. Tregs exhibit significant meta-
bolic flexibility that allows them to adapt to the harsh 
conditions of the TME in OSCC. Within the TME, Tregs 
navigate a range of metabolic stresses such as hypoxia, 
nutrient competition, and the immunosuppressive influ-
ence of immune checkpoints [13, 14].

Hypoxia and glycolytic shift in tregs
Hypoxia represents a fundamental characteristic of the 
TME in OSCC, emerging as a critical regulator of both 
tumor progression and immune cell function. This oxy-
gen-deprived environment develops due to rapid tumor 
proliferation and abnormal vasculature. In response, 
Tregs in OSCC upregulate hypoxia-inducible factors 
(HIFs), particularly HIF-1α, to adapt to these oxygen-
deprived conditions [15]. HIF-1α plays a crucial role in 
reprogramming Treg metabolism, driving a shift from 
oxidative phosphorylation to glycolysis [16–18]. This 
metabolic shift not only supports Treg survival and func-
tionality under hypoxic conditions but also enhances 
their immunosuppressive capabilities. By prioritizing 
glycolytic, Tregs can maintain their regulatory func-
tions within the hypoxic tumor niches, contributing to 
immune evasion and tumor progression.

Nutrient scarcity and alternative energy source
Within the TME, Tregs face severe nutrient scarcity due 
to competition from tumor cells and other immune cells 
for glucose, amino acids, and lipids. To adapt to these 
challenging conditions, Tregs exhibit metabolic flexibility 
that allows them to utilize alternative pathways, such as 
fatty acid oxidation (FAO) and amino acid metabolism, 
to meet their energy demands [19, 20]. This metabolic 
plasticity enables Tregs to maintain their suppressive 
functions even under conditions of glucose deprivation. 
Additionally, Tregs can metabolize lactate, a byproduct of 
aerobic glycolysis prevalent in the TME, to support their 
energy demands and maintain stability [21, 22].

Metabolic flexibility and adaptation in tregs
The ability of Tregs to switch between different meta-
bolic pathways is a critical aspect of their adaptability 
in the TME [23, 24]. Beyond glycolysis and FAO, Tregs 
can utilize oxidative phosphorylation when conditions 
permit, thus exhibiting a high degree of metabolic flex-
ibility [25, 26]. This adaptability is regulated by key 
signaling pathways such as the PI3K-Akt-mTOR axis, 
which integrates various metabolic cues and dynami-
cally adjusts Treg metabolic programs. By fine-tuning 
their metabolic states, Tregs optimize their survival 
and immunosuppressive functions amidst the dynamic 
and hostile environment of the TME  .

Regulation of treg metabolism by immune checkpoints.
Immune checkpoints, such as CTLA-4 and PD-1, play 
pivotal roles in modulating Treg function and metabo-
lism within the TME [27]. Tregs express checkpoint 
molecules, including PD-1, CTLA-4, LAG-3, ICOS, 
and TIM-3, making them key targets for immune 
checkpoint blockade therapies. These checkpoints not 
only reinforce Treg-mediated immunosuppression but 
also influence their metabolic pathways. For instance, 
engagement of PD-1 on Tregs enhances FAO while sup-
pressing glycolysis, promoting more sustainable energy 
production under nutrient-limited conditions [26, 28]. 
Additionally, the activation of these checkpoints helps 
Tregs conserve energy and maintain their suppressive 
phenotype despite the metabolic stresses of the TME. 
Specific checkpoints further shape Treg metabolic 
reprogramming. LAG-3 supports Treg immunosup-
pressive capabilities by modulating Myc-dependent 
pathways, while lactate absorption can upregulate PD-1 
expression on Tregs [29, 30]. Similarly, glycolytic pro-
cesses in Tregs are influenced by ICOS and TIM-3, with 
implications for their roles in tumor immunology and 
potential anti-tumor therapies [31, 32]. Targeting these 
immune checkpoints offers dual therapeutic benefits: 
disrupting Treg suppressive functions and altering their 
metabolic programming to reduce their immunosup-
pressive capacity in OSCC.

Core metabolic pathways driving regulatory T cell 
function in OSCC
Tregs rely on several key metabolic pathways to main-
tain their immunosuppressive functions and adapt to 
the harsh conditions of the TME. In OSCC, these path-
ways include glycolysis, fatty acid metabolism, amino 
acid metabolism, PI3K-Akt-mTOR pathway and the 
adenosine metabolism (Fig. 2).
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Glycolysis and its impact on treg proliferation 
and suppression
Glycolysis is a fundamental metabolic pathway that 
provides rapid energy through the breakdown of glu-
cose into pyruvate and ATP. This process is tightly 
linked to the function of various immune cells, sup-
porting tumor growth, metastasis, and chemoresist-
ance [33]. In the hypoxic and acidic TME of OSCC, 
where lactate accumulates, Tregs upregulate glycolytic 
enzymes to meet their energy demands [22, 34]. And 
a spatial transcriptomics study has revealed a connec-
tion between enhanced lactate utilization, Treg infil-
tration, and elevated HIF1A expression in OSCC [35]. 
The increased glycolytic activity not only facilitates 
Treg proliferation but also strengthens their immuno-
suppressive functions, enabling effective modulation 
of anti-tumor immune response. Moreover, glycolysis 
is positively correlated with the expression of PD-L1 
in OSCC, which in turn contributes to immune eva-
sion and tumor progression [36]. These findings sug-
gest that the glycolytic pathway plays a central role in 

Treg-mediated immunosuppression within the OSCC 
TME.

Fatty acid oxidation and the long‑term survival of tregs 
in OSCC
FAO is another critical metabolic pathway for Tregs, pro-
viding sustained energy through the breakdown of fatty 
acids. FAO is particularly important in nutrient-deprived 
environments like the TME of OSCC. FAO provides sus-
tained energy and essential reducing equivalents, sup-
porting the long-term survival and stability of Tregs [25, 
37–39]. Inhibition of mTOR, a key regulator of metabo-
lism, shifts Tregs from glycolysis to FAO, further rein-
forcing their immunosuppressive functions [40]. High 
expression of the fatty acid receptor CD36 in OSCC has 
been linked to metastasis and mitochondrial health in 
Tregs, enabling adaptation to lactate-rich environments 
[41, 42]. CD36 might support mitochondrial health and 
biogenesis of Treg by providing lipid signals, and pro-
gram Tregs to adapt to lactate-rich TME (Fig. 3D) [24]. 
Arachidonic acid (AA) metabolism, a polyunsaturated 

Fig. 2 Metabolic and immunosuppressive roles of Treg cells in the tumor microenvironment of OSCC. The tumor microenvironment (TME) of oral 
squamous cell carcinoma (OSCC) is characterized by elevated levels of immunosuppressive metabolites, with lactate accumulation from enhanced 
aerobic glycolysis and increased adenosine generation through CD39/CD73-mediated ATP hydrolysis, suppress the anti-tumor immune functions. 
To maintain their suppressive capabilities, Tregs undergo significant metabolic reprogramming, characterized by enhanced fatty acid oxidation 
(FAO) and fatty acid synthesis (FAS) pathways, regulated by sterol regulatory element-binding proteins (SREBPs). The metabolic interplay is further 
complicated by competition between Tregs and tumor cells for essential nutrients, including glucose and fatty acids, creating a metabolically 
hostile environment for anti-tumor immune responses. Critical molecular pathways, including the indoleamine 2,3-dioxygenase 1 (IDO1)-mediated 
conversion of tryptophan to kynurenine, activate the aryl hydrocarbon receptor (AHR) to promote Treg differentiation, while cyclooxygenase-2 
(COX-2)-derived prostaglandin E2 (PGE2) enhances Treg accumulation through nuclear receptor 4a (Nr4a) upregulation. Tregs also secrete 
immunosuppressive cytokines, including IL-10, TGF-β, and IL-35, which suppress effector immune responses and facilitate tumor progression. 
Further, Tregs employ PD-1 and CD25 to maintain their suppressive phenotype and survival under the metabolically hostile conditions of the TME. 
TME: tumor microenvironment; OSCC: oral squamous cell carcinoma; FAO: fatty acid oxidation; FAS: fatty acid synthesis; SREBP: sterol regulatory 
element-binding protein; IDO1: Indoleamine 2, 3-dioxygenase 1; AHR: aryl hydrocarbon receptor; COX-2: cyclooxygenase-2; PGE2: prostaglandin E2; 
Nr4a: nuclear receptor 4a
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fatty acid, were significantly activated in OSCC patients. 
Cyclooxygenase-2 (COX-2), an enzyme that plays a cru-
cial role in AA metabolism, has also been observed with 
an increase in OSCC [43]. Prostaglandin E2 (PGE2), a 
COX-2 product, promotes tumor progression by increas-
ing Treg numbers through inducing nuclear receptor 4a 
(Nr4a) expression [44, 45]. FAO thus enables Tregs to 
maintain their suppressive activities even when glucose 
availability is limited, thus ensuring their persistence in 
the TME.

Amino acid metabolism: the kynurenine pathway and its 
role in treg‑mediated immune evasion
Amino acid metabolism, particularly tryptophan metab-
olism via the kynurenine pathway, plays a significant 
role in Treg function in OSCC [46–48]. The enzyme 
indoleamine 2,3-dioxygenase 1 (IDO1) converts trypto-
phan to kynurenine, which activates the aryl hydrocar-
bon receptor (AHR), enhancing Treg immunosuppressive 
capabilities (Fig.  3B) [49–51]. IDO has been reported 
to be a significant negative prognostic factor in patients 

with OSCC, contributing to immune evasion by trigger-
ing MDSC activation and proliferation through Tregs [7, 
52]. Other amino acids, such as arginine and glutamine, 
also support Treg function and proliferation [53–55]. The 
manipulation of amino acid metabolism offers a potential 
strategy to disrupt Treg-mediated immune suppression 
in OSCC.

PI3K‑Akt‑mTOR pathway: central to treg metabolic control 
and immune suppression
The PI3K-Akt-mTOR signaling pathway is a crucial 
regulator of Treg metabolism, integrating various 
metabolic signals to control cell growth, proliferation, 
and survival [29, 56]. This pathway is also involved in 
the cell proliferation as well as glucose, fatty acid and 
amino acid metabolism [57, 58]. In OSCC, this path-
way modulates glucose uptake, glycolysis, and lipid 
metabolism, ensuring that Tregs can adapt to the 
dynamic conditions of the TME (Fig. 3C) [54, 59, 60]. 
Activation of the PI3K-Akt-mTOR pathway supports 
Treg survival and enhances their suppressive function 

Fig. 3 Key metabolic pathways modulating Tregs functions in the tumor microenvironment of OSCC. The suppressive function of regulatory T cells 
(Tregs) in the tumor microenvironment (TME) of oral squamous cell carcinoma (OSCC) is shaped by key metabolic pathways, including the CD39/
CD73 adenosine axis (A), tryptophan (Trp)–kynurenine (Kyn)–aryl hydrocarbon receptor (AHR) pathway (B) and phosphatidylinositol 3‐kinase (PI3K) 
‐protein kinase B (Akt)‐mammalian target of rapamycin (mTOR) Pathway (C). The CD39/CD73 cascade hydrolyzes ATP to adenosine, which enhances 
Treg suppressive functions and inhibits effector T cells. The Trp–Kyn–AHR pathway, mediated by indoleamine 2,3-dioxygenase 1 (IDO1), converts Trp 
to Kyn, activating AHR to promote Treg stability and immunosuppression. PI3K-Akt-mTOR signaling supports glucose uptake, glycolysis, and lipid 
metabolism to adapt to the nutrient-deprived TME. D Additionally, CD36 is upregulated in tumor-infiltrating Tregs, enhancing fatty acid uptake 
and fatty acid oxidation (FAO). This adaptation allows Tregs to survive and function effectively in the lactate-rich and nutrient-deprived TME. Treg: 
regulatory T cell; TME: tumor microenvironment; OSCC: oral squamous cell carcinoma; Trp: tryptophan; Kyn: kynurenines; AHR: aryl hydrocarbon 
receptor; PI3K: phosphoinositide 3-kinases; AKT: protein kinase B; mTOR: mammalian target of rapamycin; PTEN: phosphate and tensin homologue; 
IDO1: indoleamine 2, 3-dioxygenase 1; FAO: fatty acid oxidation
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by regulating key metabolic enzymes and transport-
ers [26, 61, 62]. Moreover, this pathway influences the 
expression of immune checkpoints such as CTLA-4 
and PD-1, further promoting the immunosuppressive 
environment conducive to tumor growth [63].

The pro-tumor mechanisms of PI3K-Akt-mTOR 
pathway include mutations of the phosphate and tensin 
homologue (PTEN), which is an upstream inhibitor of 
PI3K-Akt-mTOR signaling and plays a role in maintain-
ing Treg cell stability [64–66]. Specifically, the targeted 
elimination of PTEN not only impairs Treg mitochon-
drial health and upregulates glycolysis but also reduces 
the expression of CD25 and FOXP3, collectively under-
mining Treg homeostasis and functional capacity [66, 
67].

Nucleotide metabolism and its role in treg function
Nucleotides are the fundamental building blocks of 
genetic material, playing a role in metabolic biosyn-
thesis and serving as one of forms of energy utilization 
within the body [68]. Tumor cells exhibit enhanced 
nucleotide diversity and active nucleotide biosynthe-
sis. In OSCC, the expression of purine derivatives (e.g., 
hypoxanthine) and nucleosides (e.g., guanosine) are 
upregulated, contributing to tumor progression [69]. 
Targeting nucleotide metabolism, including nucleic 
acid biosynthesis substrates and energy sources within 
the TME, has the potential to enhance anti-tumor 
immune responses. The metabolism of folate, a key 
pathway for nucleotide synthesis, supports T cell acti-
vation, proliferation, and survival [70]. The expression 
of folate-metabolism associated methylenetetrahydro-
folate dehydrogenase (MTHFD) family genes has been 
identified as potential biomarkers for Treg infiltration 
in OSCC [71].

ATP, a purine analogue, plays a pivotal role in mod-
ulating immune responses by activating immune cell 
receptors. In OSCC, ATP is converted to adenosine 
through the enzymatic actions of CD39 and CD73, 
especially when Tregs undergo apoptosis. The biologi-
cal effects of extracellular adenosine are mediated by 
G-protein–coupled adenosine receptors, which are 
classified into A1, A2A, A2B, and A3 subtypes (Fig. 3A) 
[72]. Overexpression of CD73 in the OSCC microenvi-
ronment results in elevated adenosine levels, which are 
associated with poor patient prognosis [73]. Adenosine 
exerts immunosuppressive effects by reducing neutro-
phil adhesion and promoting macrophage production. 
Exogenous adenosine impairs the migratory ability of 
conventional T cells while enhancing Treg expansion 
and immunoregulatory activity via A2AR engagement 
[74, 75].

The pentose phosphate pathway: a critical metabolic hub 
in tregs
The pentose phosphate pathway (PPP) and the glyco-
lytic pathway are two interconnected metabolic routes 
involved in glucose uptake and utilization. The PPP sup-
plies essential precursors for nucleotide biosynthesis and 
generates NADPH, which is critical for fatty acid syn-
thesis and redox balance. Notably, the PPP is frequently 
upregulated in tumor cells. Inhibitors targeting key 
enzymes of the PPP, such as glucose-6-phosphate dehy-
drogenase (G6PD), have been shown to suppress the pro-
liferation and metastasis of OSCC in  vivo [76, 77]. PPP 
is also regulated by the mTOR pathway, with activation 
of mTORC1 stimulating PPP activity [78]. Moreover, 
the PPP has been implicated in T cell metabolism and is 
thought to influence the Th17/Treg balance, potentially 
impacting immune regulation within the TME [79].

Influence of the oral microbiome on treg 
metabolism in OSCC
The oral microbiome, consisting of bacteria, fungi, and 
viruses, profoundly shapes the metabolic and immune 
landscape of Tregs within the TME of OSCC [80, 81]. 
Increasing attention has also been directed toward outer 
membrane vesicles (OMVs), spherical double-layered 
structures released by Gram-negative bacteria during 
growth or in response to environmental stress. With 
diameters ranging from 50 to 250  nm, OMVs carry 
diverse biomolecules, including proteins, lipopolysaccha-
rides (LPS), phospholipids, and periplasmic components, 
playing a pivotal role in regulating the TME [82]. This 
section explores the interplay between the oral microbi-
ome and Treg metabolism, emphasizing the composition 
of the microbiome, microbial metabolites and immune 
modulation.

Microbial composition and its role in OSCC development
The oral microbiome exhibits significant compositional 
alterations in OSCC patients compared to healthy indi-
viduals, characterized by increased microbial diversity 
and dysbiosis [83]. Certain microorganisms, such as 
Fusobacterium nucleatum, Porphyromonas gingivalis, 
Candida albicans, human papillomavirus (HPV) and 
Epstein-Barr virus (EBV) are more prevalent in OSCC 
and have been implicated in tumor progression [84–91]. 
These microorganisms contribute to OSCC progression 
through various mechanisms. For example, Candida 
induces metabolic abnormalities within tumors, causing 
mitochondrial damage and promoting the progression of 
OSCC [92, 93]. Recent studies also highlight the role of 
OMVs from oral bacteria in influencing OSCC behavior. 
OMVs derived from Fusobacterium nucleatum have been 
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shown to activate autophagy and disrupt protein homeo-
stasis in OSCC cells, driving metastasis [94]. Similarly, 
Porphyromonas gingivalis OMVs promote tumor inva-
sion and migration [95]. Interestingly, some researches 
show a possible antitumorigenic effect of Aggregatibacter 
actinomycetemcomitans-derived OMVs in OSCC, high-
lighting an area for further research [96].

Microbial metabolites influencing treg metabolism
Microbial metabolites significantly impact Treg func-
tion and metabolism. Elevated level of lactate and other 
metabolites in the TME enhance the stability and sup-
pressive function of Tregs [97, 98]. For instance, Can-
dida albicans enhances metabolite production in OSCC 
cells, potentially influencing Treg activity indirectly [99]. 
EBV infection reprograms cellular metabolism, favor-
ing the Warburg effect, which increases lactate produc-
tion and supports Treg function [100]  . Additionally, LPS, 
a major OMV component, mediates inflammation and 
drives Treg accumulation in OSCC, contributing to the 
suppression of anti-tumor immunity [101]. These find-
ings reveal a metabolic link between microbial metabo-
lites and Treg activity, further underscoring the complex 
interplay between the microbiome and TME.

Immune modulation by the oral microbiome in OSCC
The oral microbiome exerts profound effects on immune 
modulation in OSCC, particularly by influencing Treg 
activity [80, 102, 103]. Microbial dysbiosis disrupts 
immune homeostasis, promoting an environment that 
favors Treg-mediated immunosuppression [104, 105]. 
HPV infection is associated with metabolic reprogram-
ming in tumor cells, including increased glycolysis, which 
supports Treg activity in head and neck squamous cell 
carcinoma (HNSCC)   [106, 107]. HPV also enhances 
mTOR activity under hypoxic conditions and promotes 
HIF-1 accumulation, leading to metabolic dysregulation 
in OSCC. While HPV does not directly correlate with 
overall survival (OS) in OSCC patients, HPV-positive 
patients often have better prognoses, potentially due to 
microbiome-mediated immune modulation [108, 109].

Within the OSCC TME, bacteria such as Porphy-
romonas gingivalis and Fusobacterium nucleatum acti-
vate key signaling pathways, including PI3K/Akt and 
CDH1/β-catenin, promoting tumor proliferation and 
survival [110, 111]. The microbiome also contributes 
to tumor cell invasion, migration, and Treg differentia-
tion and amplification through the secretion of specific 
metabolites. Fusobacterium nucleatum influences purine 
metabolism, generating metabolites that support Treg 
survival and function within the TME [112–114] . Addi-
tionally, it drives OSCC progression by enhancing gly-
colysis through GLUT1-mediated lactate production, 

creating an immunosuppressive environment that favors 
Treg activity      [22, 115, 116]. Similarly, Porphyromonas 
gingivalis affects ATP metabolism in tumors and con-
verts ethanol into acetaldehyde, a carcinogenic interme-
diate that further accelerates OSCC progression [117] . 
Moreover, outer membrane vesicles (OMVs), known to 
modulate microbial metabolism, are being investigated 
as a novel delivery system for cancer vaccines. Notably, 
OMVs have been shown to reduce Treg populations in 
tumor-draining lymph nodes, highlighting their potential 
to regulate Tregs and reshape the tumor immune micro-
environment [118].

Targeting treg metabolism as a therapeutic 
strategy in OSCC
The metabolic targeting of Tregs in OSCC offers prom-
ising therapeutic potential by disrupting the metabolic 
support of Tregs, thereby reducing their suppressive 
function and enhancing anti-tumor immunity (Table 1). 
These strategies, which include the inhibition of glycoly-
sis, modulation of fatty acid metabolism and amino acid 
metabolism, PI3K-Akt-mTOR pathway inhibitors, and 
adenosine metabolism as well as oral microbiome ther-
apy are actively being explored in clinical trials, showing 
significant potential for improving patient outcomes in 
OSCC.

Inhibition of glycolysis
Tregs in the TME of OSCC rely heavily on glycolysis 
for rapid energy production, particularly under hypoxic 
conditions. Inhibitors of glycolytic enzymes, such as 
2-deoxy-D-glucose (2-DG), impair Treg function by 
limiting their primary energy source [148, 149]. Recent 
studies have demonstrated the synergistic effects of 
combining glycolysis inhibition with chemotherapy or 
radiotherapy, enhancing anti-tumor efficacy by inducing 
apoptosis, DNA damage, and metabolic reprogramming 
[150]. Importantly, glycolysis inhibitors selectively tar-
get Tregs without significantly affecting effector T cells, 
which can utilize alternative metabolic pathways. Ongo-
ing clinical trials aim to evaluate the potential of these 
inhibitors in mitigating Treg-mediated immunosuppres-
sion to improve cancer therapy outcomes.

Modulating fatty acid metabolism
FAO is crucial for the long-term survival and suppressive 
function of Tregs in nutrient-deprived environments like 
the TME [28]. FAO inhibitors, such as etomoxir, disrupt 
Treg metabolism by blocking the oxidation of fatty acids, 
thereby reducing their suppressive capacity [40]. Tar-
geting CD36-mediated lipid metabolism using selective 
inhibitors has shown potential for enhancing anti-tumor 
immunity in OSCC [151]. This approach takes advantage 
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Table 1 Clinical Trials Targeting Metabolism Pathways Related to Head and Neck Carcinoma

Strategies Key Molecules/Targets Inhibitors/Drugs NCT Number Main Results

Inhibition of Glycolysis Glycolysis/ Glucose analog 2-DG NCT00096707 11 pts (32%) had SD, 1 pts (3%) PR and 22 pts 
(66%) PD as best response
RD of 2DG with weekly docetaxel 63 mg/kg/
day [119]

Anaerobic glycolysis Dichloroacetate NCT01386632 No significant differences in Gr 3/4 AE rates 
between dichloroacetate and placebo
CR rates were higher in the dichloroacetate 
group [120]

Modulating Fatty Acid Metabolism CD36 ABT-510 NCT00113334 2 pts had SD, 1 pt had PD
6/6 pts affected by AEs [121, 122]

3-hydroxy-3-methyl glutaryl 
coenzyme A reductase

Atorvastatin NCT04915183 No results posted 

NCT02022293 Enrollment target could not be achieved

Inhibition of Amino Acid Metabolism IDO Epacadostat NCT02318277 Phase 2 ORR 12.0%, higher in CPI-naive 
(16.1%) vs. previous CPI (4.1%) [123]

NCT02178722 84% pts (n = 52) experienced TRAEs, Gr 3/4 
TRAEs reported in 24% pts, and 100 mg 
Epacadostat twice per day plus 200 mg 
pembrolizumab every 3 weeks recommended 
for phase II evaluation [124]

NCT02327078 For pts on Epacadostat 300 mg, preliminary 
DCR was 70%, and 48% pts (n = 42) reported 
TRAEs [125, 126]

BMS-986205 NCT03854032 Higher pTE in radiographic responders vs. 
non-responders (85% vs. 5%), and higher pTE 
in responders in the lymph node compart-
ment (73% vs. 23%), while CR demonstrated 
in 6/16 (38%) pts [127, 128]

Targeting Nucleotide Metabolism PARP Olaparib NCT02882308 Olaparib treatment modulates DNA damage 
response network and exerts extra antitumor 
effect by elevating oxidative stress in HNSCC 
patients [129]

A2aR NIR178 NCT03207867 For HNSCC pts with NIR178 160 mg twice 
daily plus PDR001 with no immuno-oncology 
therapy ORR 13.3 [130]

Modulating Glucose and Fatty Acid 
Metabolism

PI3K Buparlisib (BKM120) NCT02113878 1 of 7 pts experienced Gr 4 rash on DL1, 
DLTs observed (4 of 6 pts) on DL2, and 5 pts 
respond to buparlisib monotherapy [131]

NCT01816984 Gr3 AEs reported in 10 pts, and no DLTs dur-
ing dose escalation, while PR (n = 1) and SD 
(n = 4) reported [132]

Copanlisib NCT02822482 2 of 3 pts experienced DLT on 45 mg DL, 
and no DLT was reported on 30 mg DL. 
Median PFS 2.66 months, and median OS 
6.01 months [133]

Alpelisib (BYL719) NCT02537223 No DLT observed at 200 mg, 2 of 2 pts 
reported DLTs at 250 mg, and RP2D declared 
at 200 mg. 3-year PFS and OS rate both 77.8% 
[134]

NCT01602315 1 PR, 3 unconfirmed PRs and 5 SDs at 300 mg, 
and 1 PD and 1 SD at 400 mg. RP2D declared 
as 300 mg QD (whole tablets) [135]

Bimiralisib NCT03740100 ORR 17%, median PFS 5 months and median 
OS 7 months. 62.5% pts (n = 5) experienced 14 
severe AEs [136, 137]

mTOR Sirolimus(rapamycin) NCT01195922 1 pt had a pathologic CR, while 25% pts (n = 4) 
reported response (1 CR, 3 PRs, 12 SDs) [138]

Temsirolimus (TORISEL) NCT01016769 OR rate 43% (n = 13) with 1 CR, 10 confirmed 
PRs, and 2 unconfirmed PRs. OS 12.9 months 
[139]
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of the reliance of Tregs on FAO, making them more vul-
nerable to metabolic intervention. Although research 
on Treg-specific modulation of fatty acid metabo-
lism remains limited, combining FAO inhibitors with 
immune checkpoint inhibitors may further amplify anti-
tumor immune responses by weakening Treg-mediated 
immunosuppression.

Modulating amino acid metabolism
Amino acid metabolism, particularly the tryptophan-
kynurenine- AhR pathway, is another target for dis-
rupting Treg function [51, 152, 153]. Inhibitors of 
indoleamine 2,3-dioxygenase (IDO), such as epacadostat, 
reduce the production of kynurenine, thereby attenuating 
Treg proliferation and suppressive activity [154, 155]. By 
blocking this pathway, IDO inhibitors can decrease Treg-
mediated immunosuppression and enhance the efficacy 

of other cancer therapies. Clinical trials are currently 
evaluating the effectiveness of IDO inhibitors in combi-
nation with immune checkpoint inhibitors in OSCC and 
other cancers, highlighting their potential to improve 
therapeutic outcomes.

PI3K‑Akt‑mTOR pathway inhibitors
The PI3K-Akt-mTOR signaling pathway is a critical regu-
lator of Treg metabolism, controlling processes such as 
glucose uptake, glycolysis, and lipid metabolism. Persis-
tent activation of the PI3K-Akt-mTOR signaling route is 
common in OSCC [156]. Inhibitors of this pathway, such 
as rapamycin, impair Treg survival and function by dis-
rupting these metabolic processes [12]. These inhibitors 
reduce Treg-mediated immunosuppression and promote 
anti-tumor immunity. In OSCC, epidermal growth factor 
receptor (EGFR) overexpression, an upstream activator 

Abbreviations: ORR Objective response rate, PI3K Phosphoinositide 3-kinase, CPI Immune checkpoint inhibitor, pts Patients, Gr Grade, Trp Tryptophan, Kyn Kynurenine, 
DCR Disease control rate, TRAE Treatment-related adverse event, pTE Pathologic treatment effect, CR Complete response, HNSCC Head and neck squamous cell 
carcinoma, PFR Progression-free survival rate, DL Dose level, DLT Dose limiting toxicity, AE Adverse event, PR Partial response, SD Stable disease, CI Confidence interval, 
PFS Progression free survival, OS Overall survival, RP2D Recommended phase 2 dose, PD Progressive disease, RD Recommended dose, OR Overall response, CBR 
Clinical benefit rate

Table 1 (continued)

Strategies Key Molecules/Targets Inhibitors/Drugs NCT Number Main Results

NCT01172769 Median PFS 56 days, median OS 152 days, 
and PFR 40% at 12 weeks. 87.5% pts (n = 35) 
experienced at least two AEs [140]

Everolimus (RAD001) NCT01333085 No DLT in phase I, and everolimus RD declared 
at 50 mg/w, while 2.6% pts experienced a CR 
(n = 1), 76.3% PR (n = 28), and 21% SD (n = 8). 
OR rate 79% [141]

NCT01051791 CBR 28%, median PFS 1.5 months, and median 
OS 4.5 months. 2 SDs observed (5.5 
and 4.5 months) [142]

CC-115 NCT01353625 22% pts reported Gr 3 drug-related AEs. SD 
observed 53% [143]

EGFR Cetuximab NCT01252628 Median PFS 80 days, no CR found, and 7 PR 
confirmed. Median OS 211 days vs. 256 days 
(cetuximab plus PX-866 vs. cetuximab alone) 
[144]

NCT01256385 Median PFS both 3.5 months. (cetuximab 
plus Temsirolimus vs. Temsirolimus alone)
Median OS 177 days vs. 176 days and OR rate 
12.5% vs. 2.5% [145]

Duligotuzumab NCT01577173 PFS 4.2 months vs. 4.0 months (duligotu-
zumab vs. cetuximab), OS 7.2 months vs. 
8.7 months, and OR rate 12% vs. 14.5% [146]

Erlotinib NCT00942734 OR rate 2.8% at 12 weeks, median PFS 
11.9 weeks and median OS 10.25 months
8% pts (n = 3) achieved PR at 4 weeks [147]

Targeting Oral Microbiome Oral microbiome N-Acetyl Cysteine NCT03982537 Concept is withdrawn and a different concept 
will be submitted the near future

Oral microbiome Probiotic Lozenge
(ProDentis Lozenge)

NCT04925700 No results posted

Oral microbiome MET-4 NCT03838601 No results posted
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of the PI3K pathway, contributes to tumor progression 
[156]. It is noticed that EGFR-targeted antibody, such 
as cetuximab, increased the frequency of  CD4+FOXP3+ 
intratumoral Treg in HNSCC, demonstrated that com-
bining parsaclisib (a PI3K inhibitor) with itacitinib (a 
JAK1 inhibitor) significantly reduced Treg populations 
and increased the CD8/FoxP3 ratio in solid tumors [63, 
157]. Additionally, trials with ipatasertib (an AKT inhibi-
tor) in head and neck cancers aim to improve the TME by 
reducing hypoxia, enhancing radiotherapy efficacy [158]. 
These findings support the use of PI3K-Akt-mTOR inhib-
itors in combination therapies to improve OSCC treat-
ment outcomes.

Targeting nucleotide metabolism
Research indicates that Foxp3 expression in Tregs is 
closely associated with nucleotide metabolism, glycolysis, 
and lipid metabolism, highlighting the metabolic flexibil-
ity of Tregs in adapting to different pathways [26]. Nucle-
otides, as essential components of DNA and RNA, also 
serve as key regulators of intracellular signaling pathways. 
Therapeutic strategies targeting nucleotide metabolism 
hold significant promise for OSCC treatment. CD39 
and CD73 are essential to adenosine metabolism, which 
affect Treg activity. Preclinical studies and mouse tumor 
models have demonstrated the efficacy of agents that 
block CD39 and CD73 activity or employ selective A2AR 
inhibitors to disrupt adenosine-mediated immunosup-
pression [159, 160]. These inhibitors, including CD39/
CD73 blockers and A2a/A2b receptor antagonist, effec-
tively reduce the immunosuppressive capacity of Tregs 
mediated by adenosine [161–163]. Notably, adenosine 
metabolism is enhanced in OSCC, further contributing 
to tumor progression [164]. Although clinical trials spe-
cifically targeting nucleotide metabolism in Tregs remain 
limited, ongoing research underscores the potential of 
adenosine metabolism inhibitors to reduce tumor growth 
and enhance anti-tumor immune responses. Further 
investigations are needed to elucidate the molecular 
mechanisms underlying these therapies to facilitate their 
clinical application.

Targeting oral microbiome
The oral microbiome’s influence on Treg metabolism 
offers exciting opportunities for therapeutic interventions 
in OSCC. Targeting specific microbial populations or 
their metabolites can reshape the metabolic environment 
of the TME, reducing Treg-mediated immunosuppres-
sion and enhancing anti-tumor immunity. For instance, 
manipulating the abundance of Fusobacterium nuclea-
tum  or Prevotella intermedia has been shown to alter 
the TME, improving the efficacy of immunotherapies 
[165–168]. Remarkably, a combined treatment involving 

Fusobacterium nucleatum OMVs and oncolytic viruses 
significantly decreased Treg populations and upregu-
lated PD-L1 expression in tumor tissues, thereby enhanc-
ing the effects of immune checkpoint therapies [169]. 
Moreover, probiotics or antibiotics could be explored as 
potential therapies to restore a healthy microbiome bal-
ance, thereby modulating Treg function and enhancing 
anti-tumor immune responses. Such approaches under-
score the importance of the oral microbiome as a novel 
and promising target in OSCC treatment.

Challenges and future directions for targeting 
regulatory T cell metabolism in OSCC
Tregs in OSCC holds significant promise for improving 
therapeutic outcomes. However, the translation of these 
strategies from research to clinical application faces 
several challenges. Addressing these challenges while 
exploring future perspectives is crucial for advancing this 
therapeutic approach.

Selectivity and toxicity of treg metabolic inhibitors
One of the primary challenges in targeting Treg metab-
olism is achieving selectivity without causing toxicity 
to other immune cells. Many metabolic pathways that 
are essential for Tregs function also play crucial roles in 
effector T cells and other immune cells [170–172]. For 
instance, glycolysis and FAO are not exclusive to Tregs, 
and inhibiting these pathways could impair the broader 
immune response, potentially leading to unintended 
immunosuppression or other adverse effects [28, 173]. To 
overcome this, therapies must be designed to selectively 
target Tregs or be administered in a way that minimizes 
impact on non-target cells. Research on Treg-specific 
depletion has focused on targets such as CD25, CCR4, 
and CTLA-4, but these strategies have thus far shown 
limited efficacy [174]. Given that Tregs selectively rely on 
certain metabolic pathways, combining metabolic targets 
with Treg-specific approaches could help balance efficacy 
and toxicity in future therapies.

Tumor heterogeneity: a barrier to uniform therapeutic 
responses
The heterogeneity of the TME in OSCC poses a sig-
nificant challenge for uniform therapeutic responses to 
metabolic targeting. Variations in oxygen levels, nutri-
ent availability, and metabolic adaptations among dif-
ferent tumor regions can influence how Tregs and other 
cells respond to metabolic inhibitors [175–177]. OSCC is 
categorized into various subtypes, including basal, mes-
enchymal, classical, and atypical, each with distinct gene 
characteristics, protein expression, and clinical features. 
For example, the atypical subtype is closely associated 
with HPV infection, which further highlights the role of 
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the microbiome in OSCC progression [178]. These varia-
bilities necessitate a more personalized approach to ther-
apy, considering the unique metabolic landscape of each 
tumor. Identifying biomarkers to reflect these metabolic 
differences could enable more tailor treatments, improv-
ing efficacy and minimizing side effects.

Resistance mechanisms to metabolic inhibitors in tregs
Tregs, like cancer cells, can develop resistance mecha-
nisms to metabolic inhibitors [179]. In OSCC, Tregs may 
adapt to metabolic inhibition through mechanisms such 
as upregulation of alternative metabolic pathways, altered 
expression of metabolic enzymes, or changes in cell dam-
age and apoptosis [8, 180–184]. For instance, Foxp3 
reprograms Treg metabolism by suppressing Myc, pro-
moting lipid metabolism over glucose metabolism [25]. 
Tregs also exhibit metabolic changes in mitochondrial 
function and lipid metabolism through fatty acid binding 
proteins (FABPs) mediated pathways [185]. Furthermore, 
Treg apoptosis can promote immunosuppressive resist-
ance in the TME by contributing to adenosine produc-
tion, which in turn shields tumor cells from anti-tumor 
therapies. Understanding these resistance mechanisms 
is critical for developing combination therapies that can 
prevent or overcome resistance. Continuous monitor-
ing and adaptive treatment strategies may be required 
to manage resistance and sustain therapeutic efficacy. 
Future research should focus on elucidating these resist-
ance mechanisms and developing combination therapies 
that prevent or counteract resistance. This could involve 
targeting multiple metabolic pathways simultaneously 
or using adaptive treatment strategies to stay ahead of 
tumor and Treg adaptations.

Managing immune‑related adverse events in treg 
targeting therapies
Manipulating the metabolism of immune cells can lead to 
immune-related adverse events (irAEs), which can range 
from mild to severe [186, 187]. These irAEs arise because 
the metabolic pathways targeted in Tregs are also present 
in other immune cells, leading to unintended activation 
or suppression. Careful monitoring and management of 
irAEs are essential to ensure patient safety during treat-
ment. Strategies such as dose adjustment, combining 
therapies with immunosuppressive drugs, and close clini-
cal monitoring are necessary to mitigate these risks.

Personalized medicine and integrative approaches 
for metabolic targeting
Personalizing metabolic targeting strategies based on 
the unique metabolic profile of each patient’s tumor 

could significantly improve treatment outcomes [188]. 
Advances in genomics, metabolomics, and proteom-
ics offer the potential to identify biomarkers that 
predict response to specific metabolic inhibitors. Tai-
loring treatments to individual patients’ metabolic 
landscapes will enhance efficacy while minimizing 
off-target effects, leading to more precise and effective 
therapies.

Combining metabolic inhibitors with existing can-
cer treatments, such as immune checkpoint inhibi-
tors, chemotherapy, and radiation therapy, may 
further enhance therapeutic efficacy [189]. For exam-
ple, CD36 antagonists have been shown to deplete 
Tregs by affecting lipid metabolism, which restores 
the therapeutic effect of PD-1 antibodies in certain 
tumors [190]. In addition, the interaction between 
ICOS and the mTOR pathway could also affect 
Treg metabolism, offering another potential avenue 
for combination strategies [31]. These integrative 
approaches aim to synergize the effects of different 
modalities, potentially overcoming the limitations of 
monotherapies. Preclinical studies and clinical tri-
als should focus on identifying optimal combinations 
and treatment schedules to maximize anti-tumor 
responses while minimizing adverse effects.

Exploring novel metabolic targets in tregs and the role 
of the oral microbiome in shaping treg metabolism 
for future therapies
Exploring new metabolic targets and pathways spe-
cific to Tregs within the OSCC microenvironment is 
crucial for developing innovative therapies. Beyond 
well-known pathways like glycolysis and FAO, future 
research should investigate less explored metabolic 
pathways, such as the pentose phosphate pathway, 
with a focus on tumor-immune interactions. These 
studies could offer critical insights into Treg metabo-
lism in tumor progression and immune evasion. High-
throughput screening techniques and CRISPR-based 
genetic screens can aid in the discovery of novel meta-
bolic vulnerabilities in Tregs [191].

The oral microbiome plays a significant role in modu-
lating Treg metabolism and function. Therapeutic strat-
egies aimed at manipulating the microbiome—using 
probiotics, prebiotics, or antibiotics—could influence 
Treg activity and enhance anti-tumor immunity [192, 
193]. Further research is needed to unravel the complex 
interactions between the microbiome and Treg metabo-
lism, potentially leading to microbiome-based adjunct 
therapies for OSCC.
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Transformative potential of emerging technologies 
of metabolism research
Tumor metabolism and immunometabolism have 
become increasingly important fields for understanding 
tumorigenesis, progression, and therapeutic resistance. 
While previous research primarily focused on conven-
tional cellular experiments and in  vivo animal studies, 
advancements in multi-omics, single-cell sequencing, 
and spatial techniques have provided new opportuni-
ties for exploring metabolic dynamics in both tumor 
and immune microenvironments [194]. Multi-omics 
technologies allow the quantification of metabolites in 
the TME, revealing the metabolic profiles of tumor and 
immune cells [195]. Single-cell technologies facilitate the 
identification of distinct cellular populations with varying 
metabolic states, providing insight into Treg metabolic 
changes. Spatial techniques further elucidate metabolic 
activities across tumor tissue regions, which can help 
identify the metabolic preferences of tumor-infiltrating 
Tregs [196]. Combining these emerging technologies will 
provide a comprehensive understanding of the TME and 
offer robust support for the translational application of 
metabolism-targeted immunotherapy.

Conclusions
The metabolic targeting of Tregs in OSCC has emerged 
as a promising strategy to enhance anti-tumor immunity. 
This review has provided a comprehensive overview of 
the metabolic targeting of Tregs in OSCC. It highlights 
critical metabolic pathways, such as glycolysis, FAO, 
amino acid metabolism, nucleotide metabolism, and the 
PI3K-Akt-mTOR pathway, which are essential for main-
taining Treg function under the nutrient- and oxygen-
deprived conditions of the TME. Additionally, we have 
highlighted the emerging role of the oral microbiome 
as a crucial modulator of Treg metabolism and OSCC 
pathogenesis.

Therapeutic strategies targeting these metabolic 
dependencies show significant potential in disrupting 
Treg-mediated immunosuppression. These approaches 
include glycolysis inhibitors, FAO modulators, amino acid 
metabolism blockers, and innovative treatments lever-
aging insights from OMVs. However, the heterogeneous 
nature of OSCC necessitates personalized therapeutic 
approaches that consider tumor-specific metabolic signa-
tures, spatial metabolic variations, and individual patient 
characteristics. The advancement of this field relies heavily 
on cutting-edge technologies, including multi-omics plat-
forms, single-cell sequencing, spatial metabolomics, and 
advanced molecular imaging techniques. These tools are 
essential for developing effective personalized metabolic 
targeting strategies and understanding the complex inter-
actions within the TME. Future research should focus on 

developing novel metabolic targeting approaches, under-
standing resistance mechanisms, optimizing combination 
therapies, and successfully translating preclinical findings 
into clinical applications.

The successful implementation of these therapeutic 
strategies requires a coordinated effort among research-
ers, clinicians, and regulatory bodies, along with rigor-
ous clinical validation and continuous technological 
innovation. While challenges remain in addressing the 
complexity of the TME and the dynamic nature of meta-
bolic processes, metabolic targeting of Tregs represents a 
potentially transformative approach in OSCC treatment. 
Through continued research and collaborative efforts, 
this emerging therapeutic paradigm offers new hope for 
patients battling this aggressive malignancy, potentially 
revolutionizing the treatment landscape of OSCC.
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