Table 2. Results of the prediction models.
Features | Dimensionality reduction | Classifier | Accuracy | Specificity | Sensitivity | AUC | |
---|---|---|---|---|---|---|---|
Female group | Opensmile ComParE 2016 (6373) | 200 selected features | LR | 0.60 (0.03) | 0.60 (0.03) | 0.62 (0.07) | 0.62 (0.02) |
MLP Classifier | 0.63 (0.02) | 0.61 (0.02) | 0.74 (0.02) | 0.66 (0.02) | |||
SVM RBF | 0.57 (0.02) | 0.57 (0.02) | 0.63 (0.03) | 0.61 (0.01) | |||
Byol-S embeddings (2048) | PCA, n_components = n_samples | LR | 0.67 (0.04) | 0.68 (0.04) | 0.65 (0.11) | 0.70 (0.06) | |
MLP Classifier | 0.67 (0.04) | 0.66 (0.04) | 0.67 (0.11) | 0.71 (0.07) | |||
SVM RBF | 0.66 (0.04) | 0.65 (0.07) | 0.67 (0.11) | 0.71 (0.05) | |||
Male group | Opensmile ComParE 2016 (6373) | 100 selected features | LR | 0.56 (0.02) | 0.55 (0.01) | 0.58 (0.05) | 0.61 (0.05) |
MLP Classifier | 0.61 (0.05) | 0.61 (0.06) | 0.63 (0.06) | 0.64 (0.05) | |||
SVM RBF | 0.57 (0.05) | 0.57 (0.06) | 0.54 (0.05) | 0.57 (0.05) | |||
Byol-S embeddings (2048) | PCA, n_components = 100 | LR | 0.69 (0.04) | 0.66 (0.07) | 0.72 (0.03) | 0.73 (0.06) | |
MLP Classifier | 0.71 (0.02) | 0.70 (0.02) | 0.73 (0.03) | 0.75 (0.05) | |||
SVM RBF | 0.70 (0.04) | 0.64 (0.05) | 0.76 (0.03) | 0.78 (0.05) |
Table 2 presents the mean and standard deviation (in parentheses) of the performance metrics across cross-validation folds. The selected algorithm for each gender group is highlighted in bold. Logistic Regression (LR), Multi-layer Perceptron (MLP), Support Vector Machine Radial basis function kernel (SVM RBF).