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Abstract 

Background The occurrence of post‑traumatic stress disorder (PTSD) following a traumatic event is associated 
with biological differences that can represent the susceptibility to PTSD, the impact of trauma, or the sequelae 
of PTSD itself. These effects include differences in DNA methylation (DNAm), an important form of epigenetic gene 
regulation, at multiple CpG loci across the genome. Moreover, these effects can be shared or specific to both cen‑
tral and peripheral tissues. Here, we aim to identify blood DNAm differences associated with PTSD and characterize 
the underlying biological mechanisms by examining the extent to which they mirror associations across multiple 
brain regions.

Methods As the Psychiatric Genomics Consortium (PGC) PTSD Epigenetics Workgroup, we conducted the larg‑
est cross‑sectional meta‑analysis of epigenome‑wide association studies (EWASs) of PTSD to date, involving 5077 
participants (2156 PTSD cases and 2921 trauma‑exposed controls) from 23 civilian and military studies. PTSD diag‑
nosis assessments were harmonized following the standardized guidelines established by the PGC‑PTSD Workgroup. 
DNAm was assayed from blood using Illumina HumanMethylation450 or MethylationEPIC (850 K) BeadChips. Within 
each cohort, DNA methylation was regressed on PTSD, sex (if applicable), age, blood cell proportions, and ancestry. 
An inverse variance‑weighted meta‑analysis was performed. We conducted replication analyses in tissue from multi‑
ple brain regions, neuronal nuclei, and a cellular model of prolonged stress.

Results We identified 11 CpG sites associated with PTSD in the overall meta‑analysis (1.44e − 09 < p < 5.30e − 08), 
as well as 14 associated in analyses of specific strata (military vs civilian cohort, sex, and ancestry), including CpGs 
in AHRR and CDC42BPB. Many of these loci exhibit blood–brain correlation in methylation levels and cross‑tissue 
associations with PTSD in multiple brain regions. Out of 9 CpGs annotated to a gene expressed in blood, methylation 
levels at 5 CpGs showed significant correlations with the expression levels of their respective annotated genes.

Conclusions This study identifies 11 PTSD‑associated CpGs and leverages data from postmortem brain samples, 
GWAS, and genome‑wide expression data to interpret the biology underlying these associations and prioritize genes 
whose regulation differs in those with PTSD.

Keywords PTSD, Trauma, DNA methylation, Postmortem brain, GWAS, Gene expression

Background
Posttraumatic stress disorder (PTSD) is a serious psy-
chiatric disorder characterized by intrusive memories 
of the traumatic event(s), avoidance of or numbing to 
situations that trigger those memories, and hyperarousal 
symptoms that can disturb mental and physical health 
[1]. These symptoms are associated with lower levels of 
self-care, lower compliance with medical treatment, and 
higher rates of substance use [2, 3]. Thus, it is not sur-
prising that PTSD increases the risk for chronic medical 
conditions, such as cardiovascular disorders, independ-
ent of lifestyle factors (e.g., substance use and sleep qual-
ity) [4, 5]. Although most individuals experience at least 
one traumatic event, only a small fraction develop PTSD 
[6]. Genetic and environmental factors contribute to this 
differential susceptibility in PTSD development upon 
trauma exposure [7, 8].

Genome-wide association studies (GWAS) of PTSD 
demonstrated remarkable success at identifying relevant 
genes, many of which are involved in the stress response 
or immune function (see reviews[9, 10]). The recent 
Psychiatric Genomics Consortium PTSD Workgroup 
(PGC-PTSD) Freeze 3 GWAS identified 95 genomic 
loci associated with PTSD, implicating genes involved in 

stress, immune, fear, and threat-related processes [11]. 
Nonetheless, genetic differences cannot fully account for 
an individual’s susceptibility to PTSD. Trauma exposure 
has been shown to alter epigenetic patterns in both ani-
mal and human studies, prompting the need to conduct 
epigenetic studies of PTSD in addition to genetic studies 
[12, 13]. Epigenetic mechanisms are chemical modifica-
tions that can dictate the timing and magnitude of gene 
expression without altering the DNA sequence [14]. 
The most widely studied epigenetic mechanism is DNA 
methylation (DNAm), which is defined as the addition 
of a methyl group to cytosine bases, particularly at cyto-
sine-guanine dinucleotides (CpG sites). DNAm patterns 
respond to changes in the environment, are potentially 
reversible, and can be targeted for disease therapies [15, 
16]. Environmental influences on DNAm are apparent 
across the lifespan and may provide insight into the bio-
logical response to trauma [17].

Which specific DNAm sites differ across individuals 
and how they correlate with exposures and gene expres-
sion can vary across tissues [18]. DNAm in human brain 
tissue, which is most relevant to the study of psychiat-
ric disorders, is not easily accessible in living patients 
and hence is not a viable PTSD biomarker for clinical 
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use. However, correlation has been observed between 
peripheral tissues (e.g., blood) and brain DNAm lev-
els at specific genomic loci, and thus, blood DNAm can 
potentially serve as a robust biomarker for implementing 
early intervention and developing improved preventative 
or therapeutic strategies for PTSD [19, 20]. Moreover, 
PTSD symptoms have been linked to the components 
of the peripheral immune system [21, 22] that can be 
readily assessed in blood DNAm. Multiple peripheral 
epigenome-wide association studies (EWASs) of PTSD 
identified CpGs in genes related to the immune system 
and neurotransmission [23–28]. While prior EWASs of 
PTSD have reported promising results, the small sample 
sizes and variability of analysis methods across studies 
make it difficult to combine and interpret the findings 
effectively. Recent meta-analyses led by the PGC-PTSD 
Epigenetics Workgroup minimized these issues by 
increasing sample size, increasing sample diversity, and 
using a consortium-supplied quality control and analysis 
pipelines [29–33]. These meta-analyses identified mul-
tiple new loci associated with PTSD, including NRG1, 
AHRR, MAD1L1, and TBXAS1, implicating immune dys-
regulation in those with PTSD [30–33].

Building on the prior work by Smith et  al. [31], which 
conducted an EWAS meta-analysis in 1896 participants 
from 10 cohorts, this study includes 13 additional cohorts 
with a denser and more comprehensive DNAm array, 
bringing the sample up to 5077 participants from 23 
civilian and military cohorts. Our current investigation 
replicated the findings of the initial PGC-PTSD epige-
nome-wide meta-analysis, reporting lower AHRR methyl-
ation in those with PTSD, and identified 9 new (11 total) 
loci associated with PTSD, as well as 14 CpGs associated in 
analyses of specific strata (military vs civilian cohort, sex, 
and ancestry). We also leveraged data from postmortem 
brain samples, a cellular model of prolonged stress, GWAS, 
and genome-wide gene expression studies to interpret the 
biology underlying these associations and prioritize genes 
whose regulation differs in those with PTSD.

Methods
Cohorts and post‑traumatic stress disorder assessments
The study includes 2156 current PTSD cases and 2921 
trauma-exposed controls from 9 civilian cohorts: 
BEAR, DNHS, DCHS, GTP, NIU, Shared Roots, 
AURORA, H3A_Rwanda, WTC; and 9 military cohorts: 
GMRFQUT, MRS, PRISMO, Army STARRS, PRO-
GrESS, NCPTSD/TRACTS, INTRuST, and VA cohorts 
(VA-M-AA and VA-M-EA). For DNHS, GTP, MRS, 
PRISMO, and Army STARRS, two different datasets 
were available based on the DNAm array. Two different 
datasets for these five cohorts did not have any overlap-
ping samples and were treated as independent studies. 

Sample characteristics for the 23 studies that partici-
pated in the meta-analysis are summarized in Table 1. 
Detailed descriptions of each cohort were presented in 
Additional file 1: eMethods.

Biomarkers, social, and affective predictors of sui-
cidal thoughts and behaviors in adolescents (BEAR) [34] 
involved a sample of 194 adolescents who had been hos-
pitalized for suicidal thoughts/behaviors. Of those, 163 
provided a blood sample, and 162 samples that passed 
the DNAm quality control (QC) were included in the 
meta-analysis. PTSD diagnosis was assessed by the Clini-
cian Administered PTSD Scale (CAPS) for Children and 
Adolescents for DSM-5 [35].

Detroit Neighborhood Health Study (DNHS) [23] 
involved 1547 participants whose PTSD symptoms were 
assessed by the PTSD checklist (PCL-C) [36] at the base-
line wave. The meta-analysis included 523 participants 
with available DNAm data that passed the DNAm QC.

Drakenstein Child Health Study (DCHS) [37] is a pop-
ulation-based birth cohort that recruited 1000 pregnant 
people between 20–28 weeks gestation. DNAm data was 
available for 98 participants, and 95 samples that passed 
the DNAm QC were included in the meta-analysis. For 
the purpose of this study, PTSD was assessed using The 
Mini International Neuropsychiatric Interview (MINI) 
[38, 39].

Grady Trauma Project (GTP) is a large-scale ongo-
ing study with > 10,000 participants. The meta-analysis 
included 744 participants with available DNAm data 
that passed the DNAm QC. Current PTSD was assessed 
using the Clinician-Administered PTSD Scale for DSM 
IV (CAPS-4) [40, 41] or the modified PTSD Symptomatic 
Scale (PSS) [42].

Northern Illinois University Trauma Study (NIU) 
involved 812 participants recruited to participate in a 
federally-funded study (NIH 5R21MH085436-02) to 
examine risk and protective factors following the NIU 
campus shooting on February 14th, 2008. Of those, 
140 provided blood samples and were included in the 
meta-analysis. Current PTSD diagnosis at the first post-
shooting assessment was assessed by self-report on the 
Distressing Events Questionnaire (DEQ) [43].

Shared Roots SHRS or “Understanding the SHARED 
ROOTS of Neuropsychiatric Disorders and Modifiable 
Risk Factors for Cardiovascular Disease” is a matched 
case–control study (N = 120) examining the factors that 
contribute to the comorbidity of metabolic syndrome 
and neuropsychiatric disorders [44]. The CAPS-5 [45] 
was administered by clinicians to assess PTSD over the 
prior month.

Advancing Understanding of RecOvery afteR traumA 
(AURORA) is a large cohort study of women and men 
presenting to the ED within 72 h after exposure to 



Page 4 of 17Katrinli et al. Genome Medicine          (2024) 16:147 

psychological trauma [46]. PTSD diagnosis at 6 months 
was defined using the PTSD Checklist for DSM-5 (PCL-
5) [47–49]. The meta-analysis included a subset of the 
AURORA cohort with available phenotypic, DNA meth-
ylation, and RNA sequencing data at the 6-month follow-
up after trauma exposure (N = 206).

Human Heredity and Health in Africa, Rwanda (H3A_
Rwanda). Data from the H3A_Rwanda cohort were 
obtained from a subset of participants in a previously 
published pilot study (n = 50) [50, 51] and newly recruited 
participants via support from the H3Africa Consortium 
(n = 40) [52]. All study participants were women of Tutsi 
ethnicity who were pregnant during the genocide. PTSD 

was assessed by PCL-17 [53] for the pilot study and by 
PCL-5 [54] for the H3Africa-affiliated study. The meta-
analysis included 73 participants with available pheno-
type and DNAm data.

World Trade Center Responders (WTC) [55, 56]. PTSD 
in relation to WTC exposures was assessed by the Struc-
tured Clinical Interview for DSM-IV Disorders (SCID) 
[57]. The sample (N = 180) providing blood samples for 
the epigenetics assays was restricted to men (the vast 
majority of the responders) and oversampled for post-
traumatic stress disorder (PTSD) [25].

Gallipoli Medical Research Foundation Queensland 
University of Technology (GMRFQUT) is a large cohort 

Table 1 Overview of the studies

Participating civilian cohorts: biomarkers, social, and affective predictors of suicidal thoughts and behaviors in adolescents (BEAR), Detroit Neighborhood Health 
Study (DNHS), Drakenstein Child Health Study (DCHS), Grady Trauma Project (GTP), Northern Illinois University Trauma Study (NIU), Shared Roots, Advancing 
Understanding of RecOvery afteR traumA (AURORA), Human Heredity and Health in Africa, Rwanda (H3A_Rwanda), World Trade Center 9/11 Responders (WTC). 
Participating military cohorts: Gallipoli Medical Research Foundation Queensland University of Technology (GMRFQUT), Marine Resiliency Study (MRS), Prospective 
Research in Stress-related Military Operations (PRISMO), Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS), PROlonGed ExpoSure and 
Sertraline Trial (PROGrESS), Boston VA—National Center for PTSD/ Translational Research Center for TBI and Stress Disorders (NCPTSD/TRACTS), Injury and Traumatic 
Stress study (INTRuST), and Veterans Affairs’ Mental Illness Research, Education and Clinical Centers (VA-M-AA and VA-M-EA). Note: For DNHS, GTP, MRS, PRISMO, and 
Army STARRS cohorts, EPIC and 450 k datasets represent different sets of participants

Cohort Array N Cases
N (%)

Controls
N (%)

Female
N (%)

European
N (%)

African
N (%)

Age
Mean (SD)

Civilian
 BEAR EPIC 162 36 (22%) 126 (78%) 119 (73%) 112 (69%) 3 (2%) 15.16 (1.45)

 DNHS‑1 EPIC 423 26 (6%) 397 (94%) 255 (60%) 23 (5%) 384 (91%) 54.54 (16.87)

 DCHS EPIC 95 46 (48%) 49 (52%) 95 (100%) 0 (0%) 54 (57%) 26.81 (5.2)

 GTP‑1 EPIC 479 158 (33%) 321 (67%) 340 (71%) 12 (3%) 448 (94%) 42.22 (12.25)

 NIU EPIC 140 18 (13%) 122 (87%) 140 (100%) 110 (79%) 19 (14%) 26.01 (1.74)

 Shared Roots EPIC 120 61 (51%) 59 (49%) 85 (71%) 0 (0%) 120 (100%) 43.15 (10.77)

 AURORA EPIC 206 57 (28%) 149 (72%) 154 (75%) 67 (33%) 131 (64%) 39.24 (14.17)

 H3A_Rwanda EPIC 73 32 (44%) 41 (56%) 73 (100%) 0 (0%) 73 (100%) 45.54 (7.29)

 DNHS‑2 450 K 100 40 (40%) 60 (60%) 60 (60%) 13 (13%) 87 (87%) 53.6 (14.01)

 GTP‑2 450 K 265 74 (28%) 191 (72%) 187 (71%) 16 (6%) 249 (94%) 41.95 (12.37)

 WTC 450 K 180 84 (47%) 96 (53%) 0 (0%) 138 (77%) 7 (4%) 49.72 (8.25)

 Civilian total 2243 632 (28%) 1611 (72%) 1508 (67%) 491 (22%) 1575 (70%) 41.89 (16.27)

Military
 GMRFQUT EPIC 96 48 (50%) 48 (50%) 0 (0%) 96 (100%) 0 (0%) 68.67 (4.36)

 MRS‑1 EPIC 127 64 (50%) 63 (50%) 0 (0%) 88 (69%) 5 (4%) 23.07 (2.18)

 PRISMO‑1 EPIC 89 24 (27%) 65 (73%) 9 (10%) 74 (83%) 3 (3%) 27.51 (8.63)

 Army STARRS‑1 EPIC 216 106 (49%) 110 (51%) 0 (0%) 149 (69%) 22 (10%) 25.13 (4.82)

 PROGrESS EPIC 140 112 (80%) 28 (20%) 14 (10%) 89 (64%) 40 (29%) 34.77 (8.33)

 NCPTSD/TRACTS EPIC 1028 638 (62%) 390 (38%) 231 (22%) 706 (69%) 123 (12%) 44.06 (13.7)

 MRS‑2 450 K 126 63 (50%) 63 (50%) 0 (0%) 72 (57%) 10 (8%) 22.2 (3.04)

 PRISMO‑2 450 K 62 32 (52%) 30 (48%) 0 (0%) 62 (100%) 0 (0%) 27.1 (9.23)

 Army STARRS‑2 450 K 102 51 (50%) 51 (50%) 0 (0%) 102 (100%) 0 (0%) 23.79 (4.25)

 INTRuST 450 K 303 116 (38%) 187 (62%) 102 (34%) 206 (68%) 58 (19%) 34.09 (11.68)

 VA‑M‑AA 450 K 369 183 (50%) 186 (50%) 184 (50%) 0 (0%) 369 (100%) 38.36 (9.36)

 VA‑M‑EA 450 K 176 87 (49%) 89 (51%) 38 (22%) 176 (100%) 0 (0%) 34.87 (9.89)

 Military total 2834 1524 (54%) 1310 (46%) 578 (20%) 1820 (64%) 630 (22%) 37.08 (14.33)

Total 5077 2156 (42%) 2921 (58%) 2086 (41%) 2311 (46%) 2205 (43%) 39.2 (15.4)
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of veterans who have been or are currently being treated 
for PTSD at the Keith Payne Unit within the Greenslopes 
Private Hospital in Queensland, Australia [58]. The 
CAPS-5 [40, 41] was used to assess current PTSD. The 
meta-analysis included 96 participants with available 
DNAm data.

Marine Resiliency Study (MRS). In the MRS [59, 60], 
PTSD was diagnosed by CAPS-5 [40, 41] up to 3 times, 
once before deployment and 3 and/or 6  months post-
deployment. Samples of PTSD cases (N = 127) were 
selected from the 3- or 6-month post-deployment visits 
depending on which visit had the highest CAPS score. 
Combat-exposed controls with low to no PTSD-symp-
toms (N = 126) were selected from post-deployment 
visits, matching for age, ancestry, and time of post-
deployment visit.

Prospective Research in Stress-related Military Opera-
tions (PRISMO) is a large prospective study of Dutch 
military soldiers [61, 62]. Current PTSD symptoms were 
assessed using the Self-Report Inventory for PTSD (SRIP) 
[63], and blood samples were collected approximately 1 
month before and at both 1 and 6 months after deploy-
ment. PTSD cases (N = 56) were selected for this DNA 
methylation study from the 1- or 6-month post-deploy-
ment visits, depending on which visit had the highest 
SRIP score. All controls (N = 95) were combat exposed 
and had low PTSD symptoms [26].

The Army Study to Assess Risk and Resilience in Ser-
vicemembers (Army STARRS) is a multicomponent pro-
spective study among US Army personnel [64]. PTSD 
diagnosis was assigned using multiple imputation meth-
ods that relied on PCL and CIDI-SC data [65]. Whole 
blood for methylation assays was collected approximately 
6 weeks before deployment and 1-month post-deploy-
ment. PTSD cases (N = 157) were selected based on their 
PTSD diagnosis at 6 months post-deployment. Controls 
(N = 161) were participants without PTSD, matched on 
age, deployment stress, and childhood adversity.

PROlonGed ExpoSure and Sertraline Trial (PROGrESS) 
is a randomized-controlled trial (RCT; N = 223) designed 
to examine the comparative effectiveness of multiple 
treatment strategies across 24 weeks. PTSD is assessed 
by the CAPS-IV [40, 41]. This study included 112 PTSD 
cases and 28 trauma-exposed controls selected from the 
pre-treatment visit.

Boston VA National Center for PTSD/Translational 
Research Center for TBI and Stress Disorders (NCPTSD/
TRACTS) included participants from the NCPTSD study 
[66], the PTSD and Accelerated Aging study [67], and the 
TRACTS study [68]. For all three studies, PTSD diag-
nosis was determined based on the CAPS for DSM-IV 
[40] or DSM-5 [69]. The NCPTSD and TRACTS cohort 

DNAm (N = 1028) data were jointly cleaned and analyzed 
together.

Injury and Traumatic Stress (INTRuST). This cohort 
included participants in studies of the INTRuST Consor-
tium [70]. PTSD diagnosis was assessed by study-specific 
measures, including CAPS-IV, CAPS-5 [40, 41], and 
PCL-17 [53]. The meta-analysis included 303 participants 
with available phenotype and DNAm data.

Mid-Atlantic Mental Illness Research Education and 
Clinical Center PTSD Study (VA-M-AA & VA-M-EA) 
[71–73]. PTSD was diagnosed using the SCID [57]. The 
meta-analysis included 369 participants from VA-M-AA 
and 87 participants from VA-M-EA with available phe-
notype and DNAm data.

The sample is heterogeneous in terms of sex (41% 
female), ancestry (46% European, 43% African, and 
11% of other ancestries), and cohort type (56% mili-
tary cohort). Civilian cohorts skew towards being more 
female (67%) and African (70%), whereas military cohorts 
are predominantly male (80%) and European (64%). In 
addition, the prevalence of PTSD is higher in military 
cohorts (54%) than in civilian cohorts (28%).

All participants were exposed to a traumatic event 
and 42% met the criteria for current PTSD. The current 
PTSD diagnosis was assessed by each study following the 
standardized guidelines established by the PGC-PTSD 
Workgroup [7]. Briefly, current PTSD diagnosis was 
determined based on the specific criteria set by the prin-
cipal investigator of each study. Participants without 
current PTSD but with a history of PTSD (i.e., remitted 
PTSD), were excluded. Detailed descriptions of cohorts 
and PTSD assessments are provided in the Additional 
file  1: eMethods. All participants in these studies gave 
informed consent. The institutional review boards of 
each respective institution approved these studies.
DNA methylation
Whole blood DNAm was measured using the Illumina 
MethylationEPIC BeadChip (EPIC array) in 14 stud-
ies, and the HumanMethylation450 BeadChip (450 K 
array) in 9 studies (Table 1). All studies used a standard-
ized consortium-developed QC pipeline that differed 
somewhat depending on which chip was used. The 450 
K array pipeline [29, 31] is described in Additional file 1: 
eMethods.

The EPIC pipeline (available at https:// github. com/ 
PGC- PTSD- EWAS/ EPIC_ QC) [74] was similar to the 
450 K array pipeline. Samples with probe detection call 
rates lower than 90% and average intensity values that 
were either less than 50% of the overall sample mean or 
below 2000 arbitrary units (AU) were excluded. Probes 
with detection p-values > 0.01 were considered low 
quality and treated as missing. Probes that were miss-
ing in > 10% of the samples within the studies and were 

https://github.com/PGC-PTSD-EWAS/EPIC_QC
https://github.com/PGC-PTSD-EWAS/EPIC_QC
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cross-hybridizing were removed [75]. Data was normal-
ized using single-sample Noob (ssNoob) implemented 
in R package minfi [76]. ComBat was used to account 
for batch effects of chip and position while preserving 
PTSD, age, and sex effects (if applicable) [77]. Blood-cell 
composition (i.e., the proportion of CD8 + T, CD4 + T, 
natural killer (NK), B cells, monocytes, and neutrophils) 
was estimated using the robust partial correlation (RPC) 
method in Epidish [78] with a reference data specific 
to EPIC array [79]. For studies without genome-wide 
genotype data (DNHS, NIU, Shared Roots, AURORA, 
H3A_Rwanda, GMRFQUT, PROGrESS), we estimated 
ancestry principal components (PCs) from DNAm data, 
using the method developed by Barfield et al. [80], as pre-
viously described [33]. PCs 2 and 3, which were the com-
ponents that correlate most with self-reported ancestry, 
were included as covariates [33, 80]. In cohorts with 
available genome-wide genotype data, PCs 1–3 from 
GWAS were used to adjust for ancestry. We used R pack-
age bacon to control inflation, only if doing so results in 
the lambda being closer to 1 [81]. To predict smoking 
status, a DNAm-based smoking score was calculated, as 
previously described [27] for cohorts with EPIC array 
data. A detailed description of DNAm-based ancestry PC 
and smoking score calculation is provided in Additional 
file 1: eMethods.

Epigenome‑wide association analysis
The association between PTSD and DNAm was tested 
using multivariable linear regression models for cohorts 
with balanced plate designs. For studies in which plate 
layouts were not balanced (Shared Roots, H3A_Rwanda, 
GMRFQUT), we conducted mixed-effect regression 
models, including chip as a random effect term. The 
CpGassoc R package was used to fit the models [82]. The 
models were adjusted for age, sex (if applicable), blood 
cell composition (i.e., CD8T, CD4T, NK, B cell, and 
monocyte cell proportions), and ancestry PCs. While 
not included initially because of concerns about multi-
coliniarity and collider bias, a post hoc sensitivity anal-
ysis was performed including a covariate for smoking: 
DNAm-based smoking score in studies with EPIC data 
and current smoking status for studies with 450 K data. 
Furthermore, we conducted stratified analyses for both 
sexes, ancestry (European and African ancestry), and 
cohort type (civilian and military cohorts).

To combine results across studies, we performed 
inverse-variance weighted (IVW) meta-analysis in meta 
[83]. Meta-analysis tested 411,786 CpGs common to 450 
K and EPIC arrays (23 studies), and 404,794 EPIC array 
specific CpGs (14 studies). Epigenome-wide significance 
threshold recommended for the MethylationEPIC Bead-
Chip (p < 9.0e − 08) was used to determine statistical 

significance [84]. Gene Ontology (GO) enrichment anal-
yses were conducted using the top 1000 CpGs in miss-
Methyl [85]. A false discovery rate (FDR) threshold of 5% 
was used to identify significant GO terms.

Gene regulation
Correlations between PTSD-associated CpG sites’ 
DNAm levels and expression levels of the correspond-
ing gene (as determined by the EPIC v1 array annotation) 
were tested in whole-blood RNA-sequencing (RNA-seq) 
data from participants in the BEAR (n = 127), AURORA 
(n = 173), NCPTSD Merit (n = 204), and MRS cohorts 
(n = 128 with multiple visits totaling 357 samples). The 
results were meta-analyzed using the IVW method using 
a Bonferroni correction for the CpGs examined. Detailed 
information about cohort-specific RNA-seq data genera-
tion is described in Additional file 1: eMethods.

Genetic effects
To evaluate the effect of nearby (< 1 MB) polymorphisms 
on DNAm levels of CpGs associated with PTSD, we used 
cis-methylation quantitative trait locus (cis-meQTL) data 
from GoDMC [86] and meQTL EPIC [87] databases. For 
both databases, their default multiple testing adjustment 
was utilized: an FDR threshold of 5% in meQTL EPIC 
and p < 1e − 08 in GoDMC. We checked the associations 
between the identified cis-SNPs and PTSD in the recent 
Freeze 3 GWAS from PGC-PTSD [11]. Finally, we evalu-
ated genetic associations between the genes with PTSD-
associated DNAm and PTSD, using the gene-based test 
results from the recent PGC-PTSD Freeze 3 GWAS [11].

Cross‑tissue association analyses
Blood–brain correlations
The Blood Brain DNA Methylation Comparison Tool 
[19] was used to assess the correlations between methyla-
tion in blood and prefrontal cortex (PFC), entorhinal cor-
tex (EC), superior temporal gyrus (STG), and cerebellum.
Postmortem brain DNAm
DNAm measured from post-mortem brains was obtained 
from two studies, each of which examined a unique but 
not necessarily distinct set of brain regions and cohorts: 
the National Center for PTSD Brain Bank cohort 
(NCPTSD-BB [88]) and the PsychENCODE Consortium 
for PTSD (PEC-PTSD) Brainomics cohort [89] (see Addi-
tional file  1: eMethods for details), both of which were 
sourced from the Lieber Institute for Brain Development.

Methylation at PTSD-associated CpGs identified in 
the EWAS was tested for association with PTSD in DNA 
extracted from postmortem dorsolateral prefrontal cor-
tex (dlPFC, BA9/46), ventromedial prefrontal cortex 
(vmPFC, BA12/32), amygdala, and dentate gyrus (DG). 
DNAm in the post-mortem tissue was measured using 
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the EPIC array. We examined the associations with PTSD 
in dlPFC and vmPFC of 42 PTSD cases and 30 controls 
from the NCPTSD-BB. The associations between DNAm 
and PTSD in amygdala and DG were tested in 77 PTSD 
cases and 77 controls from the PEC-PTSD. Hypergeo-
metric tests were used to examine if the number of CpGs 
nominally associated with PTSD in both blood and brain 
tissues is more than expected by chance (see Additional 
file 1: eMethods for details).

Neuronal nuclei
We examined cross-tissue association from neuronal 
nuclei isolation from the orbitofrontal cortex (OFC) 
of 25 PTSD cases and 13 healthy controls collected at 
the VA’s NCPTSD-BB [90]. Fluorescence-Activated 
Nuclei Sorting (FANS) protocol was employed to isolate 
NeuN + cells and the nuclei underwent reduced repre-
sentation oxidative bisulfite-sequencing (RRoxBS), as 
previously described [91] (see Additional file 1: eMethods 
for details). We examined whether there was differential 
methylation within 500 bp of CpGs from the epigenome-
wide association analyses. Four CpG sites match between 
the EPIC array and RRoxBS within 500 bp (cg05575921, 
cg21161138, cg23576855, and cg26599989).

Cellular model of prolonged stress
Methylation at PTSD-associated CpGs identified in the 
EWAS was tested for association with prolonged stress 
in DNA extracted from fibroblasts obtained from the 
Coriell Institute Cell Repository. EPIC array was used 
to measure DNAm from a cellular model of prolonged 
stress in which fibroblasts were subjected to physiologi-
cal stress hormone (cortisol) levels for a prolonged period 
(51 days) as previously described [92, 93]. Student’s t-test 
examined DNAm differences at PTSD-associated CpGs 
between cortisol (cellular model of prolonged stress) and 

vehicle (control) groups. Each treatment group included 
six biological replicates.

Results
Epigenome‑wide association meta‑analysis
We identified 11 PTSD-associated CpGs that passed the 
epigenome-wide significance threshold (5.44 <|z|< 6.05, 
5.3e − 08 < p < 1.4e − 09), Table 2, Fig. 1, Additional file 1: 
Fig. S1). Two of the CpGs near AHRR (cg05575921 and 
cg21161138) were associated with PTSD in the pre-
vious meta-analysis from the PGC-PTSD Epigenet-
ics Workgroup [31], while the other 9 were novel. All 
CpG sites, except one site (cg21161138) near AHRR, 
remained nominally significant (3.17 <|z|< 5.19, 
1.52e − 03 < p < 2.10e − 07) with the same direction of 
association in the sensitivity analysis adjusted for smok-
ing (Additional file 1: Table S1 and Fig. S1).

Of the 11 PTSD-associated CpGs, 9 CpGs were anno-
tated to a gene expressed in blood. Meta-analysis across 
4 cohorts with RNAseq data identified 5 CpGs whose 
methylation levels were correlated with their annotated 
gene expression (p < 0.05), but only 3 CpGs remained 
significant after multiple test corrections for 9 CpGs 
(pBonferroni = 0.05/9 = 5.5e − 03). Specifically, methylation 
of cg05575921, cg21161138, and cg23576855 associated 
with AHRR expression (p < 5.5e − 03, − 16.69 ≤ z ≤  − 4.
86; Additional file  1: Table  S2). These findings highlight 
the potential regulatory impact of these CpGs on gene 
expression in the context of PTSD. Evaluation of the top 
1000 CpGs did not result in any significant Gene Ontol-
ogy enrichments.
Cross‑tissue associations
We next sought to evaluate whether these blood-based 
associations may reflect PTSD-associated differences in 
the brain. Of the 11 PTSD-associated CpGs, 5 appeared 
to demonstrate some degree of correlation in at least 1 

Table 2 CpG sites associated with current PTSD in the primary meta‑analysis

Position is based on hg19. CpGs specific to EPIC-array were indicated with an asterisk (*). β, regression beta; SE, standard error

CpG Position Gene β SE z p‑value

cg16758086* chr1: 6,173,356 CHD5 0.04 0.01 5.55 2.85e − 08

cg25320328 chr1:92,953,037 GFI1  − 0.03 0.01  − 5.65 1.64e − 08

cg19719391 chr4:26,789,915 Intergenic 0.03 0.01 5.58 2.45e − 08

cg23576855 chr5:373,299 AHRR  − 0.10 0.03  − 5.52 3.44e − 08

cg05575921 chr5:373,378 AHRR  − 0.04 0.01  − 6.05 1.44e − 09

cg21161138 chr5:399,360 AHRR  − 0.10 0.04  − 5.96 2.50Ee − 09

cg14753356 chr6:30,720,108 Intergenic  − 0.04 0.01  − 5.72 1.09e − 08

cg26599989 chr11:1,297,087 TOLLIP 0.03 0.01 5.58 2.35e − 08

cg04987734 chr14:103,415,873 CDC42BPB 0.03 0.01 5.53 3.26e − 08

cg09822192 chr14:24,801,191 ADCY4 0.04 0.01 5.44 5.30e − 08

cg04583842 chr16:88,103,117 BANP 0.04 0.01 5.81 6.29e − 09
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brain region (Fig.  2, Additional file  1: Table  S3) based 
on data from the Blood Brain DNA Methylation Com-
parison Tool database [19]. The strongest correlation 
was observed between the blood and PFC (r = 0.91) for 
cg23576855 (AHRR). Such correlation could result from 
either a parallel response to an environmental stimu-
lus, such as stress, or underlying genetic variation. To 
investigate whether these correlations might be driven 
by a ubiquitous stress response, we leveraged data from 
a naturalistic model of stress [92]. Four CpGs exhibited 
significant methylation changes in fibroblasts when sub-
jected to cortisol in a cellular model of prolonged stress 
after a Bonferroni correction for 11 CpGs examined 
(0.057 < ΔDNAm < 0.225, p < 4.5e − 03, Fig.  2, Additional 
file 1: Table S4). For example, methylation of cg16758086 
in CHD5 increased more than 10% in response to cortisol 
(ΔDNAm = 0.101, p = 7.11e − 04).

When examining the possibility of genetic-epigenetic 
effects, we noted that 8 CpGs were associated with at 
least one SNP within 1 MB according to GoDMC [86] 
and meQTL EPIC [94] databases (Additional file  1: 
Table  S5). In total, we identified 26 lead meQTLs that 
were tested for association in the latest PGC-PTSD 
GWAS [11], of which 8 were nominally associated with 
PTSD (p < 0.05; Additional file 1: Table S5). For instance, 
lower methylation at the intergenic cg14753356 site is 
associated with PTSD (z =  − 5.72, p = 1.09e − 08, Table 2) 
and higher methylation at cg14753356 is associated with 
rs28986310 T allele (beta = 0.31, p < 5e − 324), which 
increases the risk of PTSD (z = 6.73, p = 1.68e − 11, Addi-
tional file  1: Table  S5). These data collectively suggest 

that some CpGs are under environmental influence, 
some are under genetic influence, and some are influ-
enced by both genes and the environment. It is inter-
esting to note that methylation of some CpGs, such as 
cg04987734 in CDC42BPB, did not appear to change in 
response to stress or to associate with underlying genetic 
variation. However, CDC42BPB did associate with PTSD 
in the recent PGC-PTSD gene-based analysis (z = 3.20, 
p = 6.94e − 04, Additional file 1: Table S6), suggesting that 
there are other mechanisms or perhaps tissue-specific 
regulation, underlying its association with PTSD.

We also investigated the cell type-specific expression 
patterns of the 7 genes identified in our study across vari-
ous blood and brain cell types, using the Blood and Brain 
Atlas [95, 96]. The genes for which we observed a correla-
tion between CpG methylation and expression in blood 
(AHRR, TOLLIP, BANP), and where methylation patterns 
were correlated between blood and brain (AHRR, BANP), 
were expressed across various immune cell types and 
brain regions. CHD5, GFI1, ADCY4, and CDC42BPB are 
expressed, albeit at low levels, across different immune 
cell types, and at high levels across all brain regions. In 
our study, the methylation of CpGs in these genes did 
not correlate with their expression in blood. Additionally, 
the methylation patterns of CpGs in these genes differed 
between blood and brain, potentially because these genes 
are not expressed in many blood cells.

Associations in postmortem brain tissues
To evaluate whether the PTSD-associated CpGs from the 
blood-based analysis were also associated with PTSD in 

Fig. 1 Manhattan plot of the epigenome‑wide association meta‑analyses. The x‑axis depicts chromosomes and the location of each CpG site 
across the genome. The y‑axis depicts the − log10 of the unadjusted p‑value for the association with current PTSD. Each dot represents a CpG site. 
The solid blue line indicates the epigenome‐wide statistical significance at p < 9.0e − 8
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the brain regions of dlPFC, vmPFC, amygdala, and DG, 
we first examined overall patterns of association (p < 0.05) 
between blood-based PTSD-associated CpGs and those 
associated with PTSD in each of the respective brain 
regions using hypergeometric tests in probes with > 10% 
variability across tissues. The number of nominally sig-
nificant CpGs associated with PTSD in both blood and 
the amygdala (p = 0.009) is more than expected by chance 
(Additional file 1: Table S7).

Next, we evaluated the specific PTSD-associated 
CpGs from blood-based analyses. Six CpGs were nomi-
nally associated with PTSD in at least one brain region 
(p < 0.05, Fig.  2, Additional file  1: Table  S8). Notably, 
many of the CpG sites that changed in response to that 
naturalistic stress model associated with PTSD in at 
least one  postmortem brain region (i.e., cg21161138 in 
AHRR, cg25320328 in GFI, and intergenic cg19719391). 
However, only cg04987734 (CDC42BPB) in the dlPFC 
and intergenic cg19719391 in the DG remained asso-
ciated after applying a Bonferroni correction for the 
11 CpGs examined (p < 4.5e − 3, Fig.  2, Additional 
file  1: Table  S8). Specifically, PTSD cases had higher 
cg04987734 (CDC42BPB) methylation both in the blood 
(p = 3.26e − 8) and the dlPFC (p = 3.9e − 3), and higher 
and intergenic cg19719391 methylation both in the blood 
(p = 2.45e − 8) and the DG (p = 3.04e − 3) compared to 
trauma-exposed controls, suggesting a robust epigenetic 

alteration associated with PTSD that is detectable across 
different tissue types.

Finally, to more specifically examine the location of 
PTSD-associated CpGs in the brain, we leveraged data 
from FACS-sorted neuronal nuclei from the OFC of 
PTSD cases and controls. Of the 5 CpGs that associated 
with PTSD in any brain region from the bulk tissue, only 
CpGs in AHRR (cg05575921, cg21161138) appeared to dif-
fer in those with PTSD versus controls (Additional file 1: 
Table  S9), suggesting that the other brain-based associa-
tions may be driven by other cell types, such as glia.

Stratified analyses for sex, ancestry, and cohort type
To identify DNAm differences specific to a sex, genetic 
ancestry, or cohort type, stratified analyses were per-
formed (Table  3, Additional file  1: Fig. S2). We exam-
ined the direction of effects of 4937 CpG sites that 
nominally associated (p < 0.05) with PTSD in both the 
European and African ancestry strata (Additional file  1: 
Fig. S3A) and 4265 CpG sites that nominally associ-
ated (p < 0.05) with PTSD in both the male and female 
strata (Additional file 1: Fig. S3B). While there were sig-
nificant correlations in effect sizes across analyses strati-
fied by ancestry (r = 0.48, p < 2.2e − 16) and sex (r = 0.32, 
p < 2.2e − 16), and directions of associations of the 11 
PTSD-associated CpGs from the primary analysis were 
largely consistent across strata, some unique associations 

Fig. 2 Summary of all analyses and findings. The figure combines CpGs from the main analysis (gold) and stratified analyses for sex, ancestry, 
and trauma type (light gold); and summarizes the results of blood and brain correlations (rose); gene expression (purple); cross‑tissue 
associations for multiple brain regions (light blue), neuronal nuclei (blue), and a fibroblast model of prolonged stress (aqua); and genetic effects, 
including methylation quantitative trait loci (meQTL) analyses (light green) and genetic associations from the recent PGC‑PTSD GWAS (dark green). 
Positive findings (p < 0.05) are indicated with the specific color of the respective category. Asterisk (*) indicates epigenome‑wide significance 
(p < 9e − 8). Gray represents the CpGs or genes that were not present in the respective datasets. PFC, prefrontal cortex; EC, entorhinal cortex; STG, 
superior temporal gyrus; CER, cerebellum; dlPFC, dorsolateral prefrontal cortex; vmPFC, ventromedial prefrontal cortex; DG, dentate gyrus; 5mC, 
5‑methylcytosine; GC, glucocorticoid
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emerged (Additional file  1: Table  S10). We identified 1 
epigenome-wide significant CpG site (cg25691167 in 
FERD3L) associated with PTSD in the female-stratified 
analysis (z = 5.48, p = 4.24e − 8; Additional file 1: Fig. S4). 
The 1 significant CpG site (cg05575921 in AHRR) in the 
male-stratified analysis (z =  − 6.12, p = 9.3e − 10; Addi-
tional file  1: Fig. S5) was also identified in the primary 
analysis (Fig. 2). Five CpGs were associated with PTSD in 
European ancestry-stratified analysis (5.43 <|z|< 6.85, 
5.7e − 08 < p < 7.2e − 12; Additional file  1: Fig. S6), of 
which 2 were unique and 3 were identified in the primary 
analysis (Fig.  2). One CpG (cg02003183 in CDC42BPB) 
was associated with PTSD in the African ancestry-strat-
ified analysis (z = 5.48, p = 4.26e − 8; Additional file 1: Fig. 
S7). When examining cohort type, 1 CpG (cg27541344 
in BCL11B) was associated with PTSD in the analysis of 
civilian cohorts (z = 5.39, p = 7.21e − 8; Additional file  1: 
Fig. S8). Finally, 5 CpGs were associated with PTSD in the 
military cohorts (5.36 <|z|< 6.22, 8.5e − 08 < p < 4.9e − 10; 
Additional file 1: Fig. S9), of which 3 were unique and 2 
were identified in the primary analysis (Fig. 2).

We identified 3 GO term enrichments in the female-
stratified analysis (FDR < 0.05), including nervous sys-
tem development (Additional file  1: Table  S11). We did 
not identify any significant enrichments in other strata. 

These findings suggest that PTSD-associated DNAm pat-
terns related to nervous system development may exhibit 
sex-specific patterns. The absence of significant GO term 
enrichments in the main analysis or other stratified anal-
yses highlights the potential importance of considering 
sex-specific factors in epigenomic studies.

Discussion
In the present epigenome-wide meta-analysis of blood 
DNAm levels, we identified 11 CpG sites associated with 
PTSD, of which 2 had been identified in a prior meta-
analysis of PTSD and 9 were novel. Because this study 
was conducted in blood, and PTSD is a brain-based 
disorder, we were interested in the degree to which we 
would observe the association of these blood-based CpGs 
in different brain regions implicated in PTSD along with 
other large-scale discoveries of PTSD. We noted overall 
enrichment of PTSD-associated CpGs in the amygdala 
and dentate gyrus. In addition, many loci showed blood–
brain methylation correlations and cross-tissue associa-
tions with PTSD, with significant correlations between 
CpG site methylation levels and their respective gene 
expression levels.

We observed 3 CpGs (cg05575921, cg21161138, and 
cg23576855) in AHRR (aryl-hydrocarbon receptor 

Table 3 CpG sites associated with current PTSD in the stratified analyses

Position is based on hg19. The sites that were also epigenome-wide significant (p < 9e-08) in the primary meta-analysis were shown in bold. CpGs specific to EPIC-
array were indicated with an asterisk (*). β: Regression beta. SE: Standard error.

CpG Position Gene β SE z p‑value

Stratified analysis for females

 cg25691167 chr7:19184961 FERD3L 0.09 0.03 5.48 4.24E‑08

Stratified analysis for males

 cg05575921 chr5:373378 AHRR ‑0.14 0.04 ‑6.12 9.30E‑10
Stratified analysis for European ancestry

 cg05575921 chr5:373378 AHRR 0.05 0.02 ‑6.85 7.24E‑12
 cg21161138 chr5:399360 AHRR ‑0.16 0.05 ‑5.62 1.95E‑08
 cg11256214 chr12:110211642 MGC14436 0.06 0.02 5.76 8.17E‑09

 cg15977432 chr19:56709655 Intergenic ‑0.05 0.02 ‑5.46 4.68E‑08

 cg04583842 chr16:88103117 BANP 0.05 0.02 5.43 5.66E‑08
Stratified analysis for African ancestry

 cg02003183 chr14:103415882 CDC42BPB 0.11 0.04 5.48 4.26E‑08

Stratified analysis for civilian trauma

 cg27541344* chr14:99650422 BCL11B 0.02 0.04 5.39 7.21E‑08

Stratified analysis for military trauma

 cg03329539 chr2:233283329 Intergenic ‑0.03 0.01 ‑5.36 8.53E‑08

 cg21566642 chr2:233284661 Intergenic ‑0.14 0.04 ‑5.41 6.36E‑08

 cg14753356 chr6:30720108 Intergenic ‑0.04 0.02 ‑5.47 4.53E‑08
 cg05575921 chr5:373378 AHRR ‑0.07 0.02 ‑6.22 4.92E‑10
 cg00774777* chr11:76478902 RP11-21L23.4 0.03 0.01 5.55 2.79E‑08
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repressor), 2 of which were identified in an earlier PGC-
PTSD EWAS [31] and an independent study of US veter-
ans [88]. DNA methylation at the AHRR CpGs is known 
to be influenced by smoking [97], and our effect sizes 
were attenuated when controlling for a DNAm-based 
smoking score. However, our previous study demon-
strated that these associations were driven by non-smok-
ers and were likely to be independent of smoking [31]. 
This is consistent with our finding that methylation of 
AHRR CpG sites changes in an in  vitro model of natu-
ralistic stress [92] and with the observation that AHRR 
associates with gene-based tests of PTSD from the PGC-
PTSD GWAS [11]. The aryl hydrocarbon receptor (AhR) 
plays a role in immunomodulation, including the regula-
tion of T lymphocytes, B cell maturation, and the activ-
ity of macrophages, dendritic cells, and neutrophils [98], 
supporting the link between the immune system and 
PTSD. Interestingly, AHRR methylation patterns in the 
blood of those with PTSD were associated with trypto-
phan metabolites, including the lower kynurenine and 
kynurenic acid levels [31]. Notably, cg21161138 DNAm 
was also associated with PTSD in postmortem dlPFC 
and neuronal nuclei from the OFC. Collectively, these 
data support that AHRR plays a role in PTSD that is inde-
pendent of smoking status and warrants further mecha-
nistic studies.

Our CDC42BPB (CDC42 binding protein kinase beta) 
findings are of particular interest. CDC42BPB is involved 
in the regulation of cytoskeletal rearrangement, cell 
migration, and neurodevelopment [99]. In the current 
study, increased CDC42BPB methylation at cg04987734 
was associated with PTSD in both blood and the dlPFC. 
Notably, higher methylation at cg04987734 has been 
associated with depressive symptoms [100] and increased 
C-reactive protein (CRP) levels [101, 102], which is per-
haps not surprising given the genetic correlation between 
PTSD and MDD [11] and the bi-directional genetic asso-
ciation between PTSD and CRP levels [103]. Multiple 
studies reported increased CRP levels and other inflam-
matory markers in those with PTSD, suggesting inflam-
mation as an important component of PTSD [104–106]. 
Future studies are warranted to investigate the role of 
CDC42BPB in psychiatric disorders and the degree to 
which CDC42BPB methylation varies with respect to 
PTSD onset and treatment response.

We also identified PTSD-associated CpGs in genes 
GFI1, CHD5, TOLLIP, ADCY4, and BANP. While the 
precise mechanisms linking these genes to PTSD are 
not entirely understood, evidence suggests that they are 
responsive to stress and have been implicated in stress-
related disorders, immune response, and other psychi-
atric disorders [107–111]. Collectively, these genes may 

contribute to PTSD through alterations in gene expres-
sion, synaptic and neural plasticity, and neuroimmune 
interactions. Future research should focus on elucidating 
the specific pathways and mechanisms by which these 
genes influence stress response and PTSD.

The stratified analyses identified DNAm-PTSD asso-
ciations specific to sex, ancestry, and cohort type to iden-
tify DNAm differences that may be specific to strata, 
such as hormonal factors that underlie sex differences or 
occupational exposures related to military service. The 
PTSD-associated site cg25691167 (FERD3L) in females 
(p = 4.24e − 08) was not associated with PTSD in males 
(p = 0.57), suggesting that DNAm changes in cg25691167 
might be sex-specific. The FERD3L (Fer3-like bHLH 
transcription factor) gene is a transcription factor 
involved in various developmental processes, particularly 
in neurogenesis [112], which is consistent with our path-
way enrichment findings in the female-stratified analysis 
that identified nervous system development. Similarly, 
cg27541344 (BCL11B) was associated with PTSD in 
the civilian (p = 7.21e − 08), but not the military cohorts 
(p = 0.38), whereas 3 out of 5 PTSD-associated CpGs in 
the military cohorts were not significant in the civilian 
cohorts (p > 0.05). Though these associations are promis-
ing and warrant further study, it is important to note that 
the sex-stratified analyses may be confounded by the fact 
that many male-dominant cohorts are military cohorts, 
where specific factors such as circadian rhythm, age, and 
diet during military practices may drive the observed 
sex-specific findings.

Strengths and limitations
To our knowledge, this is the largest EWAS of PTSD to 
date. Our sample is diverse in terms of sex, ancestry, and 
cohort type. We leveraged data from postmortem brain 
samples, a cellular model of prolonged stress, GWAS, 
and genome-wide expression data to support our find-
ings. However, the study is not without limitations. First, 
methylation arrays only assess a subset of CpG sites in 
the genome; therefore, we may not capture all PTSD-
associated CpG sites. Second, this is a cross-sectional 
study of participants with prior exposure to a traumatic 
event; thus, we were not able to assess whether the dif-
ferences in DNAm between individuals with and with-
out PTSD are a cause or consequence of PTSD or both. 
Third, our primary meta-analysis was performed using 
measures of blood DNAm. While this strategy provided 
valuable insights for future research on biomarkers of 
PTSD, it might not accurately represent the DNAm pat-
terns within other tissues that are likely the most relevant 
to PTSD. However, the majority of the PTSD-associated 
CpG sites’ methylation levels were correlated between 
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blood and at least one brain region. In addition, most 
PTSD-associated CpGs in blood were also associated 
with PTSD in one or more brain regions. Fourth, we 
do not have cell-type-specific DNAm and gene expres-
sion information necessary for further examination of 
cell-specific gene regulation across blood and brain cell 
types. Hence, we used bulk tissue and adjusted for cel-
lular heterogeneity, which might have obscured some 
signals, given the alterations in cell composition in those 
with PTSD [113, 114]. Additionally, the brain regions 
examined varied between the online databases used to 
examine the blood–brain correlation of methylation val-
ues and the gene expression differences associated with 
PTSD, which can complicate interpretation. Finally, 
most cohorts that participated in the meta-analysis did 
not have detailed physical or psychiatric information on 
participants, including detailed information on chronic-
ity, trauma type and timing, PTSD symptom course, and 
treatment, making it challenging to evaluate and adjust 
for potential confounders, including substance use, 
comorbidities, or medication use. The lack of detailed 
information on the types and timing of traumatic experi-
ences across cohorts prevents us from making definitive 
conclusions about the impact of different trauma types 
on DNAm. Future studies are warranted to examine 
DNAm changes longitudinally, tracking participants both 
before and after trauma exposure to capture the dynamic 
epigenetic modifications that occur in response to trau-
matic events, providing a clearer understanding of how 
trauma influences DNAm over time.

Conclusions
Taken together, this study replicates our previous find-
ings and identifies novel PTSD-associated CpGs. 
Supporting data from multiple sources suggest that epi-
genetic mechanisms, particularly methylation in AHRR 
and CDC42BPB, may contribute to the complex relation-
ship between the immune system and PTSD.
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