Skip to main content
. 2024 Dec 19;3(12):e0000679. doi: 10.1371/journal.pdig.0000679

Table 2. Results of the prediction models.

Features Dimensionality reduction Classifier Accuracy Specificity Sensitivity AUC
Female group Opensmile ComParE 2016 (6373) 200 selected features LR 0.60 (0.03) 0.60 (0.03) 0.62 (0.07) 0.62 (0.02)
MLP Classifier 0.63 (0.02) 0.61 (0.02) 0.74 (0.02) 0.66 (0.02)
SVM RBF 0.57 (0.02) 0.57 (0.02) 0.63 (0.03) 0.61 (0.01)
Byol-S embeddings (2048) PCA, n_components = n_samples LR 0.67 (0.04) 0.68 (0.04) 0.65 (0.11) 0.70 (0.06)
MLP Classifier 0.67 (0.04) 0.66 (0.04) 0.67 (0.11) 0.71 (0.07)
SVM RBF 0.66 (0.04) 0.65 (0.07) 0.67 (0.11) 0.71 (0.05)
Male group Opensmile ComParE 2016 (6373) 100 selected features LR 0.56 (0.02) 0.55 (0.01) 0.58 (0.05) 0.61 (0.05)
MLP Classifier 0.61 (0.05) 0.61 (0.06) 0.63 (0.06) 0.64 (0.05)
SVM RBF 0.57 (0.05) 0.57 (0.06) 0.54 (0.05) 0.57 (0.05)
Byol-S embeddings (2048) PCA, n_components = 100 LR 0.69 (0.04) 0.66 (0.07) 0.72 (0.03) 0.73 (0.06)
MLP Classifier 0.71 (0.02) 0.70 (0.02) 0.73 (0.03) 0.75 (0.05)
SVM RBF 0.70 (0.04) 0.64 (0.05) 0.76 (0.03) 0.78 (0.05)

Table 2 presents the mean and standard deviation (in parentheses) of the performance metrics across cross-validation folds. The selected algorithm for each gender group is highlighted in bold. Logistic Regression (LR), Multi-layer Perceptron (MLP), Support Vector Machine Radial basis function kernel (SVM RBF).