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A B S T R A C T

Objective: Repaired Tetralogy of Fallot (rTOF), a complex congenital heart disease, exhibits substantial clinical
heterogeneity. Accurate prediction of disease progression and tailored patient management remain elusive. We
aimed to categorize rTOF patients into distinct phenotypes based on clinical variables and variables obtained
from cardiac magnetic resonance (CMR) imaging.
Methods: A retrospective observational cohort study of rTOF patients with at least two CMR assessments between
2005 and 2022 was performed. From patient records, clinical variables, CMR measurements, and electrocar-
diogram data were collected and processed. Baseline and follow-up variables between subsequent CMR studies
were used to assess both inter- and intrapatient disease heterogeneity. Subsequently, unsupervised machine
learning was performed, involving dimensionality reduction using principal component analysis and K-means
clustering to identify different phenotypic clusters.
Results: In total, 155 patients (54.2 % male, median 14.9 years) were included and followed for a median
duration of 9.9 years. A total of 459 CMR studies were included in analysis for the identification of phenotypic
clusters. Following analysis, we identified four distinct rTOF phenotypes: (1) stable/slow deteriorating, (2)
deteriorating, structural remodeling, (3) deteriorated indicated for pulmonary valve replacement, and lastly (4)
younger patients with coexisting anomalies. These phenotypes exhibited differential clinical profiles (p < 0.01),
cardiac remodeling patterns (p < 0.01), and intervention rates (p < 0.01).
Conclusions: Unsupervised machine learning analysis unveiled four discrete phenotypes within the rTOF popu-
lation, elucidating the substantial disease heterogeneity on both a population- and patient-level. Our study
underscores the potential of unsupervised machine learning as a valuable tool for characterizing complex
congenital heart disease and potentially tailoring interventions.

1. Introduction

Tetralogy of Fallot (TOF) is a complex form of congenital heart dis-
ease (CHD) and the most common cyanotic heart disease [1]. With an
estimated incidence of 5 per 10,000 live births, TOF remains an
important clinical concern [2]. Considerable progress has been achieved
in the repair and management of patients with TOF, driven by improved
understanding of cardiac physiology and surgical techniques. Observa-
tional studies have reported promising 25-year survival rates of
approximately 95 % following successful repair (rTOF), necessitating a
change in focus from perioperative management towards lifelong

monitoring and care [3]. Cardiac magnetic resonance (CMR) imaging
remains the reference standard imaging modality for the evaluation of
volumetric measurements, biventricular function, and quantification of
valvular regurgitation [4,5]. Serial CMR studies are recommended in
clinical practice due to the growing awareness of timely identification of
ventricular deterioration and reliance on quantification of ventricular
parameters and pulmonary regurgitation (PR) for recommending pul-
monary valve replacement (PVR) [4,5]. Multiple observational studies
have demonstrated an association between ventricular dysfunction, PR,
and myocardial fibrosis with adverse outcomes [6–9]. To address this
observation, clinical risk prediction scores including hemodynamic,
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structural, and electrophysiological risk factors have been developed
[10,11]. However, it has also been demonstrated that traditional ven-
tricular function parameters themselves are not sensitive in the
long-term prediction of deterioration of ventricular performance in
these patients [6,9,12]. In contrast to these traditional methods, unsu-
pervised machine learning approaches offer a novel avenue to enhance
risk stratification and patient phenotyping by analyzing patterns and
structures within the given population [13]. As such, we hypothesized
that clinical variables and the progression of cardiac mechanics can be
used to identify distinct phenotypes within the cohort of patients with
rTOF, potentially enabling a more granular understanding of the het-
erogeneity in disease progression over time [14].

2. Methods

2.1. Study population

This single-center study retrospectively assessed all patients diag-
nosed with rTOF, presenting to our institution between 2005 and 2022.
All patients with a history of rTOF were included if they had undergone
at least 2 CMR assessments at our institution. Patients with incomplete
surgical history or with missing follow-up were excluded. Additionally,
patients with poor CMR image quality were excluded from analysis. The
study was approved by the Johns Hopkins Medicine institutional review
board with waiver of informed consent due to the retrospective nature of
the study.

2.2. Clinical variables

A detailed surgical history, description of specific patient charac-
teristics and clinical variables at the time of CMR were obtained from
medical records. These clinical variables included age, sex, body surface
area (BSA), weight, height, any relevant medications (diuretics, digoxin,
beta-blockers, calcium-channel blockers, angiotensin converting
enzyme inhibitors, and angiotensin receptor blockers).

2.3. CMR measurements included

The first CMR assessment performed at our center was considered as
the patient’s initial timepoint. Subsequent CMR studies were considered
as follow-up timepoints of interest. CMR studies were performed on a
1.5-T Siemens scanner (Siemens Medical Solutions, Pennsylvania, USA)
using a standardized imaging protocol. Volumetric and functional data
from the left- and right ventricle were obtained and the pulmonary
regurgitant fraction (PRF) was quantified from velocity flow mapping
using standard protocols. Z-scores were obtained by comparison to
reference ranges for CMR in adults and children [15].

2.4. Data processing

Missing data was handled using a simple imputer for categorical
variables and an iterative imputer with decision tree regressor for
continuous variables. Time intervals between CMR studies were
considered as the primary datapoints, here the baseline CMR parameters
(CMRn) were used. Then, to quantify the annualized rate of change for
volumetric and functional parameters during the CMR interval
(ΔCMRn+1-CMRn), the following formula was used:

Annualized RatioVariable =
(Variablen+1 − Variablen)
Years between n and n+ 1

In addition, constant (time-independent) patient characteristics such
as sex, ethnicity, presence of any chromosomal abnormalities, baseline
anatomy and surgical history were used. Lastly, reinterventions were
only included as data points if the reintervention occurred between
respective CMR studies.

2.5. Unsupervised machine learning analysis

Nine multi-collinear features were dropped using a threshold of r =
0.8 to avoid overfitting. After centering and scaling the features using a
standard scaler, a linear transformation was applied to conduct principal
component analysis (PCA) [16]. Subsequently, sixteen principal com-
ponents (PC) that accounted for 81.4 % of the variance in the data were
selected. These selected PCs were then used as input for unsupervised
cluster analysis. After dimensionality reduction using PCA, we have
employed K-means clustering algorithm to segment the patient time
intervals into distinct groups based on their similarity [17]. We have
implemented an iterative process to determine the optimal configura-
tion for K-means clustering, leveraging the silhouette score as the
evaluation metric [18]. From the analysis, we identified that the most
suitable number of clusters for this dataset was four. This configuration
yielded a silhouette score of 0.19 units, employing the k-means++

initialization method and a maximum of 100 iterations assigning patient
intervals to the nearest cluster centroid. The proportion of time intervals
across clusters resulted in 64.4 %, 10.8 %, 4.4 %, 20.3 % in clusters ‘1’,
‘2’, ‘3’ and ‘4’ respectively.

2.6. Statistical analysis

Normality of the distribution of continuous variables was tested
using the Shapiro–Wilk test. Continuous variables are expressed as mean
± standard deviation or median with interquartile range (IQR), as
appropriate. Categorical variables are expressed as counts and relative
frequency (%). Between-cluster differences were compared using anal-
ysis of variance (ANOVA) for normally distributed variables and
Kruskal-Wallis for non-normally distributed variables, as appropriate.
Post-hoc pairwise comparisons were adjusted for multiple testing using
the Tukey correction method and Benjamini-Hochberg method, as
appropriate. A 2-tailed p-value <0.05 was considered statistically sig-
nificant. All analyses were completed with R Statistical Software
(version 4.1.1, Foundation for Statistical Computing, Vienna, Austria)
and Python (version 3.11.3, Python Software Foundation).

3. Results

3.1. Study population

One-hundred fifty-five patients were eligible for inclusion in the
study, after exclusion of 13 due to incomplete history, missing follow-
up, or poor-quality imaging (Fig. 1). These 155 patients (median age
at baseline CMR of 14.9 years [interquartile range 10.9–20.4], range 2.5
months–62.5 years, 84 males) were followed up over a duration between
1.5 and 19.1 years, with a median of 9.9 years (interquartile range
6.4–13.8). Clinical characteristics of the study cohort are summarized in
Table 1, along with the percentage of missingness for that variable. Fifty-
one patients (23.9 %) underwent PVR prior to the first CMR. During the
study period, 40 patients (25.8 %) underwent PVR (Fig. 2). Among
these, 30 were transcatheter PVR procedures (75.0 %). During the study
period, repeat PVR was common, with 28 patients (17.5 %) requiring at
least 1 reintervention. Additional procedures were frequent, with 12
patients (7.7 %) undergoing implantation of a permanent pacemaker.
Regarding clinical outcomes, 4 patients (2.6 %) required hospitalization
for heart failure and 3 patients died, 1 of which was a cardiac death
(cardiac arrhythmia). During longitudinal follow-up, patients under-
went 459 CMR studies in total (with a mean of 2.9 ± 1.3 studies per
patient, range 2–8). These resulted in 295 CMR intervals (ΔCMRn+1-
CMRn) available for analysis, with a mean of 3.7± 2.6 years (median 3.2
[interquartile range 2.0–4.5 years]) between CMR studies.

3.2. Exploration of the low-dimensional output space

The PCA analysis consisted of 16 PCs that accounted for 81.4% of the
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variance, exploration of the first 3 PCs (explaining 34.9 % of the vari-
ance) revealed that (1) PC1 seems to represent a combination of various
cardiac functional and mechanical metrics and age at the time of CMR,
(2) PC2 consists of features that capture variations related to different
cardiac and anatomical metrics, as well as some ECG parameters, and
lastly (3) PC3 consists of variations related to specific valve morphology, as well as surgical interventions and some anthropometric

Fig. 1. Patient flowchart and study population.
LEGEND: CONSORT flowchart. Study flow chart according to the Standard Reporting of Observational Studies (STROBE) guidelines.

Table 1
Clinical characteristics of rTOF cohort.

Characteristic Missing variables
(%)

rTOF (N = 155)

Demographics
Age, years 0 (0 %) 14.9

[10.9–20.4]
Male 0 (0 %) 84 (54.2)
White 7 (5 %) 105 (67.7)
Trisomy 21 0 (0 %) 10 (6.5)
DiGeorge syndrome 0 (0 %) 16 (10.3)
Scoliosis 0 (0 %) 12 (7.7)
Asthma 0 (0 %) 17 (11.0)

Anatomy
Absent PV syndrome 24 (16 %) 13 (8.4)
Bicuspid PV 24 (16 %) 11 (7.1)
Aberrant subclavian arteries 8 (5 %) 15 (10.0)
Persistent LSVC 6 (4 %) 10 (6.5)
Right aortic arch 0 (0 %) 45 (29.0)
Anomalous origins of coronary
arteries

6 (4 %) 12 (7.7)

MAPCA 2 (1 %) 26 (16.8)
Surgical Data
Palliative surgery 0 (0 %) 50 (32.3)
Age at palliative surgery, days 0 (0 %) 37.0 [5.0–95.0]
Age at primary repair, years 0 (0 %) 0.6 [0.3–1.4]
Surgical procedure 34 (22 %)
Transannular patch 91 (58.7)
RV-PA conduit 24 (15.5)
Valve-sparing repair 6 (3.9)

ABBREVIATIONS: LSVC: left superior vena cava, MAPCA: major aortopulmo-
nary collateral arteries, PV: pulmonary valve, RV-PA: right ventricle to pulmo-
nary artery.

Fig. 2. Freedom from pulmonary valve replacement.
LEGEND: Kaplan–Meier curves demonstrating freedom from PVR in the overall
population (red) following the first baseline CMR study, and freedom from
secondary PVR (dark grey) following index PVR in a subset of patients. AB-
BREVIATIONS: CMR: cardiac magnetic resonance, PVR: pulmonary valve
replacement. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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measurements. Subsequently, unsupervised k-means clustering identi-
fied four distinct clusters, which corresponded to the quadrants identi-
fied by PCA (Fig. 3).

3.3. Unsupervised machine learning revealed four distinct patterns

The cluster analysis identified four clusters with differential pheno-
types (Fig. 4). As shown in Table 2, the four clusters were phenotypically
distinct in anthropometric measurements, cardiac, anatomical, and
electrocardiographic metrics. Furthermore, as demonstrated in Table 3,
the annualized rates of change in volumetric and functional parameters

were phenotypically distinct across clusters. Cluster 1 (namely “stable/
slow deteriorating” rTOF, N= 190) had the smallest indexed ventricular
volumes and PRF at baseline. While left ventricular (LV) volumes tended
to normal, right ventricular (RV) volumes were already elevated.
Furthermore, Cluster 1 had a high prevalence of increased BMI, weight
and height compared to the other clusters. During follow-up, this cluster
demonstrated an increased annualized ratio of RV volumetric parame-
ters, resulting in an increasing RV/LV ratio. Cluster 2 (namely “deteri-
orating, structural remodeling” rTOF, N = 32) had a higher prevalence
of males (75.0 %) and LV dilatation (40.6 % [defined as LVEDVi Z value
> 2]). Simultaneously, these patients demonstrated increased LVMi and

Fig. 3. Exploration of the low dimensional output space.
LEGEND: Exploration of clusters according to the first 3 principal components in each direction. ABBREVIATIONS: PC: principal component.
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had an increased cardiac index. Regarding the RV, volumes were already
above average, but most did not reach an RV/LV ratio>2 (21.9 %) or RV
end-diastolic volume index ≥160 ml/m2 (37.5 %). During follow-up,
Cluster 2 demonstrated decreasing ventricular volumes, with the most
apparent decrease in LV volume. Cluster 3 (namely “deteriorated” rTOF
indicated for PVR, N = 13) had the highest amount of PRF and highest
prevalence of RV dilatation with the largest RV volumes. Furthermore,
most already had indications for PVR at the index CMR, RV/LV ratio >2
(69.2 %) or RV end-diastolic volume index ≥160 ml/m2 (61.5 %).
During follow-up, 76.9 % underwent PVR with subsequent annualized
reductions in PRF and RV volumes. Lastly, Cluster 4 (namely “younger”
rTOF with coexisting anomalies, N = 60) were significantly younger
compared to all clusters, had a higher prevalence of bicuspid PV,
persistent left superior vena cava, and demonstrated lower anthropo-
metric measurements such as decreased BMI, weight, and height. In
addition, despite their young age, these patients already demonstrated
increased RV volume overload (RV/LV ratio >2 [28.3 %] or RV end-
diastolic volume index ≥160 ml/m2 [15.0 %]) and a high amount of
PRF. During follow-up, Cluster 4 demonstrated increases in annualized
rates of ventricular volumes, with the largest increases observed in the
RV, and increases in annualized rates of PRF.

3.4. Cluster transitions during follow-up

To examine the transition of individual patients between assigned
clusters during follow-up, patients with ≥3 CMR assessments (75 pa-
tients [48.4 %], resulting in a total of 139 CMR intervals) were evaluated
and the cluster transitions were visualized (Fig. 5). Sixteen scenarios
were evaluated (44, e.g. patient is assigned to Cluster 1 at the time in-
terval between CMR1 and CMR2 and can potentially be assigned to each
of the 4 clusters during the time interval between CMR2 and CMR3,
extending to each of the originally assigned clusters). Most patients who
were initially assigned to Cluster 1 (“stable/slow deteriorating” rTOF)
remained in Cluster 1 (89.5 %). Interestingly, most patients who were
assigned to Cluster 3, and thus the “deteriorated” rTOF phenotype

indicated for PVR, were reassigned to Cluster 1, the “stable/slow dete-
riorating” rTOF phenotype, during the subsequent CMR interval (72.7
%), indicating “normalization”.

4. Discussion

There has been a growing utilization of cluster analyses in clinical
research [13,19]. The primary objective is to uncover the inherent
structure hidden within data, leading to the identification of novel
phenogroups associated with a disease or clinical syndrome [13,19].
Insights obtained from this unsupervised cluster phenotyping analysis
can be introduced into predictive models and could potentially improve
detection of adverse events by incorporating cluster membership as an
additional predictor. Leveraging unsupervised machine learning, this
study identified four unique rTOF phenotypes with differential clinical
profiles, cardiac remodeling, and intervention rates (Graphical
Abstract).

Our findings are important, as previous studies have demonstrated
that predicting the decline in RV function and the optimal timing of PVR
is challenging due to the complex and diverse anatomical variations
coupled with the intrinsic limitations to the assessment of ventricular
performance [4,5,12]. The identification of these distinct phenogroups
could aid to reduce heterogeneity and produce better prediction models,
since conventional regression analyses have been unsuccessful. Prior
studies have used supervised learning algorithms such as support vector
machines (SVM) as methods for classification of deterioration in patients
with rTOF. For example, one study categorized deterioration as major,
minor, or none based on combined changes in indexed RV end-diastolic
volume, as well as both RV and LV ejection fraction during follow-up
[20]. The predictive models performed well, with respective AUC
scores ranging from 0.70 to 0.87 [20]. Thus, the authors demonstrated
that machine-learning techniques uncovered predictive abilities of var-
iables that were previously unrecognized using traditional regression
methods. Yet, a common limitation of prior studies is the exclusion of
patients with surgical- or catheter-based interventions between CMR

Fig. 4. Summary of the distinct phenogroups.
LEGEND: Clinical characteristics and features of CMR imaging patterns and annualized rates of change in the 4 clusters. ABBREVIATIONS: BMI: body mass index,
CMR: cardiac magnetic resonance, LV: left ventricle, PRF: pulmonary regurgitation, PVR: pulmonary valve (PV) replacement, RV: right ventricle.
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scans, which is precisely a population these studies would need to
capture to offer clinical prediction benefits. Therefore, although unsu-
pervised methods such as SVM can be tremendously powerful for risk
stratification, our emphasis was on highlighting distinct phenogroups of
rTOF, which may be driven by fundamentally different underlying
pathophysiological mechanisms and thus have distinct variations in
occurrence of dysfunction and remodeling, and adverse outcomes.

Various clinical observations of previous observational studies could
also be identified in separate phenogroups. For instance, Cluster 2
demonstrated subclinical LV abnormalities (increased LVEDVi, LV end-
systolic volume index, and LV mass index, potentially indicating
eccentric remodeling) which have been demonstrated earlier in sub-
groups of patients with rTOF [21,22]. These factors may contribute to
the occurrence of later left-sided heart failure and mortality [23,24].
Cluster 4 consisted of younger patients which demonstrated more rapid
progression of RV abnormalities and PRF, potentially signaling more
complex disease. We also noted that these patients, despite being
younger, frequently had large RV volumes and underwent PVR, which
confirms the observation of earlier RV dysfunction and PVR in syndro-
mic/complex patients [25,26]. Lastly, Cluster 3 captured those who

underwent successful PVR with subsequent normalization of RV size and
PRF (of 44 patients undergoing PVR, the first 8 with highest annualized
RV reductions were all assigned to Cluster 3). It is interesting that this
phenogroup successfully identified RV normalization, which has been
proposed to be unlikely following RV end-systolic volume index ≥80
ml/m2 and the RV end-diastolic volume index ≥180 ml/m2 [27,28].
These findings might be helpful in guiding treatment decisions towards
optimal timing for PVR and identifying those who benefit most,
although a survival benefit with volume reduction still needs to be
demonstrated [29]. An observation was that the systolic function of both
the RV and LV when assessed by ejection fractions were similar between
clusters, despite fundamentally different observed pathophysiological
mechanisms, potentially indicating the lacking sensitivity of ejection
fractions [30]. Another interesting observation was that the presence of
a transannular patch was not decisive in segmentation of clusters, as
these did not significantly differ between the groups (p = 0.10).
Nevertheless, studies have demonstrated increasing deterioration in
those with a transannular patch [9,20].

The application of unsupervised machine learning in clustering rTOF
patients, although beyond current horizons, holds great promise for

Table 2
Clinical characteristics of rTOF cohort according to identified phenogroups.

Characteristic Cluster 1(N = 190) Cluster 2 (N = 32) Cluster 3 (N = 13) Cluster 4 (N = 60) p-value

Demographics
Male 91 (47.9) 24 (75.0) 7 (53.8) 34 (56.7) 0.04*
White 132 (69.5) 23 (71.9) 12 (92.3) 42 (70.0) 0.39
Trisomy 21 14 (7.4) 0 (0.0) 0 (0.0) 4 (6.7) 0.46
DiGeorge syndrome 23 (12.1) 4 (12.5) 2 (15.4) 11 (18.3) 0.62
Scoliosis 10 (5.3) 2 (6.3) 0 (0.0) 9 (15.0) 0.08
Asthma 21 (11.1) 2 (6.3) 0 (0.0) 7 (11.7) 0.66

Anatomy
Absent PV syndrome 14 (7.4) 7 (21.9) 1 (7.7) 6 (10.0) 0.09
Bicuspid PV 6 (3.2) 1 (3.1) 0 (0.0) 8 (13.3) 0.02‡

Aberrant subclavian arteries 16 (8.4) 5 (15.6) 5 (38.5) 7 (11.7) 0.06
Persistent LSVC 8 (4.2) 1 (3.1) 3 (23.1) 7 (11.7) 0.02
Right aortic arch 55 (28.9) 12 (37.5) 5 (38.5) 25 (41.7) 0.25
Anomalous origins of coronary arteries 14 (7.4) 1 (3.1) 2 (15.4) 2 (3.3) 0.32
MAPCA 33 (17.4) 4 (12.5) 2 (15.4) 11 (18.3) 0.87

Baseline CMR
Age, years 20.2 [16.0–26.0] 14.3 [10.9–19.0] 20.5 [16.8–26.1] 9.50 [6.5–13.5] <0.01*‡¶§#

BSA, m2 1.8 [1.6–2.0] 1.4 [1.0–1.6] 1.6 [1.6–1.8] 1.0 [0.8–1.2] <0.01*‡¶§#

BMI z-score 1.0 [0.3–1.7] − 0.3 [− 1.0–0.7] 0.3 [− 0.1–1.4] − 0.5 [–1.7–0.5] <0.01*‡

Weight-for-age z-score 0.9 [0.1–1.6] − 0.5 [− 1.5–0.3] 0.2 [− 0.3–0.9] − 1.3 [–2.1–0.5] <0.01*†‡¶§#

Height-for-age z-score − 0.1 [− 0.9–0.7] − 0.7 [− 1.5–0.1] − 0.7 [− 0.9–0.5] − 1.4 [–2.9–0.4] <0.01*‡#

LVEDVi, ml/m2 70.6 [61.7–81.5] 96.9 [90.6–124.0] 68.1 [55.9–90.9] 70.8 [63.2–84.8] <0.01*¶§

LVESVi, ml/m2 29.3 [23.1–34.5] 40.0 [35.5–50.7] 30.7 [21.1–35.6] 29.5 [23.1–34.5] <0.01*¶§

LVSVi, ml/m2 42.6 [36.0–47.5] 59.2 [53.7–71.9] 50.5 [38.9–56.7] 42.0 [37.6–49.8] <0.01*¶§

LVEF, % 59.5 [56.0–64.1] 59.5 [54.9–65.6] 61.5 [53.9–67.6] 59.1 [54.0–64.0] 0.76
LVMi, g/m2 49.1 [43.5–56.0] 72.7 [61.9–75.7] 58.0 [55.6–60.4] 44.7 [37.6–48.5] 0.01*§

LVCI, l/min/m2 2.9 [2.5–3.3] 4.3 [3.9–4.9] 3.7 [2.6–4.1] 3.6 [2.7–4.4] <0.01*‡¶§

RVEDVi, ml/m2 115.0 [97.7–131.0] 155.0 [149.0–198.0] 169.0 [157.0–212.0] 117.0 [85.4–146.0] <0.01*†§#

RVESVi, ml/m2 60.5 [49.1–70.6] 86.9 [76.7–102.0] 92.2 [83.9–117.0] 54.2 [42.1–72.8] <0.01*†§#

RVSVi, ml/m2 53.5 [42.7–64.5] 70.5 [58.9–85.3] 76.8 [67.3–94.2] 54.1 [43.3–77.2] <0.01*†§#

RVEF, % 47.5 (8.1) 45.1 (7.3) 46.6 (5.9) 50.2 (8.8) 0.02§

RVCI, l/min/m2 3.8 [3.1–4.5] 5.0 [4.3–6.5] 6.8 [5.0–7.8] 4.7 [3.5–5.5] <0.01*†‡#

PRF, % 32.5 [19.0–45.0] 44.1 [23.9–53.6] 60.0 [45.5–61.0] 38.0 [26.0–48.3] <0.01*†§#

RV/LV ratio 1.6 [1.4–1.9] 1.6 [1.4–1.9] 2.7 [1.9–3.1] 1.5 [1.2–2.1] <0.01†¶#

AAoi, cm/m2 1.7 [1.5–1.9] 1.8 [1.7–2.2] 2.0 [1.5–2.1] 2.3 [2.0–2.7] <0.01*‡§#

MPAi, cm/m2 1.5 [1.2–1.7] 2.0 [1.6–2.5] 1.8 [1.6–2.1] 2.15 [1.8–2.5] <0.01*†‡

RPAi, cm/m2 0.85 [0.71–1.07] 1.13 [0.88–1.31] 1.0 [0.9–1.2] 1.2 [1.1–1.6] <0.01*†‡

LPAi, cm/m2 0.9 [0.7–1.0] 1.4 [1.1–1.5] 1.0 [0.9–1.3] 1.3 [1.1–1.6] <0.01*†‡#

Electrocardiography
Heart rate, bpm 74.0 [66.0–82.2] 81.5 [71.0–98.0] 75.5 [64.5–77.2] 86.5 [74.0–105] <0.01*‡#

QRS, ms 149 [118–162] 150 [132–159] 158 [152–166] 128 [103–138] <0.01‡§#

QTc, ms 467 [447–489] 489 [468–511] 486 [474–515] 453 [432–483] <0.01*†§#

LEGEND: * Significant p-value between Cluster 1 and Cluster 2, † Significant p-value between Cluster 1 and Cluster 3, ‡ Significant p-value between Cluster 1 and
Cluster 4, ¶ Significant p-value between Cluster 2 and Cluster 3, § Significant p-value between Cluster 2 and Cluster 4, # Significant p-value between Cluster 3 and
Cluster 4.
ABBREVIATIONS: AAoi: ascending aorta index, BMI: body mass index, BSA: body surface area, CI: cardiac index, CMR: cardiac magnetic resonance, EDVi: end-
diastolic volume index, EF: ejection fraction, ESVi: end-systolic volume index, LPAi: left pulmonary artery index, LSVC: left superior vena cava, LV: left ventricle,
LVMi: LV mass index, MAPCA: major aortopulmonary collateral arteries, MPAi: main pulmonary artery index, PRF: pulmonary regurgitant fraction, PV: pulmonary
valve, RPAi: right pulmonary artery (rpa) index, RV: right ventricle, RV/LV: ratio of RV to LV EDV, SVi: stroke volume index.
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clinical practice. Since analysis of longitudinal data using unsupervised
techniques can offer valuable insights into disease progression and
response to medical therapy or PVR, and identify subgroups early on, it
enables the implementation of targeted interventions, such as person-
alized medication regimens, intensified monitoring, or timely surgical
procedures, thus paving the path for precision medicine approaches in
the management of rTOF.

4.1. Limitations

While acknowledging the strengths of the study, it is essential to
address several limitations. First, the retrospective nature of the study

conducted in a single center led to a relatively small sample size,
introducing potential biases when it comes to external validation of the
findings. Second, the presence of missing values requires imputation,
which, while mitigating the issue of missingness, there remains a small
possibility of potential bias, resulting in improper segmentation of CMR
intervals to their respective clusters. Due to the retrospective design,
there might be a presence of selection bias in cluster assignment. For
example, the decision for PVR was made on an individual basis
following the most current guidelines, although there remains distri-
bution across phenotypes regarding interventions. Furthermore, the
limited number of adverse events prevented us from identifying mean-
ingful relationship between cluster membership and outcomes, and this

Table 3
Rates of change in volumetric and functional parameters and reinterventions in the rTOF cohort according to identified phenogroups.

Characteristic Cluster 1 (N = 190) Cluster 2 (N = 32) Cluster 3 (N = 13) Cluster 4 (N = 60) p-value

CMR, % per year
LVEDVi, ml/m2 1.1 [− 1.3–2.9] − 6.9 [− 13.6–3.3] 3.1 [0.8–15.0] 1.5 [− 1.7–4.3] <0.01*¶§

LVESVi, ml/m2 0.7 [− 0.8–2.2] − 2.2 [− 4.0–0.2] 3.5 [0.7–5.8] 0.7 [− 0.4–2.5] <0.01*†¶§

LVSVi, ml/m2 0.2 [− 1.2–1.9] − 5.2 [− 7.9–2.4] 0.5 [− 0.9–8.8] 0.8 [− 0.7–2.5] <0.01*¶§

LVEF, % − 0.5 [− 1.7–0.7] − 0.4 [− 2.1–0.5] − 1.8 [− 3.0–0.3] − 0.5 [− 1.3–0.4] 0.61
LVMi, g/m2 − 0.2 [− 1.6–1.4] − 13.6 [− 18.0–1.1] 6.1 [2.8–9.4] 1.5 [0.1–4.6] 0.04
LVCI, l/min/m2 0.0 [− 0.2–0.1] − 0.5 [− 0.7–0.3] 0.2 [− 0.1–0.4] 0.0 [− 0.2–0.2] <0.01*¶§

RVEDVi, ml/m2 0.8 [− 3.3–5.0] − 2.3 [− 11.1–5.0] − 34.6 [− 41.2–22.6] 2.0 [− 3.1–9.7] <0.01†¶§#

RVESVi, ml/m2 0.8 [− 2.0–4.2] − 2.7 [− 8.6–3.5] − 14.2 [− 22.6–9.8] 1.8 [− 0.9–7.0] <0.01†¶§#

RVSVi, ml/m2 0.1 [− 2.1–1.8] − 2.9 [− 6.1–1.9] − 19.5 [− 22.4–12.0] 0.4 [− 2.9–3.3] <0.01†¶#

RVEF, % − 0.5 [− 1.9–0.5] − 0.3 [− 1.8–1.4] − 1.9 [− 4.7–1.8] − 0.9 [− 2.2–0.1] 0.02†¶

RVCI, l/min/m2 − 0.1 [− 0.2–0.1] − 0.2 [− 0.8–0.0] − 1.4 [− 2.0–1.3] − 0.1 [− 0.4–0.2] <0.01*†¶#

PRF, % 0.4 [− 1.2–2.3] 0.3 [− 2.0–3.3] − 33.2 [− 44.0–10.3] 0.6 [− 1.7–2.0] <0.01†¶#

RV/LV ratio 0.9 [− 0.4–2.0] 0.0 [− 1.9–1.1] − 2.5 [− 13.7–0.7] 1.0 [− 0.7–1.9] <0.01*†#

Reinterventions during interval
Pulmonary valve replacement 18 (9.5) 3 (9.4) 10 (76.9) 13 (21.7) <0.01†‡¶#

Pulmonary valvuloplasty 3 (1.6) 0 (0.0) 0 (0.0) 1 (1.7) 1.00
Balloon angioplasty 6 (3.2) 0 (0.0) 0 (0.0) 3 (5.0) 0.67
Pulmonary artery stenting 9 (4.7) 0 (0.0) 0 (0.0) 5 (8.3) 0.35

LEGEND: * Significant p-value between Cluster 1 and Cluster 2, † Significant p-value between Cluster 1 and Cluster 3, ‡ Significant p-value between Cluster 1 and
Cluster 4, ¶ Significant p-value between Cluster 2 and Cluster 3, § Significant p-value between Cluster 2 and Cluster 4, # Significant p-value between Cluster 3 and
Cluster 4. Abbreviations as in Table 2.

Fig. 5. Cluster transitions during follow-up.
LEGEND: The Sankey plot depicts cluster transitions from the index CMR to the subsequent CMR (CMRn to CMRn+1). The line thickness indicates a larger percentage
of cluster transitions.
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must be addressed in future studies.

5. Conclusions

By employing unsupervised machine learning algorithms, we have
successfully identified four distinct phenogroups within the rTOF pop-
ulation. These phenotypes exhibit variations in clinical profiles, cardiac
remodeling patterns, and rates of intervention. These results highlight
the potential of unsupervised machine learning algorithms in effectively
grouping rTOF patients and their clinical progression based on shared
features.
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