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Abstract
Background Rectal cancer patients are potential beneficiaries of adaptive radiotherapy (ART) which demands 
considerable resources. Currently, there is no definite guidance on what kind of patients and when will benefit from 
ART. This study aimed to develop and validate a methodology for estimating ART requirements in rectal cancer before 
treatment course.

Methods and materials This study involved 66 rectal cancer patients from center 1 and 27 patients from center 2. 
The ART requirements were evaluated by comparing 8 dose volume histogram (DVH) metrics of targets and organs 
at risk (OARs) between planning and treatment fractions. Tolerance ranges of deviation of DVH metrics were derived 
from 10 patients and applied to assess fractional variability. Eighteen features, encompassing diagnostic, dosimetric, 
and time-related information, were utilized to formulate a stepwise logistic regression model for fraction-level ART 
requirement estimation. The super parameters were determined through 5-fold cross-validation with 250 training 
fractions and the methodology was validated with 109 internal testing fractions and 134 external testing fractions.

Results The area under the curve (AUC) of training dataset was 0.74 (95% CI: 0.61 to 0.85), while in the internal and 
external testing, the AUC achieved 0.76 (95% CI: 0.60–0.90) and 0.68 (95% CI: 0.56–0.81). Using a best (or clinical 
applicable) cut-off value of 33.4% (11%), the predictive model achieved a sensitivity of 46.2% (69.2%) and specificity 
of 97.9% (68.7%). During the modeling, 5 features were retained: Homogeneity index (OR = 6.06, 95% CI: 2.93–14.8), 
planning target volume (OR = 1.77, 95% CI: 1.17–2.69), fraction dose (OR = 45.37, 95% CI: 5.74–469), accumulated dose 
(OR = 2.29, 95% CI: 1.35–4.14), and whether neoadjuvant chemoradiotherapy (OR > 1000).
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Background
Neoadjuvant radiotherapy is a standard of care for 
patients with intermediate or locally advanced rectal 
cancer, generally followed by total mesorectal excision 
surgery, while adjuvant radiotherapy is recommended 
for patients with post-surgery pathological stage II-III 
rectal cancer and a high risk of local recurrence [1, 2]. 
Reduction of internal target margins could mitigate the 
substantial toxicity associated with radiation. However, 
throughout the treatment process, anatomical variations 
in patients may lead to a decrease in target dose coverage 
or an inadvertent overdosage of organs at risk (OARs) 
[3–5]. Adaptive radiotherapy (ART) can be adapted to 
the anatomical variations and the benefits of ART for 
rectal cancer patients have been reported [6–8].

Clinically, the implementation of ART primar-
ily falls into two categories: online and offline [9]. Both 
ART strategies demand significant resources and time, 
involving additionally image acquisition, human review, 
treatment replanning, and quality assurance. It is imprac-
ticable to offer ART to every patient in busy institutions, 
and extending patients’ time onboard for each frac-
tion may negatively impact their adherence. Moreover, 
the benefits of ART vary among patients, and not every 
patient can benefit greatly from it [10, 11]. Therefore, 
proactively selecting patients and determining the appro-
priate frequency of image monitoring or ART implemen-
tation are crucial [12].

Currently, there is no definite guidance regarding the 
criteria for patient and fraction selection for ART [12, 
13]. The assessments of ART requirement utilized in 
studies and in clinic vary among institutions and are usu-
ally judged subjectively based on fractional images [14]. 
Some studies have attempted to predict ART require-
ment using the similarity or features extracted from frac-
tional images [15–17]. Fractional image acquisition may 
not be easy for busy institutions, and predictions before 
treatment course are more helpful to make positive 
responses in target delineation, plan design, and imag-
ing scheduling. Studies in this area primarily employing 
radiomic, geometric, dosimetric, and clinical features to 
predict tumor shrinkage or dosimetric benefits [18]. For 
instance, Hu et al. investigated the correlations between 
clinical features and the potential dosimetric benefit of 
ART for nasopharyngeal cancer patients [19]. However, 
these studies typically focused on only a small number of 
indicators such as planning target volume (PTV) V95% in 
[17] as end point. Consequently, the ART requirements 

of the target volume and OARs were not comprehen-
sively evaluated. Moreover, further investigation into 
predicting fraction-level ART requirements before treat-
ment course may be required.

The aim of the present study was to propose a frame-
work for objectively estimating the ART requirement and 
to apply the methodology for rectal cancer. As shown in 
Fig.  1, we introduced a dose-volume histogram (DVH)-
based Adaptive radiotherapy Requirement Score (ARS) 
to evaluate the necessity of ART for rectal cancer patients 
and investigated the correlation between pre-treatment 
features and ARS. Furthermore, we established a quan-
titative model to predict ARS for untreated patients and 
then assessed its performance using a patient cohort 
from another institution.

Methods
Patient cohort
This retrospective study involves two patient cohorts 
undergoing radiotherapy for rectal cancer at two cen-
ters from March 2021 to March 2023, comprising 359 
fractions of 66 rectal cancer patients at center 1 and 134 
fractions of 27 patients at center 2. All patients received 
6 MV photon Intensity-Modulated Radiation Therapy 
(IMRT) or Volumetric Modulated Arc Therapy (VMAT) 
with four different dose-fraction schemes (50  Gy/25 fx, 
45  Gy/25 fx, 50.4  Gy/28 fx, 25  Gy/5 fx). Fractional CT 
scans (fCTs), were obtained at least once a week with 
diagnostic-level fan beam CT (FBCT, United Imaging 
Healthcare, Shanghai, China) scans at center 1 and high-
quality cone beam CT (CBCT, Varian Medical Systems, 
Palo Alto, CA) scans at center 2. Clinical features were 
collected from electronic medical records (EMRs) and 
dosimetric features were calculated on planning CT 
scans (pCTs) with contours. The study was approved 
by the Institutional Review Boards of Fudan University 
Shanghai Cancer Center (2201250-16) and Chongqing 
University Cancer Hospital (CZLS2023164-A), with the 
requirement for individual informed consent waived.

ART requirement assessment
The main end point was the variation of DVH met-
rics between planning dose distributions and fractional 
dose distribution. These dosimetric variations, associ-
ated with anatomical changes, were utilized to evaluate 
the necessity for ART. For patients at center 1, the dose 
could be calculated directly on diagnostic level FBCT, 
while for patients at center 2, high-quality CBCT scans 

Conclusion ART requirements are associated with target volume, target dose homogeneity, fraction dose, dose 
accumulation and whether neoadjuvant radiotherapy. The predictive model exhibited the capability to predict 
fraction-level ART requirements.
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Fig. 1 General workflow of this study, an ARS predicted model was established in training dataset of center 1 and evaluated in internal and external 
dataset
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were utilized to generate synthetic CT scans for dose dis-
tribution calculations with ArcherQA software (Wisdom 
Technologies, Anhui, China). The structure of the plan-
ning target volume (PTV) on the fCT was transferred 
from the pCT using deformable registration, while the 
OARs were auto-contoured using AI model. Structures 
were then reviewed and approved or edited by a senior 
radiation oncologist. The detail of the imaging devices 
and algorithms can be found in Supplement.

To comprehensively evaluated the dose variations of 
target volume and OARs of rectal cancer, percent devia-
tions of 8 DVH metrics of clinical concerns (PTV D95, 
PTV D2, bladder D15, bladder D50, left femoral head 
(FH-L) D25, FH-L D40, right femoral head (FH-R) D25, 
and FH-R D40) were calculated between dose distribu-
tions of pCT and fCT as DVH-based indicators following 
the methods proposed by Chen et al. [20] The empirical 
distribution of these percent deviations from 51 fractions 
of 10 patients at center 1 was used to determine the toler-
ance range (median 95% interval, 2.5 to 97.5 percentile) 
for each DVH-based indicator. To account the different 
clinical protocol between two institutions, a recalibration 
with the same method was performed to adjust the toler-
ance range at center 2 base on 10 patients from center 2. 
ART requirement estimation involved counting the num-
ber of DVH-based indicators exceeding tolerance. In this 
study, a fraction with two or more (≥ 2) DVH-based indi-
cators beyond tolerance was assigned an ART require-
ment score (ARS) of 1. The detail of the ARS criterion 
can be found in [20].

Feature definition
To account for potential features related to ART, 18 fea-
tures were enrolled into this study which may related to 
PTV volume changes and dosimetric variation base on 
literature or clinical experience, with their definitions 
outlined in Table 1.

Model develop and validation
Descriptive and statistical analyses were conducted 
using R software (version 4.0.3, R Foundation for Statis-
tical Computing, Vienna, Austria). Spearman correlation 
analyses and univariate logistic analyses were utilized 
to investigate features associated with ARS. To enhance 
variable inclusion for screening in the stepwise model, all 
features meeting criteria of p-values < 0.2, or OR > 1000 
in the univariate analysis were integrated into a multi-
variate logistic regression model. A backward stepwise 
strategy based on Akaike information criterion (AIC) was 
employed for feature screening.

The dataset of 359 fractions from center 1 was divided 
into training dataset (n = 250) and internal testing data-
set (n = 109) sets. The hyperparameter including penalty 
parameter of AIC and the number of the maximum step 
was finetune through 200 times repeated 5-fold cross-
validation on the training dataset. Internal testing was 
conducted using the testing dataset from center 1, while 
external testing was performed using the dataset of 134 
fractions from center 2. Risk factors were assessed using 
the odds ratio (OR) value, and model performance was 
evaluated using ROC curve analysis.

Table 1 The definitions of predictive features
Features Definitions Categories
Gender Gender (0 for female and 1 for male) Clinical [21]
Age Age (years) Clinical [21, 22]
BMI Body mass index Clinical [21, 23]
Distance Distance from tumor to anus (mm) Clinical [24]
T_stage T stage (from 0 to 4) Clinical [21, 23]
N_stage N stage (from 0 to 2) Clinical [21]
MRF Mesorectal fascia (negative 0, positive 1) Clinical
EMVI Extramural vascular invasion (negative 0, positive 1) Clinical
Neo_RT Neoadjuvant radiotherapy (0 for not and 1 for yes) Intervention
Concurrent_chem Concurrent chemoradiotherapy (0 for not and 1 for yes) Intervention [23, 25]
PTV_vol Volume of PTV in planning CT (cm3) Planning [23]
IMRT/VMAT Treatment technology (0 for IMRT and 1 for VMAT) Planning
HI Homogeneity index of PTV ((D2-D98)/DRx) Dosimetric
CI Conformity index of PTV ((VRx,PTV)2/(VPTV × VRx)) Dosimetric
Frac_dose Dose per fraction (Gy) Dosimetric
Diff_daytime Absolute daytime (time period) difference between pCT and fCT (hour) Time related [26]
Passed_day The number of days elapsed from planning CT to the current fraction (days) Time related [25]
Accumulated_dose Expected dose received before the selected fraction (Gy) Time related
Dn: minimum dose received by n% of the PTV, DRx: prescription dose, VPTV: volume of the PTV, VRx: volume received prescription dose in the whole body, VRx, PTV: 
volume received prescription dose in the PTV
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Results
A total of 359 fractions with fCTs were collected from the 
66 patients treated at center 1, and 134 fractions from 27 
patients at center 2, the patient characters were show in 
Table 2.

The specific tolerance thresholds of DVH-based indi-
cators derived from 51 fractions at center 1 were (-2.54–
1.05%) for PTV ΔD95 [%], (-3.39–1.37%) for PTV ΔD2 
[%], (-21.30–17.57%) for Bladder ΔD15 [%], (-25.46–
26.77%) for Bladder ΔD50 [%], (-5.88–5.84%) for FH-L 
ΔD25 [%], (-7.92–8.87%) for FH-L ΔD40 [%], (-5.86–
5.52%) for FH-R ΔD25 [%], and (-7.99–8.36%) for FH-R 
ΔD40 [%], and the recalibrated tolerance thresholds of 
center 2 were shown in Supplement. The distribution of 
DVH-based indicators for all 359 fractions at center 1 
and 134 fractions at center 2 are illustrated in Fig.  2(a) 
and Fig. 2(c).

As shown in Fig.  2(b) and Fig.  2(d), the number of 
DVH-based indicators exceeding the threshold for each 
fraction of center 1 and center 2 was calculated. Out of 
the 359 fractions at center 1, 108 (30.1%) had at least 1 
metric above the threshold, 44 (12.3%) had at least 2, and 
12 (3.3%) had at least 3. Based on the distribution, we 
chose to label fractions with at least 2 indicators beyond 
the thresholds with ARS = 1, which allow us to obtain a 
certain proportion of positive samples for subsequent 
analysis, without causing excessive demand for ART.

The Spearman correlation coefficients between features 
and ARS are depicted in Fig.  3. The correlation coeffi-
cient between a single feature and ARS is relatively small 
(∣ρ∣<0.2). The features with the strongest correlation were 
T_stage, Neo_RT, and Age, each with ∣ρ∣=0.12. Among 
the time-related or daytime-related features (Passed_day, 
Accumulated_dose, and Diff-daytime), Accumulated _
dose showed the highest correlation, with ∣ρ∣=0.07.

The results of univariate and multivariate analyses 
are shown in Table  3. No single feature showed signifi-
cant difference between the ARS = 0 and ARS = 1 groups 
(p-values < 0.05), and there were 4 features (Age, PTVvol, 
EMVI, Diff_daytime) with p-values between 0.05 and 0.1, 
and 3 features (HI, Accumulated_dose, Frac_dose) with 
p-values between 0.1 and 0.2. Due to the extremely small 
sample size, or even the absence of samples in a particu-
lar subgroup, T_stage and Neo_RT showed exception-
ally large OR values (> 1000) with a p-value close to 1, for 
example, all samples with Neo_RT = 0 have ARS = 0. We 
believe these factors have significant impact on clinical 
outcomes in reality, and thus, it was included in subse-
quent multivariate analysis. Therefore, in order to include 
the right amount of features for the subsequent multivar-
iate analysis, p-values < 0.2 or OR > 1000 in the univariate 
analysis were selected (a total of 9 features: Accumu-
lated_dose, Age, HI, Frac_dose, IMRT/VMAT, Neo_RT, 
T_stage, EMVI, Diff_daytime). These features were 
included in the backward stepwise logistic regression 
analysis, with all continuous features normalized using 
Z-score before analysis. Through 200 times 5-fold cross 
validation, penalty parameter of AIC = 3 and the num-
ber of the maximum step = 100 were set, and the average 
AUC of cross-validation was 0.74 (95% CI: 0.61–0.85). 
Five features remained after stepwise logistic regres-
sion: HI (OR = 6.06, 95CI: 2.93–14.8), PTVvol (OR = 1.77, 
95%CI: 1.17–2.69), Neo_RT (OR > 1000), Frac_dose 
(OR = 45.37, 95CI: 5.74–469), and Accumulated_dose 
(OR = 2.29, 95%CI: 1.35–4.14).

Figure  4(a)-(d) show the ROC curves of some uni-
variant model in 109 internal validation datasets. The 
classification performance of individual factors was sub-
optimal, with the highest AUC observed for HI, reaching 
0.665 (95% CI: 0.50 to 0.81). Figure 4(e) displays the ROC 
curve of the model in 109 internal validation datasets, 

Table 2 Characteristics of the 66 patients at center 1 and 27 
patients at center 2
Patient characteristics Center 1

(n = 66)
Center 2
(n = 27)

p-value

Gender (%) 0.699
 Male 46 (69.7) 17 (63.0)
 Female 20 (30.3) 10 (37.0)
Age (mean (SD)) 56.3 (13.2) 62.3 (11.11) 0.043
BMI (mean (SD)) 22.9 (2.48) 23.16 (3.21) 0.703
Distance (mean (SD)) 4.90 (2.04) 4.95 (1.44) 0.920
PTVvol (mean (SD)) 1081 (176) 1086 (149) 0.896
HI (mean (SD)) 0.0770 (0.0293) 0.0662 (0.0273) 0.108
CI (mean (SD)) 0.902 (0.0247) 0.919 (0.0152) 0.001
T_stage (%) 0.014
 T2 4 (6.1) 3 (11.1)
 T3 46 (69.7) 10 (37.0)
 T4 16 (24.2) 14 (51.9)
N_stage (%) 0.156
 N0 16 (24.2) 5 (18.5)
 N1 14 (21.2) 11 (40.7)
 N2 36 (54.5) 11 (40.7)
MRF (%) < 0.001
 Negative 48 (72.7) 8 (29.6)
 Positive 18 (27.3) 19 (70.4)
EMVI (%) 0.002
 Negative 47 (71.2) 9 (33.3)
 Positive 19 (28.8) 18 (66.7)
Neo_RT (%) < 0.001
 No 6 (9.6) 13 (48.1)
 Yes 60 (90.9) 14 (51.9)
Chem (%) 0.502
 No 11 (16.7) 3 (11.1)
 Yes 55 (83.3) 24 (88.9)
IMRT/VMAT (%) < 0.001
 IMRT 22 (33.3) 26 (96.3)
 VMAT 44 (66.7) 1 (3.7)



Page 6 of 11Chen et al. Radiation Oncology          (2024) 19:179 

achieving an AUC of 0.76 (95% CI: 0.60 to 0.90). Using 
a predicted probability of ART requirement equal to the 
best cut-off value of 33.4%, the sensitivity was 46.2%, and 
specificity was 97.9%. In clinical practice, this threshold 
can be adjusted according to the resources and needs of 
the institution. For instance, a threshold of 11% may be 
more appropriate if identifying patients who require ART 
is prioritized, resulting in a sensitivity of 69.2% and a 
specificity of 68.7%. Figure 4(f ) illustrates the ROC curve 
of the model using 134 external validation datasets, with 
an AUC of 0.68 (95% CI: 0.56 to 0.81).

Discussion
ART presents challenge due to resource, time, and knowl-
edge requirements. This study aimed to identify features 
associated with ART requirements prior to treatment 
for better early clinical strategy. Our results identified 5 
features—HI, PTVvol, Neo_RT, Frac_dose, and Accu-
mulated_dose—as risk factors. Not neoadjuvant radio-
therapy suggests smaller target volume variations after 
surgery. Interestingly, all non-neoadjuvant radiotherapy 
fractions in center 1 had ARS = 0, while in center 2, only 
8% (5/62) achieved ARS = 1. HI, PTVvol, and Frac_dose 
imply that larger target volume, higher fractional dose, 
and lower homogeneity (in our definition, the higher HI, 
the lower homogeneity) can affect ARS, likely due to ana-
tomical changes induced by single fraction treatment. 

This aligns with previous studies by Zhong et al. [27] 
and Corvo et al. [28], which also demonstrated correla-
tions between PTV volume or fractional dose with ART 
requirements, and HI has an impact on tumor control 
probability, which may also influence tumor deformation 
[29]. Additionally, Sanguineti et al. demonstrated that the 
efficacy of radiotherapy may not be directly influenced 
by concurrent chemotherapy [30]. Among time-related 
features, only Accumulated_dose remained, as patient 
deformation may increase over treatment course, with 
less impact from different daytime conditions.

As shown in Fig.  4, although a single feature may 
exhibit a large OR value, using only one feature to assess 
ART demand is not reliable. Therefore, the application 
of this method must be based on the establishment of 
a multifactorial model using a patient cohort. However, 
our results demonstrate that the model follows consis-
tent patterns across different centers. When features of 
patients from one center are collected and input into a 
model developed by another center, the results of ART 
requirements still provide meaningful guidance. An 
example of using the model from center 1 to predict the 
time-dependent ARS at center 2 is shown in Fig.  5. For 
this patient, there were relatively small deformation dur-
ing the initial fractions. However, as the dose accumu-
lated to a certain extent, significant deformation began to 
occur, leading to substantial dose changes. This indicates 

Fig. 2 (a), (c) Distributions of the DVH-based indicators of the 359 fractions at center 1 and 134 fractions at center 2. The vertical red line represents the 
tolerance range based on 10 patients. The notation on the top of each subgraph shows the proportion of fractions within tolerance. (b), (d) Distribution 
of fractions with the number of DVH-based indicators exceeding the threshold at center 1 and center 2. PTV: planning target volume, FH-L: left femoral 
head, FH-R: right femoral head, Dn: The dose received by n% of the volume in the structure
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an increased requirement for ART, and an imaging exam-
ination or ART implementation can be scheduled for the 
patient.

The distribution of DVH deviations in OARs was simi-
lar between the two centers. However, the PTV ΔD95 
[%] showed significant differences, attributed to the sub-
stantial variations in clinical features of patient cohorts 
such as age and T stage. While the vendor-provided algo-
rithm demonstrated a high gamma passing rate for dose 
calculation on synthetic CT, indicating that this is likely 
not the primary reason for the observed discrepancies. 
For OARs, we also set a lower threshold. This is because 
some OARs, such as the bladder, may overlap with the 
target volume and require adequate dosing to minimize 
recurrence rates.

To avoid data reuse and potential overfitting, we used 
a sample of 10 patients to set the tolerance threshold 

instead of the entire dataset. As shown in Fig. 2, approxi-
mately 95% of the eight indicators for center 1 were 
within the threshold, validating the stability of results. 
For center 2, similar trends were observed, although 
only PTV ΔD95 [%] showed an abnormity with only 78% 
within the threshold. This discrepancy is likely due to 
the smaller number of datasets in center 2 and a slightly 
skewed distribution of observed, which will be addressed 
by incorporating more patient data.

To our knowledge, this is the first study to establish 
fraction-level ART requirements predictive model for 
rectal cancer. Other groups may achieve higher AUCs 
ranging from 0.75 to 0.93 [16, 28–30]. However, these 
models often incorporate more complex features for 
patient-level prediction or rely on daily images, and their 
criteria are relatively subjective, restricting applicability 
across multiple institutions.

Fig. 3 Correlation heat map between features and ARS. The value of the grid indicates the magnitude of the correlation coefficient
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This study also has several limitations. Firstly, in defin-
ing ARS, we only counted the number of dosimetric indi-
cators out of tolerance, which means the PTV and OARs 
were treated equally in our method. To choose compre-
hensive DVH metrics and assign appropriate weights 
considering different clinical protocols will be necessary 
for more accurate assessments in the future. Secondly, 
the tolerance ranges were based on data from only 10 
patients, indicating the need for a larger patient popula-
tion to establish more reliable tolerance ranges for clini-
cal application. Thirdly, the relatively small sample size 
may have resulted in a lack of specific sample types (for 
example, simultaneous Neo_RT = 0 and ARS = 1), war-
ranting further observation.

In summary, we propose a novel strategy to identify 
patients likely to benefit from ART and determine the 
timing of adaptive schedule based on the patient popula-
tion. With this strategy, the PTV margin for patients with 
fewer ART requirements could potentially be reduced, 
along with decreasing onboard imaging or ART schedule 
frequency in clinical practice.

Conclusions
Rectal cancer patients undergoing neoadjuvant radio-
therapy with large PTV, large fractional dose and low 
target dose homogeneity, would theoretically benefit the 
most from ART. Moreover, attention to ART should be 
heightened in the later period of treatment course. The 

Table 3 Characteristics of the 250 training fractions and their results of univariate and multivariate analyses
Characteristics ARS = 0

(n = 219)
ARS = 1
(n = 31)

Univariate analysis Multivariate analysis
OR 95% CI p-value OR 95% CI p-value

Gender (%)
 Male 156 (71.2) 23 (74.2) 1.16 (0.51 ~ 2.89) 0.73
 Female 63 (28.8) 8 (25.8)
Age (mean (SD)) 57.1 (13.6) 22.6 (2.69) 0.70 (0.47 ~ 1.01) 0.06
BMI (mean (SD)) 23.1 (2.57) 21.24 (2.05) 0.85 (0.57 ~ 1.23) 0.39
Distance (mean (SD)) 4.81 (2.03) 5.09 (2.01) 1.14 (0.80 ~ 1.61) 0.47
PTVvol (mean (SD)) 1060 (175) 1120 (171) 1.36 (0.96 ~ 1.90) 0.075 1.77 (1.17 ~ 2.69) 6.8e-3
HI (mean (SD)) 0.0764 (0.0291) 0.0839 (0.0311) 1.22 (0.88 ~ 1.61) 0.19 6.06 (2.93 ~ 14.8) 1.0e-5
CI (mean (SD)) 0.901 (0.0252) 0.899 (0.0247) 0.95 (0.68 ~ 1.34) 0.70
T_stage (%)
 T2 14 (6.4) 0 (0.0) Ref Ref Ref
 T3 161 (73.5) 19 (61.3) > 1000 (< 0.001 ~ > 1000) 0.99
 T4 44 (20.1) 12 (38.7) > 1000 (< 0.001 ~ > 1000) 0.99
N_stage (%)
 N0 54 (24.7) 5 (16.1) Ref Ref Ref
 N1 56 (25.6) 8 (25.8) 1.54 (0.48 ~ 5.38) 0.47
 N2 109 (49.8) 18 (58.1) 1.78 (0.67 ~ 5.63) 0.28
MRF (%)
 Negative 166 (75.8) 21 (67.7) Ref Ref Ref
 Positive 53 (24.2) 10 (32.3) 1.49 (0.64 ~ 3.30) 0.34
EMVI (%)
 Negative 159 (72.6) 17 (54.8) Ref Ref Ref
 Positive 60 (27.4) 14 (45.2) 2.18 (0.98 ~ 4.75) 0.06
Neo_RT (%) > 1000 (< 0.001 ~ > 1000) 0.98
 No 21 (9.6) 0 (0.0) Ref Ref Ref
 Yes 198 (90.4) 31 (100) > 1000 (< 0.001 ~ > 1000) 0.99
Chem (%) -
 No 32 (14.6) 3 (9.7) Ref Ref Ref
 Yes 187 (85.4) 28 (90.3) 1.60 (0.53 ~ 6.95) 0.46
IMRT/VMAT (%)
 IMRT 83 (37.9) 13 (41.9) Ref Ref Ref
 VMAT 136 (62.1) 18 (58.1) 0.85 (0.40 ~ 1.85) 0.67
Frac_dose (mean (SD)) 2.91 (1.41) 3.16 (1.49) 1.82 (0.88 ~ 1.91) 0.18 45.37 (5.74 ~ 469) 6.1e-4
Diff_daytime (mean (SD)) 4.90 (3.14) 5.97 (3.14) 3.88 (0.88 ~ 19) 0.08
Passed_day (mean (SD)) 16.6 (14.7) 17.6 (13.0) 1.07 (0.74 ~ 1.52) 0.72
Accumulated_dose (mean (SD)) 16.8 (13.8) 20.9 (12.8) 1.34 (0.92 ~ 1.96) 0.12 2.29 (1.35 ~ 4.14) 3.5e-3
ARS: The ART requirement score, OR: Odd ratio, CI: Confidence interval, SD: standard deviation
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Fig. 4 (a)-(d) The ROC curves of the univariant model for PTVvol, HI, Frac_dose, Accmulated_dose in 109 internal validation datasets. (e) The ROC curves 
of the multivariant models in 109 internal validation datasets with AUC = 0.76. (f) The ROC curves of the multivariant models in 134 external validation 
datasets with AUC = 0.68. Light blue regions were the 95% CI. The red points indicate the best threshold by making sum of sensitivity and specificity 
maximum, and blue point indicates a threshold that may be clinically applicable. In parentheses is their corresponding cut-off value
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binary logistic predictive model based on pre-treatment 
features exhibits robust predictive ability for estimating 
ART requirements in rectal cancer. The objective nature 
of the DVH-based indicators reduces variation among 
different institutions, and the model’s efficacy was vali-
dated at external institutions as well.
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