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Abstract 

Background Autism spectrum disorder (ASD) is a partially heritable neurodevelopmental trait, and people with ASD 
may also have other co‑occurring trait such as ADHD, anxiety disorders, depression, mental health issues, learning 
difficulty, physical health traits and communication challenges. The concomitant development of ASD and other 
neurological traits is assumed to result from a complex interplay between genetics and the environment. However, 
only a limited number of studies have performed multivariate genome‑wide association studies (GWAS) for ASD.

Methods We conducted to‑date the largest multivariate GWAS on ASD and 8 ASD co‑occurring traits (ADHD, ADHD 
childhood, anxiety stress (ASDR), bipolar (BIP), disruptive behaviour (DBD), educational attainment (EA), major depres‑
sion, and schizophrenia (SCZ)) using summary statistics from leading studies. Multivariate associations and central 
traits were further identified. Subsequently, colocalization and Mendelian randomization (MR) analysis were per‑
formed on the associations identified with the central traits containing ASD. To further validate our findings, path‑
way and quantified trait loci (QTL) resources as well as independent datasets consisting of 112 (45 probands) whole 
genome sequence data from the GEMMA project were utilized.

Results Multivariate GWAS resulted in 637 significant associations (p < 5e‑8), among which 322 are reported 
for the first time for any trait. 37 SNPs were identified to contain ASD and one or more traits in their central trait set, 
including variants mapped to known SFARI ASD genes MAPT, CADPS and NEGR1 as well as novel ASD genes KANSL1, 
NSF and NTM, associated with immune response, synaptic transmission, and neurite growth respectively. Mendelian 
randomization analyses found that genetic liability for ADHD childhood, ASRD and DBT has causal effects on the risk 
of ASD while genetic liability for ASD has causal effects on the risk of ADHD, ADHD childhood, BIP, WA, MDD and SCZ. 
Frequency differences of SNPs found in NTM and CADPS genes, respectively associated with neurite growth and neu‑
ral/endocrine calcium regulation, were found between GEMMA ASD probands and controls. Pathway, QTL and cell 
type enrichment implicated microbiome, enteric inflammation, and central nervous system enrichments.

Conclusions Our study, combining multivariate GWAS with systematic decomposition, identified novel genetic 
associations related to ASD and ASD co‑occurring driver traits. Statistical tests were applied to discern evidence 
for shared and interpretable liability between ASD and co‑occurring traits. These findings expand upon the current 
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understanding of the complex genetics regulating ASD and reveal insights of neuronal brain disruptions potentially 
driving development and manifestation.

Highlights 

Multivariate GWAS resulted in 637 significant ASD associations (p < 5e‑8), among which 322 are reported for the first 
time.

The novel associations mapped to known SFARI ASD genes CADPS, MAPT and NEGR1 and novel ASD genes KANSL1, 
NSF and NTM, associated with immune response, synaptic transmission, and neurite growth, potentially driving 
the gut brain‑barrier hypothesis underpinning ASD development.

CuONPs induce co‑occurrence of autophagy activation and autophagic flux blockade.

Mendelian randomization analyses found that genetic liability for ASRD and DBT have causal effects on the risk of ASD 
while genetic liability for ASD have causal effects on the risk of ADHD, BIP, WA, MDD and SCZ. Bidirectional genetic 
liability causal effects were confirmed between ASD and ADHD childhood.

Keywords ASD, ASD genetically correlated traits, Multivariate GWAS, Mendelian randomization, GEMMA

Introduction
ASD spectrum disorders (ASD) is an umbrella term for 
a group of heterogeneous neurodevelopmental traits 
that manifest in early childhood. ASD is a complex dis-
order with both genetic and environmental risk factors 
[10, 30, 45]. The diagnosis of ASD is based on its key 
characteristics including difficulties in social communi-
cation and interaction, restricted and repetitive behav-
iors, hyperactivity and divergent responses to sensory 
inputs. The most common co-occurring traits in autis-
tic persons are attention deficit hyperactivity disor-
der (ADHD), ADHD childhood, anxiety, bipolar (BP), 
depression, epilepsy, obsessive compulsive disorders 
(OCD) and stress related traits, all of which share over-
lapping diagnostic attributes and challenging symp-
toms with ASD [30, 57]. According to US data, autistic 
children tend to fare less well in educational attainment 
(EA) and about one in three have a reduced intellectual 
ability, as defined by intelligence quotient (IQ less than 
70) [4, 68]. Some children with ASD having higher IQ 
scores also comparatively experience harder academic 
struggles due to co-occurring traits and difficulties in 
social interactions [3].

Together with recent advances in genomics technology 
and pivotal support from the engaged ASD community, 
1,162 genes are currently implicated with ASD develop-
ment and these are curated in the SFARI [2, 19, 52] gene 
module. These genes, with varying degrees of effect, are 
scored using the Evaluation of ASD Gene Link Evidence 
(EAGLE) framework [61]. Surprisingly, while it is known 
that common variants contribute to most of the genetic 
background [18], only a few robust genetic associations 
have been recently reported. Most of these are attrib-
uted to the landmark study conducted by Grove and col-
leagues, employing a large Danish cohort with 18,381 

ASD cases and 27,969 controls, where 12 significant vari-
ant associations were reported [19].

Given that there is overlap in symptoms between ASD 
and ADHD, recent genetics studies found shared genetic 
factors underlying ASD and ADHD [40, 41, 50], with 
partial concordance between bidirectional colocaliza-
tion single nucleotide variants (SNPs). However, these 
studies were limited to general ADHD (onset age 10+), 
and not childhood ADHD. Astoundingly many (47% 
median) autistic children have reported one or more 
gastrointestinal (GI) symptoms [5]. Recently, there have 
been promising results that link microbiome disruption 
and diversity [44] as a novel contributing factor to ASD. 
While Grove and colleagues found that 7 of the 12 ASD 
SNP associations have similar significance towards EA 
and psychosis traits depression and schizophrenia [19], 
still little is known concerning the joint liability and the 
shared genetic mechanisms between ASD and ASD co-
occurring traits including ADHD, ADHD childhood, 
anxiety-stress related disorder (ASRD), bipolar, disrup-
tive behavior disorder (DBD), EA, epilepsy, inflamma-
tory bowel disease (IBD), major depression, obsessive 
compulsive disorder (OCD) and schizophrenia (SCZ). 
Respectively, the 11 co-occurring trait summary statis-
tics are retrieved from large reputable cohorts, listed in 
Table 1 and Supplementary Table 1.

To attenuate the genetic knowledge gaps in ASD and 
expand the exploration of potential shared co-occurring 
trait genetic associations, this study performed multivari-
ate genome-wide association study (GWAS) with sum-
mary statistics from ASD and 11 co-occurring traits from 
large reputable cohorts. To achieve this, colocalization 
(coloc) was systematically applied to test the robustness 
between the shared variants and traits [75]. Mende-
lian randomisation (MR) was further applied, using the 
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multivariate variants and the essential traits, to assess 
liability relationships between ASD and the selected co-
occurring traits [6, 55]. This study seeks to further clarify 
functional, regulatory and tissue type differentiation with 
enrichment and integration of quantified trait loci (QTL) 
while validating our key findings with independently 
sequenced genomes from the GEMMA cohort [70].

Methods and materials
GWAS summary statistics for ASD and ADHD were 
collected from the Psychiatric Genomics Consortium 
(PGC) and iPSYCH [49, 65] studies. Education attain-
ment [47] summary file was collected from the Social 
Science Genetic Association Consortium (SSGAC). 
Additional ASD co-occurring traits, selected based 
on LDSC (LD Score Regression) genetic correlation 

(p-value < 0.05) with ASD, include ADHD childhood, 
bipolar (BP), anxiety-stress disorder (ASRD), disrup-
tive behaviour (DBD), major depression (MDD) and 
schizophrenia (SCZ), with sample sizes ranging from 
31,890 − 765,283 are shown in Table  1 (additional 
details including doi references listed Supplementary 
Table  1). To estimate potential sample overlaps, pair-
wise LDSC intercepts with ASD are calculated and 
reported in Supplementary Table 1. Summary statistics 
are joined, yielding 4,525,476 SNPs, and applied in a 
multivariate GWAS setting. Follow-up analysis includes 
decomposition aiming to detect the most important 
traits while colocalization and Mendelian randomisa-
tion analysis are conducted to explore shared liability as 
shown in Fig. 1.

Fig. 1 Workflow for the analyses conducted in the study. Multivariate GWAS was performed on selected GWAS studies including ASD and 8 
co‑occurring traits: ADHD, ADHD childhood, bipolar, anxiety, disruptive behaviour, educational attainment, major depression and schizophrenia. 
37 SNPs were selected and evaluated with Colocalization and Mendelian Randomization. Further validation of these SNPs utilized pathway and EBI 
eQTL/sQTL catalogs as well as the GEMMA ‑study. The GEMMA whole genome sequencing (WGS) processing included variant calling to infer 
structural and single nucleotide variants (SVs and SNVs) present in the samples
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Multivariate GWAS and determination of central traits
Multivariate GWAS on ASD and ASD co-occurring traits 
were performed using metaPhat/metaCCA software that 
performs multivariate analysis by implementing Canoni-
cal Correlation Analysis (CCA) for a set of univariate 
GWAS summary statistics [12, 36, 58]. The objective of 
metaCCA is to find the optimal genetic effect combina-
tion that is maximally correlated with a linear combina-
tion of the trait variables. ASD multivariate central traits 
are identified by MetaPhat decomposition based on 
iterative tracing of p-values (p) from trait subsets (rela-
tive to 5e-8) and Bayesian Information Criterion (BIC) 
[62] representing model fit. Essentially, driver trait(s) are 
the subsets of the multivariate association that drives the 
p-value, and without the drivers, the multivariate asso-
ciation is no longer significant (p > 5e-8). Similarly, as the 
decomposition processing is exhaustive (iterates from k 
to 1), an optimal subset is identified by comparing BIC 
values [36]. For simplicity, the central traits are the union 
of the driver and optimal BIC traits. Multi-Trait Analysis 
of GWAS (MTAG) [71], a high performance multivari-
ate-GWAS that addresses sample overlap, is additionally 
performed for validation.

Genetic annotations, pathway enrichment and validation
SFARI Base Gene resource, GeneCards and GWAS cata-
log were used to assess the novelty of variants and genes 

associated with ASD [2, 39, 60]. snpXplorer was applied 
towards SNP annotation [69]. Reactome and WikiP-
athway databases pathway enrichments were evaluated 
with the Enrichr tool [31]. Human organ and cell type 
systems enrichment analysis, encompassing 1,466 tissue-
cell type and single-cell RNAseq panels, was conducted 
using WebCSEA [13, 33]. eQTL and sQTL were assessed 
within the QTL catalog, via FIVEx portal [32].

Colocalization analyses
Colocalization was performed for the selected multivari-
ate ASD SNPs to assess if the associated variants in the 
locus are shared genetically between ASD and the 8 co-
occurring related ASD traits to account for erroneous 
results that may follow from analyzing individual SNPs. 
Errors can occur when a SNP associated with trait 1 and 
trait 2 are in linkage disequilibrium (LD). The analyses 
were performed using the R package coloc [20, 33].

The colocalization analysis was conducted using the 
absolute base factor colocalization method (coloc.abf ), 
which is a Bayesian colocalization analysis method. A 
region size window of 100KB (± 50 KB flanking the SNP 
position) was selected to comprehensively span potential 
LD and regulatory elements [53]. The different hypoth-
eses tested include: H0 (no liable variant), H1 (liable vari-
ant only for trait 1), H2 (liable variant only for trait 2), H3 
(two separate liable variants), H4 (common liable variant 

Table 1 Data of ASD and 8 genetically correlated traits (P < 0.05, calculated from LDSC), reported SNP heritability (H2), genetic 
covariance and covariance scores (standard errors) are presented and applied towards multivariate‑GWAS to explore multivariate 
associations and additional trait refinement. More details and excluded traits are listed in supplementary table 1

Abbreviations: ADHD Attention Deficit Hyper Disorder, ADHDCHILD ADHD childhood, ASRD Anxiety-Stress Disorder,DBD Disruptive Behaviour Disorder, EA Education 
attainment, MDD Major Depressive Disorder, SCZ  Schizophrenia
a Grove et al. [19] (PMID: 30804558)
b iPSYCH + deCODE + PGC, Demontis et al. 2023 (PMID: 36702997)
c iPSYCH, Rajagopal et al. 2022 (PMID: 35927488)
d iPSYCH excluding ASD cases Meier et al. 2019 (PMID: PMC6537792)
e Discovery excluding UKB Mullins et al. 2021 (PMID: 34002096)
f Demontis et al. 2021 (PMID: 33495439)
g Discovery cohorts excluding 23andme, Okbay et al. [47] (PMID: 35361970)
h PGC excluding UKB, Wray et al. 2018 (PMID: 29700475)
i PGC Wave 3, Trutbetskoy et al. 2022 (PMID: 35396580)

Trait Heritability (H2) Genetic correlation (rg) P Genetic covariance Intercept

ASDa 0.118 (0.010) na na na na

ADHDb 0.140 (0.010) 0.535 (0.041) 1.44e‑38 0.074(0.006) 0.233 (0.009)

ADHDCHILDc 0.235 (0.015) 0.478 (0.052) 5.21e‑20 0.104 (0.012) 0.260 (0.007)

ASRDd 0.280 (0.027) 0.441 (0.079) 2.22e‑08 0.090 (0.015) 0.221 (0.006)

Bipolare 0.068 (0.003) 0.219 (0.041) 9.67e‑08 0.026 (0.005) 0.032 (0.006)

DBDf 0.100 (0.012) 0.186 (0.07) 0.008 0.026 (0.010) 0.179 (0.006)

EAg 0.321 (0.009) 0.207 (0.025) 9.95e‑17 0.053 (0.007) −0.005 (0.007)

MDDh 0.090 (0.004) 0.505 (0.003) 2.78e‑36 0.037 (0.003) 0.155 (0.005)

SCZi 0.240 (0.007) 0.258 (0.035) 7.87e‑14 0.070 (0.010) 0.018 (0.007)
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shared between the traits). As recommended [74], default 
setting prior probability thresholds were applied: 1e-4 for 
H1, H2 and H3 and 1e-5 for H4 while posterior probabil-
ity (H4 > 90%) is conservatively applied to estimate shared 
liability.

Mendelian randomization analyses
Mendelian Randomization analyses (MR) was conducted 
on the selected multivariate GWAS SNPs based on their 
assigned central traits, to explore the liability, direc-
tion and independent (reverse causation) relationships 
between ASD and its related traits [51]. Instrumental 
strengths, approximated with F1 score > 10, were cal-
culated using SNP effect and standard error values [6, 
&nbsp;49]. To account for the potential biases due to par-
ticipant overlap between cohorts, the lower bound (95% 
confidence interval) of the F1 was calculated [9]. The 
analyses were performed using the platform TwoSam-
pleMR [6].

Whole genome sequencing
The results were validated using yet unpublished data 
from the EU Horizon2020 GEMMA research project 
with genotype variant calls in 112 (49% female) WGS 
samples with 45 ASD probands (42% female) from 
the GEMMA prospective cohort [70]. These samples, 
assayed on whole blood and collected during enroll-
ment, were sequenced with 30-40X coverage on Illumina 
NovaSeq 6000 platform. Data was aligned to GRCh38 
reference genome using bwa mem v0.7.17 [34] and reads 
were sorted and duplicates marked with samtools v1.12 
[35]. Quality control was performed with omnomicsQ 
-software [20]. For variant calling DeepVariant v1.4.0 [54] 
was utilized and variants were annotated with Variant 
Effect Predictor [43] version 112.0.

Statistical analysis
All statistical analyses were performed using R 4.2.2 soft-
ware and available as R markdown results in the github 
project (https:// github. com/ jakel in212/ mvasd_ gwas). 
Genome-wide association is called on the standard and 
strict p-value threshold of 5e-8 (-log10 7.3), to account 
for multiple testing based on the assumption of about 
1-million independent tests [56]. To assess SNP allele 
proportional differences for validation, the phi coeffi-
cient is computed, and statistical significance was deter-
mined using Chi-square test. Fisher’s exact test was used 
when Chi-square assumptions were not met. Bonferroni 
correction is assessed to account for multiple testing of 
the multivariate GWAS involving 9 traits (p < 5.5e-9; 
-log10(p) > 8.25).

Results
GWAS summary statistics
GWAS summary statistics for ASD and ADHD were col-
lected from the PGC and iPSYCH [49, 65] studies. Edu-
cation attainment [47] summary file was collected from 
the Social Science Genetic Association Consortium 
(SSGAC). Altogether, using summary statistics, 11 ASD 
co-occurring traits were assessed for genetic correlation 
with the landmark ASD study [19], the largest genetic 
correlation values, as computed by LDSC [8], were 
between ASD and ADHD (rg = 0.535), followed by MDD 
(rg = 0.505) and ADHD childhood (rg = 0.478). Shown in 
Table  1 below, 8 traits are shown to be genetically cor-
related with ASD (p < 0.05) and additional details of all 
traits are shown in Supplementary Table 1.

Multivariate ASD central trait SNPs, pathway and organ 
tissue enrichment
Multivariate GWAS was performed with ASD together 
with its genetically correlated traits, ADHD, ADHD 
childhood, ASRD, bipolar, DBD, EA, MDD, and SCZ 
(Table  1) and 637 (p < 5e-08) SNP associations were 
found, including 322 variants that are reported for the 
first time for any trait (Supplementary Table  6) accord-
ing to GWAS catalog. Two associations (rs2388334 and 
rs1452075) intersected with the twelve associations 
identified in the landmark common genetic variants of 
ASD study [19]. When assessed at the gene level, all 12 
were concordant (as indicated in STable  6). Decompo-
sition implemented in MetaPhat, using stepwise trac-
ing of p-value and Bayesian information criteria (BIC) 
contributions [36, 62], identified 37 ASD central trait 
SNPs where 16 were identified with multivariate GWAS 
approach (all SNPs p < 5.5e-09; min (-log10(p) 8.67), 
listed in Supplementary Table  2). These 37 multivariate 
ASD SNPs, 17 of which had previously been reported in 
existing GWAS studies, mapped to 35 genes (Table  2) 
and confirmed that 8/35 (ARHGAP32, CADPS, CUL3, 
KANSL1, MACROD2, MAPT, MSRA and NEGR1) are 
known curated SFARI genes, with ASD susceptibility 
EAGLE scores < = 3 (indicating limited evidence) [61]. 
The variant rs538628 within the NSF gene, a regulator 
of AMPA receptor endocytosis and critical for mediat-
ing glutamatergic synaptic transmission [25], along with 
the variant rs62061734 in the MAPT gene, are identified 
to associate with the optimal central traits of ASD, EA 
and SCZ (MAPT variant rs62061734 p = 3.98e-31, NSF 
variant rs538628 p = 1.99e-27, Supplementary Table  2, 
trace plots are provided in supplementary data). Nota-
bly, NSF was previously implicated only in mouse models 
exhibiting ASD-like behaviors [76]. Shown in the same 
table, MTAG [71] multivariate GWAS validation was 

https://github.com/jakelin212/mvasd_gwas
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performed to address iPSYCH cohort sample overlaps 
between ADHD and ASD [40, 41] subjects where similar 
results were found (MAPT variant rs62061734 p = 1.99e-
20, NSF variant rs538628 p = 5.37e-18).

Shown in Supplementary Table 7, Fig. 2e and Supple-
mentary Fig.  3, pathway enrichment using the 35 asso-
ciated genes was performed with Enrichr [31]. Nervous 
systems development (GO:0007399) was found to be the 
most significant (p = 1.73e-08) while neural and microtu-
bule structural related pathway hits from Reactome [16] 
and WikiPathways [46] featured pathways were Inclu-
sion Body Myositis (MAPT and PSEN1, p = 1.27e-04) and 
COPII-mediated Vesicle Transport (NSF and SERPINA1, 
p = 4.69e-03). Enrichment analysis was conducted using 
the WebCSEA tool, which identified statistically sig-
nificant associations (Fig.  2f, p < 1e-03) with the follow-
ing human organ systems: digestive, nervous, sensory, 
lymphatic, and respiratory. As shown in Supplementary 
Fig. 4, the most enriched tissue types are related to cer-
ebrum, cortex, intestine and blood related components 
discerned from 1,355 tissue-type (TS) as well as data 
from the human brain single cell project [33].

Colocalization analyses
Colocalization analysis was conducted on the 37 multi-
variate SNP associations identified to contain ASD as a 
central trait. The comparative analysis was performed 
on the relevant mapped gene window, from start to end 
while adding 25 KBs on both ends to cover regulating 
and promoter regional elements. For the two SNPs that 
did not map to a gene, the window size used for the colo-
calization analysis was 100 KB (± 50 KB), estimated and 
derived from the gene median length of 24KB [17]. Addi-
tional information concerning the number of regional LD 
adjusted SNPs applied to the colocalization test is shown 
in Supplementary Table 3.

A total of 19/37 SNPs showed strong evidence for a 
common liability variant with ASD (H4 > 90%, details 
shown in Supplementary Table  3) and the traits hav-
ing common ASD liable variants included EA (9), SCZ 
(6), BP (2), ADHD (1) and ASRD (1). Notably, SNP 
rs62061734, mapping to the MAPT gene and rs538628, 

mapping to the NSF gene had H4 of 99% for EA and SCZ, 
respectively (shown in Fig.  2a-b) while SNP rs568828, 
mapping to the NTM gene had H4 of 99% for SCZ and 
ADHD (Supplementary Table 2).

Mendelian randomization analyses
Mendelian randomization analysis was conducted for the 
8 traits genetically correlated (Table  1) with ASD. The 
lead SNPs, with F1 scores > 25 (listed in Supplementary 
Table 4, where > 10 is considered strong [48] were found 
to lend significantly increase probability of ASD (p < 0.001 
both Inverse Variance Weighted (IVW)-method and MR-
Egger (EA and SCZ are shown in Fig. 2c-d), accounting 
for horizontal pleiotropy and multiple testing with Bon-
ferroni correction of 8 traits). Based on TwoSampleMR 
Steiger [22] test for directionality and shown in supple-
mentary Table 4 A, genetic liability to ADHD childhood 
(p < 2.44e-116), ASDR (p < 9.08e-166) and DBD (p < 1.20e-
45) were found to have causal effects on the risk of ASD. 
Shown in Supplementary Table  4B, genetic liability to 
ASD (p < 4.1e-115) were found to have causal effects on 
the risk of ADHD, ADHD childhood, BIP, EA, MDD and 
SCZ. The related MR results adhere to the MR-STROBE 
guidelines [64].

Validation
To assess the impact of the reported multivariate associa-
tions on expression (eQTL) and splicing regulatory quan-
titative trait loci across tissues, the majority (22/37 eQTL, 
24/37 sQTL, details listed in Supplementary Table 9) of 
the associations found are cited in the EBI QTL Catalog 
[28] where they associate (adjusted p < 0.05) with adipose, 
brain and neuron tissues. Furthermore, filtering on Gen-
eCards [60] curations, the presented ASD central genes 
are enriched with systems related to gut, microbiome, 
intestinal immune, enteric nervous and central nervous 
systems (Supplementary Table 5).

Additionally, the distribution of these ASD-central trait 
related SNPs in 112 (49% females; 45 ASD probands (42% 
females) prospective from-birth GEMMA [70] cohort 
participants was investigated. SNP distribution differ-
ences were for variant rs568828, mapped to NTM and 

(See figure on next page.)
Fig. 2 Results from the post GWAS analysis of the 37 selected SNPs. a,b) Colocalization processing using the original summary statistics of ASD 
and EA for (a) rs62061734 (MAPT, failed colocalization with H4 probability 8.19%, p = 0.09), ASD and NSF for (b) rs538628 (NSF, SCZ passed 
colocalization with H4 probability 94%, p = 1.1e‑05), depicting supporting regional SNPs (x‑axis) and their negative log10 p‑value (y‑axis) 
and effect direction (circles negative, triangles positive). c,d) Mendelian randomization (MR) results using inverse variance weighted (IVW) ‑method 
for association of ASD SNP effects (y‑axis) and c) EA and d) SCZ effects (x‑axis). e) Pathway analysis for the genes associated with the selected SNPs 
shows enrichment in processes related to neurons using Reactome database. The length of the bar represents the significance of that specific 
gene‑set or pathway and the color indicates the significance of the pathway. Details of the pathways and genes with their associated p‑values are 
listed in Supplementary Table 8. f) Organ system enrichment was applied using WebCSEA, using the selected 37 multivariate gene associations 
and found enrichment (p < 1e‑03) with the ASD relevant digestive, nervous and sensory organ systems as well as lymphatic and respiratory systems
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Fig. 2 (See legend on previous page.)
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rs62243489, mapped to CADPS. The NTM gene, pre-
viously associated with emotional learning deficits in 
murine models [42], encodes neurotrimin, while CADPS 
encodes a neural/endocrine-specific membrane protein 
regulating calcium. The NTM SNP (rs568828) was pre-
sent in 42 of 45 probands (92%) compared to 100% of 
controls (67 of 67). In contrast, CADPS SNP (rs62243489) 
was found in 19/67 controls (28%) and enriched in 21/45 

probands (47%). As listed in Supplementary Table 8, the 
phi coefficient for NTM between probands and con-
trols was 0.2 (p = 0.062), while for CADPS, it was − 0.19 
(p = 0.047). When stratified by sex, the phi coefficient for 
NTM in males was 0.15 (p = 0.456) and 0.27 (p = 0.040) 
in females. For CADPS, the phi coefficients were − 0.18 
(p = 0.182) in males and − 0.20 (p = 0.140) in females. 
Notably, the NEGR1 gene (variant rs6699841), involved 

Table 2 Multivariate GWAS ASD‑central SNPs tested with coloc and MR tests towards the identified ASD central traits, with all 8 traits 
passing MR and 19 gene regions/traits pairings passed Coloc (H4 > 90%), indicated with +. Coloc and MR details are additionally 
listed in supplementary tables 3 and 4. The order of the central traits are determined by p‑value importance during decomposition 
processing. Known GWAS associations (17/37) are marked as * while SFARI ASD gene members (8) are in bold

Rsid Gene Chr: pos: ref > alt SNP consequence Central traits

rs6699841 NEGR1 1:72645850:A > G intergenic EA, ASD

rs67980110 ENSG00000237435 1:96470851:T > C regulatory EA, ASD, ADHD

rs2391769* NA 1:96978961:A > G intergenic ASD, ADHD

rs58378462+ ENSG00000221849 2:104138639:A > G intron ASD, EA+, ADHDCHILD, ADHD

rs11897599 MRPS18BP2 2:140449566:A > G downstream EA, ASD, ADHD

rs78826721+ NDUFS1 2:207002314:A > G intron SCZ+, EA, ASD

rs6748341* CUL3 2:225377574:T > C regulatory ASD, EA, SCZ

rs1452075* CADPS 3:62481063:T > C intron EA, ASD

rs62243489+ CADPS 3:62482927:T > G intron EA+, ASD

rs6806355+ NA 3:70488292:T > G intergenic BP, SCZ+, EA+, ASD

rs35544582+ SLC30A9 4:42044036:A > C intron EA+, ASD

rs67779882 NA 5:92488009:A > G intron, non_coding EA, ASD, ADHD

rs406413* ENSG00000246316 5:113898581:T > C intron EA, ASD

rs2388334* ENSG00000271860 6:98591622:A > G intron BP, EA, ASD

rs6999466+* MSRA 8:10265712:A > G intron MDD, EA+, ASD

rs877116* ENSG00000253695 8:10712945:T > G intron ASD, ASRD

rs2409743* ENSG00000270076 8:11070360:T > G intron, non_coding ASD, ASRD

rs2409784+ BLK 8:11396856:A > C intergenic ASD, ASRD+

rs11775333 NA 8:142637867:T > C regulatory EA, ASD

rs11143599 ENSG00000221844 9:76101777:T > G intron, non_coding BP, ASD

rs1848797+* ENSG00000238280 10:64552934:A > G intron BP+, EA, ASD

rs12761761* BNIP3 10:133775375:T > C downstream EA, ASD

rs2237943 SERGEF 11:17838248:T > C regulatory EA, ASD, ADHD

rs4609618 ARHGAP32 11:128818792:A > C intergenic ASD, ADHD

rs568828+ NTM 11:131732259:T > G intergenic ASD, SCZ+, ADHD+

rs177413+ PSEN1 14:73683194:T > C intergenic BP+, ASD, EA, SCZ

rs736281* NA 14:94287830:T > C intron EA, ASD

rs28929474* SERPINA1 14:94844947:T > C intron EA, ASD

rs62065453+* ENSG00000131484 17:43573419:A > G regulatory ASD, EA+, SCZ+

rs62057107+* CRHR1 17:43896032:T > C intergenic ASD, EA+, SCZ+

rs62061734+* MAPT 17:44018488:T > C intron ASD, EA+, SCZ

rs2696633+ KANSL1 17:44270059:T > G intron ASD, EA+, SCZ

rs538628* NSF 17:44787313:T > C regulatory ASD, EA, SCZ+

rs1792709* ENSG00000206129 18:53768975:A > G intron ASD, SCZ

rs6079546 MACROD2 20:14716738:T > G intergenic MDD, EA, ASD

rs6035835 XRN2 20:21271669:A > G intergenic ASD, ADHDCHILD, ADHD

rs9974470 ENSG00000249209 21:35012066:A > G intron EA, ASD
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in neuron growth regulation, showed a phi coefficient of 
−0.27 (p = 0.040) in males (24/26 cases; 22/31 controls), 
while in females, the coefficient was 0.26 (p = 0.084; 12/19 
cases; 31/36 controls). For the variant of NEGR1, the 
opposing phi directions between sexes resulted in a phi 
coefficient of −0.01 (p = 0.908) in the full dataset. In addi-
tion, logistic regression was performed for the specific 
variants of NTM, CADPS and NEGR1. The results were 
not significant for the full cohort (adjusted for sex) or in 
models stratified by sex.

Discussion
Using multivariate statistical learning approaches, this 
study constitutes the largest and most comprehen-
sive genetically correlated multi-trait GWAS analy-
sis with summary statistics performed on ASD and 
its genetically correlated traits; ADHD, ADHD child-
hood, ASRD, bipolar, DBD, EA, MDD, and SCZ to 
explore the underpinnings driving the complexities in 
ASD. 37 associations containing ASD as a central trait 
were discovered, with 16 of these associations were 
detected only due to the increased statistical power 
of this multivariate GWAS analysis (lowest univariate 
summary statistics p-value from all traits > 5e-08, and 
12/16 confirmed with the MTAG tool [71], Supple-
mentary Table 2). Interestingly, a previous study using 
electronic health records of covering nearly 5,000 ASD 
cases found three subclusters of comorbidity trajecto-
ries, first characterized by seizures, then auditory dis-
orders/infections and the third cluster by psychiatric 
disorders. Due to the complexity of ASD development, 
a fourth group was described as could not be further 
resolved. The presented subclusters potentially align 
well with our ASD central trait sets pertaining to SCZ 
signals with seizures and psychiatric disorders such 
as ADHD and intellectual development underpinning 
EA [15]. Enrichment analysis confirmed that the mul-
tivariate ASD association results are related to neuron 
and gut tissues and developmental pathways as well as 
inflammation and microbiome domains, further under-
scoring the intersection of genome and microbiome as 
well as supportive of the gut-brain axis hypothesis asso-
ciated to ASD [11, 44]. Surprisingly, genetic correla-
tion performed on LDSC indicated that ASD and IBD 
are not related (Supplementary Table S1, rg = −0.059; 
p = 0.44), a recent report highlighted potential evidence 
for comorbidity between parental, particularly mater-
nal preexisting IBD onsets and their children develop-
ing ASD [59]. Using the multivariate ASD central trait 
gene sets, based on comprehensive human tissue cell 
type and single cell data [13, 33] analysis, enrichments 
were detected with digestive, nervous, and sensory 
organ systems (Fig. 2f ). At the tissue cell type level and 

further supporting the gut-brain axis and blood brain 
barrier, the analysis detected enriched ASD relevant 
signals related to brain, adipose and gut eQTL/sQTL 
(Supplementary Table 9) tissue panels.

Overall, the identified ASD traits passed MR with 
strong F1 measures and significantly contributed to 
improve the future construction of meta psychiatric 
based ASD polygenic scores [27], shown to improve pre-
diction relative to standard PRS in other complex traits 
such as coronary heart disease and type 2 diabetes [37, 
67]. The MR results were consistent after calculation of 
lower bound F1 (all scores > 25, Supplementary Table 4), 
computed to consider potential biases from cohort 
sample overlaps [9]. MR Steiger tests for directionality 
revealed that genetic liability to ASDR and DBD were 
found to have causal effects on the risk of ASD. These 
multivariate ASD associations mapped to genes, includ-
ing MAPT and NSF which are known to involved in 
biological pathways linked to neural disorders such as 
infantile epilepsy [66] and Parkinson’s Disease [7, 14]. 
Interestingly, colocalization tests for the MAPT region 
indicated shared genetic risk between only EA and ASD 
(H4 99%), while that for the NSF gene did not associate 
with EA, instead associated with SCZ (H4 94%), sug-
gesting intra region heterogeneity that demands future 
investigation. With respect to ASD, the KANSL1, BNIP3, 
CADPS and NEGR1 genes have been implicated with 
immune and microbiome features [11] and behavio-
ral developments [63]. Similarly, a recent study from 
Arenella and colleagues reported genetic factors between 
ASD and various immune phenotypes including KANSL1 
associating with lymphocyte counts as well as MAPT 
associating with eosinophil counts, further supporting 
the role of the inflammation pathway in ASD develop-
ment [1].

The most common traits in our set of 37 associations 
that passed colocalization with ASD were EA (9), SCZ 
(6) and BP (2). It is known that the diagnosis for ASD 
and ADHD, particularly ADHD manifestation in young 
children, is similar with symptomatic issues concern-
ing hyperactivity and attention span [29]. While a pre-
vious study has performed comparison of genetic and 
functional enrichment of associations between ASD and 
ADHD [50] GWAS resources, this study further com-
plements their results by inclusion of other ASD co-
occurring traits, including ADHD and ADHD childhood 
as well as EA. Interestingly, ASD and ADHD have both 
been linked with dysbiosis disruption in microbiome 
composition and function, gastrointestinal and bowel 
habits issues [44].

As part of validation, clustering and distribution pro-
portion differences based on the ASD identified SNP 
associations were detected between probands and 
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non-autistic subjects on genomes from the GEMMA 
cohort [70]. Our validation results were performed on 
the (112, 45 ASD probands) samples currently available 
in GEMMA. Notably, NEGR1 (rs1432639), a neuronal 
growth regulator known to associate with migraine, 
depression and seizures [24, 26, 73], the significant phi 
coefficients were negative for males and positive for 
females. Interestingly, a previous study pertaining to pre-
natal stress found increased NEGR1 expression in the 
hippocampus of female rats but not in males [72]. To 
improve on the specificity and clinical value of the iden-
tified traits, a follow-up application of MR with specific 
expression/protein quantitative loci (tissue/cell type e/
pQTL as applied in T1D drug candidate discovery [21] 
with genes such as CADPS, NTM and NEGR1 could fur-
ther reveal molecular and translational insights towards 
ASD heterogeneity including the high vulnerability sub-
group characterized by seizures [15]. While the valida-
tion statistical power was limited by the relatively small 
sample size, nevertheless the independent and deep 
sequencing data has allowed the harvesting of interesting 
observations concerning the distribution of ASD-central 
trait associations in probands as compared to controls. In 
addition, the GEMMA validation results should be taken 
with caution as the population structures (PCs) were not 
included as covariates due to availability. The upcoming 
release of additional omics data from GEMMA and other 
studies, including longitudinal microbiome, metabolome, 
and methylation datasets, will significantly increase sta-
tistical power and enable more detailed temporal analy-
ses. The data will help confirm molecular changes along 
the gut-brain axis, shedding light on the genetic patterns 
that contribute to the heterogeneity, development, and 
comorbidities of ASD. Another limitation of our multi-
trait GWAS is that the selection of ASD co-occurring 
traits is not exhaustive; given the complexity of ASD 
development, there may be other genetically correlated 
traits that have not yet been tested at the appropriate 
population level, warranting consideration and inclu-
sion in future studies. The MR Steiger results on causality 
need to be taken with caution as unmeasured confound-
ing effects may distort the exposure genetic liability rela-
tive to the outcome [38].

Conclusion
Our study represents the largest multivariate GWAS on 
ASD to date, combining ASD with eight genetically cor-
related trait GWAS summaries. We performed system-
atic decomposition to identify novel genetic associations 
related to ASD and ASD co-occurring traits. Mendelian 
randomization testing revealed that genetic liability for 
ADHD childhood, ASRD and DBD has causal effects 

on the risk of ASD. Colocalization analysis further con-
firmed shared genetic risks with ASD, showing enrich-
ment patterns in brain tissues and cell types associated 
with neurodevelopment, and lending additional support 
to the gut-brain axis hypothesis.
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