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Abstract

The pressing need to reduce undiagnosed type 2 diabetes (T2D) globally calls for innovative

screening approaches. This study investigates the potential of using a voice-based algo-

rithm to predict T2D status in adults, as the first step towards developing a non-invasive and

scalable screening method. We analyzed pre-specified text recordings from 607 US partici-

pants from the Colive Voice study registered on ClinicalTrials.gov (NCT04848623). Using

hybrid BYOL-S/CvT embeddings, we constructed gender-specific algorithms to predict T2D

status, evaluated through cross-validation based on accuracy, specificity, sensitivity, and

Area Under the Curve (AUC). The best models were stratified by key factors such as age,

BMI, and hypertension, and compared to the American Diabetes Association (ADA) score

for T2D risk assessment using Bland-Altman analysis. The voice-based algorithms demon-

strated good predictive capacity (AUC = 75% for males, 71% for females), correctly predict-

ing 71% of male and 66% of female T2D cases. Performance improved in females aged 60

years or older (AUC = 74%) and individuals with hypertension (AUC = 75%), with an overall

agreement above 93% with the ADA risk score. Our findings suggest that voice-based algo-

rithms could serve as a more accessible, cost-effective, and noninvasive screening tool for

T2D. While these results are promising, further validation is needed, particularly for early-

stage T2D cases and more diverse populations.

Author summary

Type 2 diabetes (T2D) is a major public health issue, affecting millions worldwide and

leading to severe health complications if undiagnosed. Currently, diagnosing T2D relies

on blood tests, which are invasive, costly, and challenging to implement on a large scale.
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This study explores a new, non-invasive approach: detecting T2D risk through voice anal-

ysis. Using data from the Colive Voice study, we developed a voice-based algorithm to

predict T2D status in adults in the USA. The algorithm analyzes specific voice features

and is designed to capture subtle differences in the voices of individuals with T2D com-

pared to those without. We trained and tested the algorithm separately for men and

women and observed promising results, with the algorithm showing accuracy levels com-

parable to traditional risk assessment tools, such as the American Diabetes Association

(ADA) score. We also found that the algorithms performed better in certain subgroups,

such as older women and individuals with hypertension. Our findings highlight the

potential of voice analysis as an accessible and affordable screening tool for T2D, espe-

cially valuable for early detection in diverse populations and settings with limited

resources. This innovative approach could transform diabetes screening by offering a

practical, scalable solution for identifying those at risk.

Introduction

Diabetes mellitus (DM) is an endocrine system illness in which the body cannot regulate blood

glucose levels. It is one of the most severe and common chronic diseases of our time, as it was

responsible for 6.7 million deaths in 2021 [1]. In 2022, about 1 in 10 people in the world is liv-

ing with DM, and the number is expected to grow from 537 million adults, up to 643 million

by 2030 and 783 million by 2045, as the result of population aging, economic development,

urbanization, unhealthy eating habits, and sedentary lifestyle[1]. In the USA, according to the

2022 National Diabetes Statistics Report from the CDC [1,2], 37.3 million people, or 11.3% of

the population, have diabetes. This total includes 28.7 million diagnosed cases and an esti-

mated 8.5 million people who are living with undiagnosed diabetes.

One of the most urgent public health challenges in DM is reducing the number of undiag-

nosed cases worldwide. Currently, almost one in every two people with type 2 diabetes (T2D)

is undiagnosed worldwide, and as a result, cannot begin treatment or preventive measures to

avoid or delay complications [3]. It was demonstrated that undiagnosed DM is associated with

a higher death risk when compared to normoglycemic individuals [4], as one-third of T2D

patients do not present symptoms until complications appear [5]. From a health economics

perspective, it has been previously reported that any undiagnosed diabetes case costs $4,250

per year in the USA [6], generating preventable healthcare expenditures.

Nowadays, screening campaigns rely on invasive blood glucose analysis that costs around

825 billion dollars per year [7], which might be difficult to deploy at a large scale or to imple-

ment in countries or settings with limited resources and/or infrastructures. Alternative meth-

ods include scores to identify individuals at risk of developing diabetes during the next 5 to 10

years. The FINDRISC score [7,8] is widely used, although it is based on a questionnaire with

limited detection capacities (AUC around 76%) and can be prone to errors or desirability

biases.

In the United States (USA), The American Diabetes Association (ADA) diabetes risk test[9]

was developed as a screening tool to classify high-risk subjects in the community and to raise

awareness of modifiable risk factors and healthy lifestyles (5). The ADA diabetes risk test scor-

ing includes seven questions (total score of 0–11) regarding age, gender, gestational diabetes

mellitus (GDM), family history of diabetes, high blood pressure, physical activity, and obesity

(based on body mass index (BMI) via a weight-height chart). Those having scores of 5 and

more are considered to be at high risk of having diabetes.
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With the advancement of digital technologies and artificial intelligence, significant effort is

being directed towards detecting diabetes through noninvasive methods. These methods range

from human facial block color analysis using sparse representation classifiers [10], hair analysis

through elemental composition [11,12,13], specialized eye exams aimed at detecting diabetic

retinopathy [14], to voice analysis, which stands as one of the most promising technologies in

healthcare applications. This includes early diagnosis of neurodegenerative diseases [15] and

assisting in screening and monitoring symptoms of conditions like COVID-19 [16] through

the analysis of subtle speech pattern alterations and vocal biomarkers.

Previous works have suggested that people with diabetes have different voice features than

people without diabetes. People with T2D with poor glycemic control or with neuropathy are

also more likely to have phonatory symptoms compared to controls [17], namely a higher

average score for vocal grading, straining [18], and hoarseness [19] that are affecting patients’

quality of life. From an acoustic perspective, it has been shown that voice parameters like jitter,

shimmer, smoothed amplitude perturbation quotient, noise-to-harmonic ratio, relative aver-

age perturbation, mean fundamental frequencies, maximum phonation time, and amplitude

perturbation quotient show significant differences in their values between T2D patients and

people without diabetes [20,21]. However, previous studies relied on relatively small sample

sizes, a lack of diversity in the participant profiles, and a lack of validation with audio record-

ings captured in real-world settings.

Building on this groundwork, our study distinguishes itself by leveraging data from the Col-

ive Voice program to develop and assess the performance of a voice-based AI algorithm for

T2D status detection in the adult population in the USA. This initiative not only serves as a

first step toward using voice analysis as a first-line T2D screening strategy but also offers

insights into the complex nature of T2D and its interaction with voice characteristics. Accord-

ingly, we place special emphasis on considering a wide array of demographic and health-

related parameters. This holistic approach is crucial as these factors can significantly affect

voice characteristics and, consequently, their potential as indicators for disease states.

Methods

Study population

In 2021, the Luxembourg Institute of Health initiated a worldwide, multilingual research pro-

gram named Colive Voice. Its ongoing project serves as a screening platform for vocal bio-

markers, for screening or monitoring various chronic diseases and frequent health symptoms.

To ensure diversity, Colive Voice collects voice recordings from participants above the age of

15 years, regardless of their health status and conditions, in English, French, German, and

Spanish globally. Each participant contributes with standardized vocal tasks which are then

annotated with clinical and demographic data.

Ethics statement

Colive Voice is registered on ClinicalTrials.gov (NCT04848623) and was approved by the

National Research Ethics Committee of Luxembourg (study number 202103/01) in March

2021. All participants provided informed consent to take part in the study.

Collected data

Colive Voice participants are invited to complete a comprehensive questionnaire to gather a

diverse range of information: demographic characteristics, lifestyle habits, anthropometric

data, symptoms, drug use, and history of chronic diseases. Regarding diabetes, Colive Voice
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gathers data on the diagnosis, type of diabetes, duration since diagnosis as well as treatment

categories, and HbA1c levels. For the present work, we included English-speaking participants

from the USA and we analyzed each gender separately. Participants were invited to record a

standardized reading task using the 25th article from the Human Rights Declaration (Fig 1).

All the collected raw audio data was processed and quality-checked to ensure consistency

throughout the study. There was no missing data in this study, ensuring a robust and complete

dataset for analysis.

Voice feature extraction

OpenSmile. OpenSmile [22] is an open-source toolkit, popularly used for generating

handcrafted low-level descriptors (LLD) from audio inputs. These descriptors encapsulate key

characteristics of audio signals over time such as pitch, intensity, and spectral properties.

OpenSmile computes functionals on these LLD contours, capturing statistical attributes like

peaks, means, and ranges to provide a higher-level overview of the audio signal. Among the

feature sets that OpenSmile offers, the ComParE set stands out. Comprising 6373 static fea-

tures, ComParE is notable for its comprehensive nature, offering a rich and extensive array of

data points. This vast collection of features facilitates the detection of complex patterns in the

audio data, offering an in-depth understanding of the audio source.

BYOL-S/CvT

The hybrid model, BYOL-S/CvT [23], is a new method that detects cognitive and physical load

in speech. It uses both data-driven features from the self-supervised BYOL-S model trained on

Audioset and handcrafted features from OpenSmile. This mix improves the model’s perfor-

mance and helps it learn speech patterns better than traditional methods. The BYOL-S/CvT

model is also efficient and fast, needing only a single step during the decision-making stage,

and produces 2048-dimensional embeddings.

Data analysis

In this study, the authors adhered to the TRIPOD criteria (the Transparent Reporting of a

Multivariable Prediction Model of Individual Prognosis Or Diagnosis) standards for the

Fig 1. General workflow.

https://doi.org/10.1371/journal.pdig.0000679.g001
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reporting of AI-based algorithm development and validation and used the corresponding

checklist to guide the drafting of the manuscript.

To mitigate gender bias and manage imbalanced data challenges in our machine learning

algorithm training, we first stratified the dataset based on gender. Following this, we used a

simple random sampling technique to generate balanced group sizes, ensuring a more equita-

ble and effective training process. Individuals without endocrine diseases, including diabetes,

were selected randomly from the general USA population to create a control group that

matched the size of the group of participants with T2D.

To enhance our algorithm’s performance, we first normalized the extracted features and

embeddings using a standard scaler, which helps ensure consistent variance across all features.

As high-dimensional inputs could lead to overfitting and poor generalization in machine

learning algorithms, we used Principal Component Analysis (PCA) to reduce the dimensional-

ity of the BYOL-S/CvT embeddings. For OpenSmile features, we used feature selection using

the SelectKBest function from scikit-learn.

Once the normalization, reduction, and feature selection processes were complete, the

resulting features were fed into three different classifiers: Logistic Regression (LR), Support

Vector Machine with a radial basis function kernel (SVM RBF), and Multi-Layer Perceptron

classifiers (MLP).

To evaluate the performance and compare the classifiers, we used stratified 5-fold cross-val-

idation, ensuring no data leakage via the Pipeline functionality from scikit-learn. This pipeline

handled scaling and PCA reduction for the BYOL-S embeddings, as well as scaling and feature

selection for OpenSmile features. We measured the algorithms’ performances using accuracy,

specificity, sensitivity, and AUC metrics.

For optimal results, we fine-tuned the number of PCA components and the algorithms’

hyperparameters using the grid search function from scikit-learn. We then used the best fea-

ture-classifier combination to select the most performant algorithm for each gender.

Influence of cofactors and their impact on algorithms’ performance

metrics

In order to highlight how different cofactors influence the efficacy of our predictive algo-

rithms, we conducted a performance stratification analysis. This analysis was segmented by

age (below and over 60 years), BMI (below and over 25–29.9 kg/m2). Additionally, we

examined conditions including hypertension, migraine, diagnosed depression, smoking,

stress, and fatigue (measured by the Fatigue Severity Scale [24]), designating each condi-

tion’s status as either ‘present’ and ‘absent’ or ‘severe’ and ‘mild’. To reinforce confidence in

our performance metrics and facilitate comparisons, we employed a bootstrapping tech-

nique. This involved generating multiple subsamples for each combination of comorbidity

and its status. The bootstrapping process, repeated for each comorbidity, involves sampling

with replacement from the original dataset and subsequently recalculating the metrics for

each subsample.

With the objective of developing a screening tool in mind, the assessment of specificity and

sensitivity metrics was prioritized, but AUC was also reported. High sensitivity guarantees that

true cases are not missed, while high specificity reduces false alarms, optimizing resource use

and building user trust. Performance metrics were computed independently for each bootstrap

iteration within the respective groups. To evaluate the statistical significance of performance

differences between categories, we employed the Mann-Whitney U test. Finally, to account for

multiple comparisons, we adjusted the p-values obtained from these statistical tests using a

Bonferroni correction.
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Sensitivity analysis

As a sensitivity analysis, we conducted a Bland-Altman analysis between the voice-based algo-

rithms and the ADA risk score, which serves as a gold standard for assessing T2D risk in the

USA population [9]. Due to data limitations, physical activity levels and family history of dia-

betes were not available in Colive Voice and were set to zero for all participants by default. In

this context, the modified ADA risk score ranges from zero, denoting no T2D risk, to seven,

indicating a high risk.

Results

Population characteristics

We analyzed 323 females and 284 males based on T2D status. The majority were identified as

white: 73.3% of females with T2D, 76.5% of females without T2D, 77.5% of males with T2D,

and 71.8% of males without T2D.

Significant differences were identified across the groups, including age, BMI (t-test p-

value < 0.001), and prevalence of hypertension (chi2 p-value < 0.001). Those with T2D, in

both genders, had higher average ages and BMIs than those without T2D. Specifically, females

with T2D had an average age of 49.5 years and a BMI of 35.8 kg/m2, compared to 40.0 years

and 28.0 kg/m2 in those without T2D. Male participants with T2D had an average age of 47.6

years and BMI of 32.8 kg/m2, whereas those without averaged 41.6 years and 26.6 kg/m2.

Hypertension was more prevalent among the T2D group. Among females with T2D, 50%

reported hypertension, compared to 11.18% in the group without T2D. For males, a similar

trend was observed, with 58.5% of those with T2D having hypertension, compared to 12.7%

without the condition.

Depression diagnosis history also was more prevalent in those with T2D (chi2 p-

value < 0.001), especially in females: 61.7% with T2D reported depression, compared to 45.3%

without T2D. Among males, the rates were 48.6% for those with T2D and 31.7% for those

without T2D. Other health conditions and scores are included in Table 1.

Algorithms’ performances

In both genders, MLP classifiers trained with BYOL-S/CvT embeddings significantly outper-

formed those trained solely on OpenSMILE features in both males and females (Table 2).

For the prediction of T2D in females, the classifier achieved a sensitivity of 0.67±0.11, speci-

ficity of 0.66±0.04, an AUC of 0.71±0.07 and a Brier score of 0.31. For the prediction of T2D in

males, the reported performance metrics were a sensitivity of 0.73±0.03, specificity of 0.70

±0.02, an AUC of 0.75±0.05 and a Brier score of 0.22 (Fig 2). The predicted probability of hav-

ing T2D is then used for the sensitivity analysis with ADA risk score.

Performance stratification

The specificity and sensitivity metrics showed variability across various subgroups.

When stratifying by key demographics, notable differences were observed for females

across age categories, with females aged 60 and above exhibiting higher specificity (0.74±0.12),

sensitivity (0.74±0.07), and AUC (0.74±0.07) compared to females aged below 60 for both

specificity and sensitivity (0.65±0.04), and for AUC (0.65±0.03) (Table 3).

This table provides an overview of various metrics, differentiated by gender across different

demographic factors, comorbidities, and lifestyle factors. The statistical significance of perfor-

mance differences between categories was evaluated using the Mann-Whitney U test, with all

results being statistically significant (p< 0.001).
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Conversely, no noticeable disparities were observed among males.

When considering comorbidities, hypertension emerged as a significant enhancer of the

algorithm’s performance in both genders. The presence of hypertension enhanced the sensitiv-

ity (0.75±0.05 for females and 0.76±0.05 for males), highlighting the algorithm’s efficiency in

detecting T2D in individuals with hypertension. On the other hand, for females, migraine con-

siderably increases specificity to 0.86±0.07 and sensitivity to 0.75±0.07, while for males with

migraine, both specificity (0.67±0.12) sensitivity (0.71±0.11) is lower. This suggests that

Table 1. Study population characteristics.

Female group Male group

T2D status Without T2D With T2D P-value Without T2D With T2D P-value

Participants (N) 161 162 - 142 142 -

Age (year) 40.0 (13.5) 49.5 (12.1) <0.001 41.6 (14.0) 47.6 (13.4) <0.001

Body Mass Index (kg/m2) 28.0 (7.3) 35.8 (8.9) <0.001 26.6 (5.5) 32.8 (8.5) <0.001

Ethnicity: White 118 (73.3%) 124 (76.5%) 0.28 110 (77.5%) 102 (71.8%) 0.59

Ethnicity: Black 20 (12.4%) 21 (13.0%) 10 (7.0%) 12 (8.5%)

Ethnicity: Other 23 (14.3%) 17 (10.5%) 22 (15.5%) 28 (19.7%)

Fatigue Severity Scale 32.3 (13.4) 40.3 (12.3) <0.001 31.3 (12.8) 40.3 (12.3) <0.001

Perceived stress (% yes) 38 (23.6%) 49 (30.3%) 0.48 29 (20.4%) 38 (26.7%) 0.16

Smoking (% yes) 28 (17.4%) 19 (11.7%) 0.22 32 (22.5%) 34 (23.9%) 0.24

Migraine (% yes) 33 (20.5%) 43 (26.5%) 0.25 16 (11.3%) 19 (13.4%) 0.72

Thyroidic disease (% yes) 0 (0%) 37 (22.8%) <0.001 0 (0%) 10 (0.7%) <0.01

Hypertension (% yes) 18 (11.2%) 81 (50.0%) <0.001 18 (12.7%) 83 (58.5%) <0.001

Diagnosed depression (% yes) 73 (45.3%) 100 (61.7%) <0.01 45 (31.7%) 69 (48.6%) <0.01

HbA1c (%) - 7.14 (1.8) - - 7.20 (1.7) -

Diabetes treatment (% yes) - 126 (77.8%) - - 114 (80.3%) -

Diabetes duration (year) - 8.9 (7.3) - - 9.1 (7.6) -

The table presents clinical data describing the overall population of the study. Categorical data are represented by total numbers and percentages, with the calculated p-

values derived from chi-square tests. Continuous data are represented by mean and standard deviation, with p-values calculated using the Student’s t-test.

https://doi.org/10.1371/journal.pdig.0000679.t001

Table 2. Results of the prediction models.

Features Dimensionality reduction Classifier Accuracy Specificity Sensitivity AUC

Female group Opensmile ComParE 2016 (6373) 200 selected features LR 0.60 (0.03) 0.60 (0.03) 0.62 (0.07) 0.62 (0.02)

MLP Classifier 0.63 (0.02) 0.61 (0.02) 0.74 (0.02) 0.66 (0.02)

SVM RBF 0.57 (0.02) 0.57 (0.02) 0.63 (0.03) 0.61 (0.01)

Byol-S embeddings (2048) PCA, n_components = n_samples LR 0.67 (0.04) 0.68 (0.04) 0.65 (0.11) 0.70 (0.06)

MLP Classifier 0.67 (0.04) 0.66 (0.04) 0.67 (0.11) 0.71 (0.07)

SVM RBF 0.66 (0.04) 0.65 (0.07) 0.67 (0.11) 0.71 (0.05)

Male group Opensmile ComParE 2016 (6373) 100 selected features LR 0.56 (0.02) 0.55 (0.01) 0.58 (0.05) 0.61 (0.05)

MLP Classifier 0.61 (0.05) 0.61 (0.06) 0.63 (0.06) 0.64 (0.05)

SVM RBF 0.57 (0.05) 0.57 (0.06) 0.54 (0.05) 0.57 (0.05)

Byol-S embeddings (2048) PCA, n_components = 100 LR 0.69 (0.04) 0.66 (0.07) 0.72 (0.03) 0.73 (0.06)

MLP Classifier 0.71 (0.02) 0.70 (0.02) 0.73 (0.03) 0.75 (0.05)

SVM RBF 0.70 (0.04) 0.64 (0.05) 0.76 (0.03) 0.78 (0.05)

Table 2 presents the mean and standard deviation (in parentheses) of the performance metrics across cross-validation folds. The selected algorithm for each gender

group is highlighted in bold. Logistic Regression (LR), Multi-layer Perceptron (MLP), Support Vector Machine Radial basis function kernel (SVM RBF).

https://doi.org/10.1371/journal.pdig.0000679.t002
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migraine has a more pronounced impact on the accuracy of T2D detection in women than in

men.

Lifestyle factors and symptoms also influence performance. The presence of depressive

symptoms significantly impacts the algorithm’s performance in women, increasing both speci-

ficity (0.75±0.05) and sensitivity (0.71±0.05). Conversely, for men, the impact of depressive

symptoms are less prominent, with a slight decrease in sensitivity (from 0.75±0.05 to 0.71

±0.06) yet a stable specificity of 0.71±0.07. This demonstrates enhanced accuracy in detecting

T2D in women with depression. Smoking and stress revealed gender-specific impacts; smok-

ing led to higher sensitivity in males (0.76±0.07) compared to a decreased sensitivity in females

(0.53±12). Similarly, stress resulted in increased sensitivity for men (0.77±0.07) but decreased

for women (0.62±0.07). Fatigue showed a uniform impact on specificity in both genders yet an

increase in sensitivity in females with severe fatigue (0.68±0.05) compared to a stable sensitiv-

ity for males of (0.73±0.05).

Overall, the data indicates that the algorithm’s specificity and sensitivity are influenced by

demographic factors, comorbidities, and lifestyle factors, with notable differences observed

between genders. These findings underscore the importance of considering these variables in

the development and refinement of diagnostic tools, ensuring more accurate and gender-spe-

cific healthcare strategies in managing and diagnosing T2D.

Fig 2. Voice-based T2D status detection algorithms’ overall performance. A: Predicted probability distribution by

T2D status. B: Confusion matrix of the selected models. C: AUC-ROC curve of the selected mode.

https://doi.org/10.1371/journal.pdig.0000679.g002
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Agreement with ADA risk score

In the Bland-Altman analysis, the mean difference indicates the average bias between the algo-

rithm’s scores and the ADA risk scores. This analysis indicates that the algorithm has a mean

difference of 0.57 for females and -0.15 for males compared to the ADA risk score, with over

93% agreement within acceptable limits for both genders, showing consistent agreement

across genders (see S1 Fig).

Furthermore, we calculated the AUC for the ADA score and found comparable results to

the voice-based algorithm’s performance: AUC for the ADA risk score was 0.72 for females

and 0.71 for males, compared to the algorithm’s AUC of 0.71 (0.07) for females and 0.75 (0.05)

for males. These findings indicate that our voice-based algorithm performs similarly to the

established ADA risk score, further supporting its potential as a reliable screening tool for

T2D.

Discussion

In this study, using a large sample from the USA population, we developed voice-based algo-

rithms to detect T2D status. Our goal was to explore the possibility of using a rapid, user-

friendly voice recording as a T2D status predictor. We observed that the performance of the

predictive algorithms was maximal when trained using the hybrid BYOL-S/CvT embeddings,

achieving AUC scores of 0.75 and 0.71 for the male and female groups, respectively. Besides

demonstrating overall fair to good performances, we also examined the influence of cofactors

on voice-based T2D status prediction, which allowed us to identify key subgroups of the popu-

lation with enhanced performances. In a sensitivity analysis, we have confirmed a strong

agreement with the currently used questionnaire-based ADA risk score, a gold standard for

T2D risk assessment in the USA.

Undiagnosed T2D or delayed diagnosis can accelerate the occurrence of serious diabetes-

related complications, including cardiovascular diseases, neuropathy, retinopathy, and

nephropathy [25]. One potential under-investigated effect of T2D is its impact on voice, which

Table 3. Performance stratification of voice-based T2D status detection algorithms.

Females Males

Specificity Sensitivity AUC Specificity Sensitivity AUC

Demographics Age <60 y 0.65 (0.04) 0.65 (0.04) 0.65 (0.03) 0.70 (0.04) 0.74 (0.04) 0.72 (0.03)

� 60y 0.74 (0.12) 0.74 (0.07) 0.74 (0.07) 0.70 (0.11) 0.70 (0.10) 0.70 (0.07)

Body Mass Index <25 kg/m2 0.68 (0.06) 0.58 (0.12) 0.63 (0.07) 0.70 (0.06) 0.78 (0.09) 0.74 (0.05)

� 25 kg/m2 0.65 (0.05) 0.68 (0.04) 0.67 (0.03) 0.69 (0.05) 0.72 (0.04) 0.71 (0.03)

Comorbidities Hypertension Present 0.76 (0.11) 0.75 (0.05) 0.75 (0.06) 0.72 (0.11) 0.76 (0.05) 0.74 (0.06)

Absent 0.65 (0.04) 0.61 (0.05) 0.63 (0.03) 0.69 (0.04) 0.70 (0.05) 0.70 (0.03)

Migraine Present 0.86 (0.07) 0.75 (0.07) 0.80 (0.05) 0.67 (0.12) 0.71 (0.11) 0.69 (0.09)

Absent 0.62 (0.04) 0.65 (0.04) 0.65 (0.04) 0.70 (0.04) 0.74 (0.04) 0.72 (0.03)

Lifestyle factors and symptoms Smoking Present 0.60 (0.09) 0.53 (0.12) 0.57 (0.07) 0.74 (0.09) 0.76 (0.07) 0.75 (0.06)

Absent 0.67 (0.04) 0.69 (0.04) 0.68 (0.03) 0.69 (0.04) 0.72 (0.04) 0.71 (0.03)

Depressive symptoms Severe 0.75 (0.05) 0.71 (0.05) 0.73 (0.03) 0.71 (0.07) 0.71 (0.06) 0.71 (0.04)

Mild 0.58 (0.05) 0.61 (0.06) 0.60 (0.04) 0.69 (0.05) 0.75 (0.05) 0.72 (0.03)

Stress Present 0.76 (0.07) 0.62 (0.07) 0.69 (0.05) 0.69 (0.09) 0.77 (0.07) 0.72 (0.06)

Absent 0.63 (0.04) 0.70 (0.04) 0.66 (0.03) 0.70 (0.04) 0.72 (0.04) 0.71 (0.03)

Fatigue Severe 0.68 (0.06) 0.68 (0.05) 0.68 (0.04) 0.71 (0.06) 0.73 (0.05) 0.72 (0.04)

Mild 0.65 (0.05) 0.66 (0.06) 0.65 (0.04) 0.69 (0.05) 0.73 (0.06) 0.71 (0.04)

https://doi.org/10.1371/journal.pdig.0000679.t003
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may be due to the disease’s influence on respiratory and neuromuscular functions [19,20,26].

It was already shown that pulmonary function is reduced in people with T2D compared to

those with no diabetes [27]. For speech production, an individual needs a sufficient air intake,

which then travels through the trachea and larynx, causing vocal fold vibrations. Articulating

these vibrations into speech requires various small muscles in the neck and throat, connected

by a large nerve network. Diabetes is commonly linked to peripheral neuropathy, but it can

also impact other systems [28]. This includes potential nerve damage in the throat and neck

region, which is vital for speech production. Research has suggested that diabetes can lead to

voice changes, especially in those with poor glucose control, causing symptoms like hoarseness

and strain [18,28]. These patients often have reduced maximum phonation times, indicating

neuromuscular and respiratory alterations [18,20,28]. Building upon this, our study, with its

larger sample size, offered a comprehensive exploration of the vocal and physiological compli-

cations associated with T2D. By assessing cofactors, we also highlighted how they influence

voice patterns, providing valuable insights for future diagnostic strategies.

Key demographic indicators, mainly age, were central in T2D status prediction using voice,

especially for women. This aligns with existing research that emphasizes the importance of this

variable as a critical determinant of diabetes risk [29,30]. We observed that older females

(�60) exhibited higher specificity, sensitivity, and AUC compared to younger ones (<60), but

no difference was observed in males. An adult woman’s average fundamental frequency range

is 165 to 255 Hz, while a man’s is 85 to 155 Hz [31]. In females, hormonal changes related to

menopause can affect vocal cords and larynx and, consequently, cause a drop in the funda-

mental frequency of the voice [32]. These hormonal variations may interact with the metabolic

disruptions caused by diabetes, leading to observable changes in voice pitch. On the other

hand, males, not subject to the same degree of hormonal fluctuations, may exhibit less notice-

able alterations in fundamental frequency.

Additionally, hypertension emerged as a key influencer in T2D status detection using voice,

improving the predictive performance for both genders by up to 6%. While hypertension is

known to be associated with diabetes development [33], it is not commonly incorporated into

standard T2D risk assessment tools and its correlation with voice changes remains relatively

unexplored [33,34].

Another distinguishing feature of our study is the gender-specific analysis of voice-based

algorithms. We found that while certain determinants of T2D status were consistently influen-

tial across genders, others displayed gender-specific variations. Discrepancies observed in the

impact of conditions such as migraines and on the voice-based T2D status detection algo-

rithm’s performance might be traced back to inherent gender-based physiological differences.

Women are also more likely to experience migraine than men, with more frequent and severe

attacks [35]. Besides, migraine and diabetes have already been shown to be associated with

women [36], and our study confirms that this association can be captured by changes in female

voices [37]. The varying impact of smoking on the algorithm’s performances between genders

may reflect gender-specific vocal changes caused by smoking [37,38]. Depression affects voices

differently between men and women, suggesting that depression is linked to a higher risk of

diabetes in women, but not in men [39,40]. This gender-specific association might explain the

observed disparities in voice changes. The physiological and psychological stresses associated

with depression may induce subtle voice changes that vary between genders, potentially due to

hormonal or neurological differences. This variation might be more pronounced in women

due to the combined impact of hormonal disruptions related to both diabetes and depression.

Stress and fatigue, both of which can affect voice quality [41,42], seem to influence the algo-

rithm’s performance in a gender-specific manner. These factors, known to play roles in glucose
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metabolism and insulin resistance [43], likely contribute to the voice patterns identified by the

algorithm as indicative of T2D risk.

Such a sensitivity analysis is rarely performed in the field of vocal or digital biomarkers, as

authors frequently report overall performances only. Our approach underscores that integrat-

ing the analysis of the influence of key demographic and health parameters is essential before

developing any reliable voice-based screening tool. This helps to understand the potential

physiological influence of these factors on either voice features or the health outcome of inter-

est. Identifying the key sub-groups in the population is crucial to determining where the per-

formance of these tools could be optimal.

Strengths and limitations

This work has several strengths. First, we used the most comprehensive sample of USA partici-

pants with standardized voice ecological recordings, collected in a real-life setting, compared

to existing datasets. Additionally, we performed the analysis separately, stratified for males and

females, to account for major gender differences in voice characteristics and to mitigate gender

bias. Voice features can vary significantly between males and females due to physiological and

hormonal differences, which can affect the accuracy and performance of the algorithm if not

accounted for. By developing separate models for each gender, we were able to fine-tune the

algorithms for the specific characteristics of males and females, improving overall predictive

performance and ensuring fairness and generalizability.

Besides displaying overall good performances, we also performed additional analyses to

identify important subgroups where the voice-based algorithms would perform even better.

Our comparative analysis of cofactors emphasized the complex nature of T2D and its interac-

tion with voice characteristics, providing some levels of interpretability and explainability to

the algorithms. Importantly, we have been able to benchmark the voice-based algorithms

against an existing screening strategy in the USA, and we demonstrated a strong agreement

with the ADA risk score. This concordance reinforces the potential use of voice-based analysis

as a viable first-line screening tool for T2D.

There is also scope for further refinement before such algorithms can be considered ready

for implementation as a screening tool and several limitations have to be acknowledged in our

study. First, due to data constraints in ADA score calculation, missing values for parameters,

namely physical activity and family history of diabetes were assigned a value of zero for all par-

ticipants by default. While this approach might introduce less variability in the ADA scores,

the potential for misclassification arises. However, the impact of this limitation is somewhat

limited since the ADA score is primarily driven by age and BMI, which are available in our

study. Even though they represent different constructs, we have still observed a strong agree-

ment between the voice-based algorithms and the ADA risk score. Another limitation is that

our study relied on a sample of English speakers only, with diverse T2D durations. To robustly

establish and reinforce the performance of a future screening tool in predicting T2D, a more

diverse and large dataset is needed, while specifically targeting early-stage T2D and prediabetes

cases. Additionally, conducting longitudinal studies will help to better understand how

changes in voice characteristics correlate with the development and progression of T2D. This

approach will provide insights into the main clinical diabetes-related parameters, such as gly-

cemic control and diabetes-related complications, and help establish causal relationships. Fur-

thermore, it is also important to generalize this research across different populations, with

diverse backgrounds and languages. Expanding datasets will allow a deeper examination of

nuanced factors, comorbidities, and their interactions affecting voice-based screening tools in

predicting T2D.
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Conclusion and perspectives

This work demonstrates the potential of using voice analysis in a diabetes context. A voice

recording could potentially be soon used as a scalable, non-invasive first-line diabetes screen-

ing strategy. Future research should focus on targeting individuals with early-stage T2D and

prediabetes and expanding our findings to other populations in prospective studies. Given the

high societal costs of undiagnosed diabetes in the USA, our findings open new perspectives to

improve secondary prevention, reduce the impact of diabetes and prevent severe complica-

tions and premature diabetes-related mortality.

Supporting information

S1 Fig. Bland-Altman plot showing the agreement between the voice-based algorithms’ pre-

dicted probability and the ADA risk score for both gender groups (A: Female group, B: Male

group). Note: The predicted probability was scaled by a factor of 7 for harmonization.

(TIF)
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Methodology: Abir Elbéji, Vladimir Despotovic, Guy Fagherazzi.

Project administration: Guy Fagherazzi.
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21. Stogowska E, Kamiński KA, Ziółko B, Kowalska I. Voice changes in reproductive disorders, thyroid dis-

orders and diabetes: a review. Endocrine Connections. 2022;11. https://doi.org/10.1530/EC-21-0505

PMID: 35148272

22. Florian Eyben Technische Universität München, München, Germany, Martin Wöllmer Technische Uni-

versität München, München, Germany, Björn Schuller Technische Universität München, München,

Germany. Opensmile. [cited 4 Sep 2023]. https://doi.org/10.1145/1873951.1874246

23. Elbanna G, Biryukov A, Scheidwasser-Clow N, Orlandic L, Mainar P, Kegler M, et al. Hybrid Hand-

crafted and Learnable Audio Representation for Analysis of Speech Under Cognitive and Physical

Load. ArXiv. 2022. Available: https://arxiv.org/pdf/2203.16637.pdf.

24. Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale. Application to patients

with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989; 46. https://doi.org/10.

1001/archneur.1989.00520460115022 PMID: 2803071

PLOS DIGITAL HEALTH Voice-based algorithm predicts type 2 diabetes in USA adults

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000679 December 19, 2024 13 / 14

https://doi.org/10.1016/j.diabres.2021.109118
http://www.ncbi.nlm.nih.gov/pubmed/34883189
https://doi.org/10.1111/j.1464-5491.2004.01433.x
https://doi.org/10.1111/j.1464-5491.2004.01433.x
http://www.ncbi.nlm.nih.gov/pubmed/15787678
https://doi.org/10.2337/diacare.26.2007.s33
https://doi.org/10.2337/diacare.26.2007.s33
http://www.ncbi.nlm.nih.gov/pubmed/12502618
https://doi.org/10.2337/dc18-1226
http://www.ncbi.nlm.nih.gov/pubmed/30940641
https://doi.org/10.1016/j.pcd.2020.02.008
http://www.ncbi.nlm.nih.gov/pubmed/32156516
https://doi.org/10.2337/diacare.26.3.725
http://www.ncbi.nlm.nih.gov/pubmed/12610029
https://ieeexplore.ieee.org/document/6675828
https://ieeexplore.ieee.org/document/6675828
https://ieeexplore.ieee.org/document/6675828
https://ieeexplore.ieee.org/document/6675828
https://doi.org/10.1016/j.mehy.2016.08.009
http://www.ncbi.nlm.nih.gov/pubmed/27692164
https://doi.org/10.1016/j.jbi.2019.103362
http://www.ncbi.nlm.nih.gov/pubmed/31866434
https://doi.org/10.1371/journal.pdig.0000112
http://www.ncbi.nlm.nih.gov/pubmed/36812535
https://doi.org/10.1080/14015439.2021.1917653
https://doi.org/10.1080/14015439.2021.1917653
http://www.ncbi.nlm.nih.gov/pubmed/33970753
https://doi.org/10.1007/s00405-012-1933-7
http://www.ncbi.nlm.nih.gov/pubmed/22302159
https://doi.org/10.1007/s00592-012-0392-3
http://www.ncbi.nlm.nih.gov/pubmed/22527095
https://doi.org/10.1016/j.jvoice.2019.07.003
http://www.ncbi.nlm.nih.gov/pubmed/31427120
https://doi.org/10.1530/EC-21-0505
http://www.ncbi.nlm.nih.gov/pubmed/35148272
https://doi.org/10.1145/1873951.1874246
https://arxiv.org/pdf/2203.16637.pdf
https://doi.org/10.1001/archneur.1989.00520460115022
https://doi.org/10.1001/archneur.1989.00520460115022
http://www.ncbi.nlm.nih.gov/pubmed/2803071
https://doi.org/10.1371/journal.pdig.0000679


25. Wu Y, Ding Y, Tanaka Y, Zhang W. Risk Factors Contributing to Type 2 Diabetes and Recent Advances

in the Treatment and Prevention. Int J Med Sci. 2014; 11: 1185. https://doi.org/10.7150/ijms.10001

PMID: 25249787

26. Blood Glucose Estimation From Voice: First Review of Successes and Challenges. J Voice. 2022; 36:

737.e1–737.e10. https://doi.org/10.1016/j.jvoice.2020.08.034 PMID: 33041176

27. Davis TME, Drinkwater JJ, Davis WA. Pulmonary Function Trajectories Over 6 Years and Their Deter-

minants in Type 2 Diabetes: The Fremantle Diabetes Study Phase II. Diabetes Care. 2024 [cited 17 Jan

2024]. https://doi.org/10.2337/dc23-1726 PMID: 38211617

28. Patel K, Horak H, Tiryaki E. Diabetic neuropathies. Muscle Nerve. 2021; 63: 22–30. https://doi.org/10.

1002/mus.27014 PMID: 32589300

29. Ganz ML, Wintfeld N, Li Q, Alas V, Langer J, Hammer M. The association of body mass index with the

risk of type 2 diabetes: a case–control study nested in an electronic health records system in the United

States. Diabetol Metab Syndr. 2014; 6: 50. https://doi.org/10.1186/1758-5996-6-50 PMID: 24694251

30. Yan Z, Cai M, Han X, Chen Q, Lu H. The Interaction Between Age and Risk Factors for Diabetes and

Prediabetes: A Community-Based Cross-Sectional Study. Diabetes Metab Syndr Obes. 2023; 16: 85.

https://doi.org/10.2147/DMSO.S390857 PMID: 36760587

31. Fitch JL, Holbrook A. Modal vocal fundamental frequency of young adults. Arch Otolaryngol. 1970; 92.

https://doi.org/10.1001/archotol.1970.04310040067012 PMID: 5455579

32. Lã FMB, Ardura D. What Voice-Related Metrics Change With Menopause? A Systematic Review and

Meta-Analysis Study. J Voice. 2022; 36. https://doi.org/10.1016/j.jvoice.2020.06.012 PMID: 32660847

33. Kim M-J, Lim N-K, Choi S-J, Park H-Y. Hypertension is an independent risk factor for type 2 diabetes:

the Korean genome and epidemiology study. Hypertens Res. 2015; 38: 783–789. https://doi.org/10.

1038/hr.2015.72 PMID: 26178151

34. Sakai M. Case study on analysis of vocal frequency to estimate blood pressure. [cited 4 Sep 2023].

Available: https://ieeexplore.ieee.org/document/7257173.

35. Allais G, Chiarle G, Sinigaglia S, Airola G, Schiapparelli P, Benedetto C. Gender-related differences in

migraine. Neurol Sci. 2020; 41: 429. https://doi.org/10.1007/s10072-020-04643-8 PMID: 32845494

36. Fagherazzi G, El Fatouhi D, Fournier A, Gusto G, Mancini FR, Balkau B, et al. Associations Between

Migraine and Type 2 Diabetes in Women: Findings From the E3N Cohort Study. JAMA Neurol. 2019;

76. https://doi.org/10.1001/jamaneurol.2018.3960 PMID: 30556831

37. Schwedt TJ, Peplinski J, Garcia-Filion P, Berisha V. Altered speech with migraine attacks: A prospec-

tive, longitudinal study of episodic migraine without aura. Cephalalgia. 2019; 39: 722. https://doi.org/10.

1177/0333102418815505 PMID: 30449150

38. Towards the Objective Speech Assessment of Smoking Status based on Voice Features: A Review of

the Literature. J Voice. 2023; 37: 300.e11–300.e20. https://doi.org/10.1016/j.jvoice.2020.12.014 PMID:

33495036

39. Pan A, Lucas M, Sun Q, van Dam RM, Franco OH, Manson JE, et al. Bidirectional Association between

Depression and Type 2 Diabetes in Women. Arch Intern Med. 2010; 170: 1884.

40. Demmer RT, Gelb S, Suglia SF, Keyes KM, Aiello AE, Colombo PC, et al. Sex Differences in the Asso-

ciation between Depression, Anxiety, and Type 2 Diabetes Mellitus. Psychosom Med. 2015; 77: 467.

https://doi.org/10.1097/PSY.0000000000000169 PMID: 25867970

41. Greeley HP, Berg J, Friets E, Wilson J, Greenough G, Picone J, et al. Fatigue estimation using voice

analysis. Behav Res Methods. 2007; 39: 610–619. https://doi.org/10.3758/bf03193033 PMID:

17958175

42. Van Puyvelde M, Neyt X, McGlone F, Pattyn N. Voice Stress Analysis: A New Framework for Voice and

Effort in Human Performance. Front Psychol. 2018; 9: 414457. https://doi.org/10.3389/fpsyg.2018.

01994 PMID: 30515113

43. Yaribeygi H, Maleki M, Butler AE, Jamialahmadi T, Sahebkar A. Molecular mechanisms linking stress

and insulin resistance. EXCLI J. 2022; 21: 317. https://doi.org/10.17179/excli2021-4382 PMID:

35368460

PLOS DIGITAL HEALTH Voice-based algorithm predicts type 2 diabetes in USA adults

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000679 December 19, 2024 14 / 14

https://doi.org/10.7150/ijms.10001
http://www.ncbi.nlm.nih.gov/pubmed/25249787
https://doi.org/10.1016/j.jvoice.2020.08.034
http://www.ncbi.nlm.nih.gov/pubmed/33041176
https://doi.org/10.2337/dc23-1726
http://www.ncbi.nlm.nih.gov/pubmed/38211617
https://doi.org/10.1002/mus.27014
https://doi.org/10.1002/mus.27014
http://www.ncbi.nlm.nih.gov/pubmed/32589300
https://doi.org/10.1186/1758-5996-6-50
http://www.ncbi.nlm.nih.gov/pubmed/24694251
https://doi.org/10.2147/DMSO.S390857
http://www.ncbi.nlm.nih.gov/pubmed/36760587
https://doi.org/10.1001/archotol.1970.04310040067012
http://www.ncbi.nlm.nih.gov/pubmed/5455579
https://doi.org/10.1016/j.jvoice.2020.06.012
http://www.ncbi.nlm.nih.gov/pubmed/32660847
https://doi.org/10.1038/hr.2015.72
https://doi.org/10.1038/hr.2015.72
http://www.ncbi.nlm.nih.gov/pubmed/26178151
https://ieeexplore.ieee.org/document/7257173
https://doi.org/10.1007/s10072-020-04643-8
http://www.ncbi.nlm.nih.gov/pubmed/32845494
https://doi.org/10.1001/jamaneurol.2018.3960
http://www.ncbi.nlm.nih.gov/pubmed/30556831
https://doi.org/10.1177/0333102418815505
https://doi.org/10.1177/0333102418815505
http://www.ncbi.nlm.nih.gov/pubmed/30449150
https://doi.org/10.1016/j.jvoice.2020.12.014
http://www.ncbi.nlm.nih.gov/pubmed/33495036
https://doi.org/10.1097/PSY.0000000000000169
http://www.ncbi.nlm.nih.gov/pubmed/25867970
https://doi.org/10.3758/bf03193033
http://www.ncbi.nlm.nih.gov/pubmed/17958175
https://doi.org/10.3389/fpsyg.2018.01994
https://doi.org/10.3389/fpsyg.2018.01994
http://www.ncbi.nlm.nih.gov/pubmed/30515113
https://doi.org/10.17179/excli2021-4382
http://www.ncbi.nlm.nih.gov/pubmed/35368460
https://doi.org/10.1371/journal.pdig.0000679

