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Abstract

Reverse micelles (RMs) have emerged as useful tools for the study of membrane associated 

proteins. With a nanoscale water core surrounded by surfactant and solubilized in a non-polar 

solvent, RMs stand apart as a unique membrane model. While RMs have been utilized as 

tools to investigate the physical properties of membranes and their associated water, RMs also 

effectively house membrane associated proteins for a variety of studies. High-resolution protein 

NMR revealed a need for development of improved RM formulations, which greatly enhanced 

the use of RMs for aqueous proteins. Protein-optimized RM formulations enabled encapsulation 

of challenging membrane associated protein types, including lipidated proteins, transmembrane 

proteins, and peripheral membrane proteins. Improvements in biological accuracy of RMs using 

phospholipid-based surfactants has advanced their utility as a membrane mimetic even further, 

better matching the chemistry of the most common cellular membrane lipids. Natural lipid extracts 

may also be used to construct RMs and house proteins, resulting in a membrane model that 

better represents the complexity of biological membranes. Recent applications in high-resolution 

investigations of protein-membrane interactions and inhibitor design of membrane associated 

proteins have demonstrated the usefulness of these systems in addressing this difficult category 

of protein. Further developments of RMs as membrane models will enhance the breadth of 

investigations facilitated by these systems and will enhance their use in biophysical, structural, 

and drug discovery pursuits of membrane associated proteins. In this review, we present the 

development of RMs as membrane models and their application to structural and biophysical study 

of membrane proteins.

Introduction

Among many functions, membrane proteins act as liaisons and gatekeepers of membranes, 

the primary barriers of cells [1]. Their central roles make them an important focus for 

a variety of studies, from basic biology to disease mechanisms and drug discovery. An 

assortment of membrane protein varieties exists, including transmembrane (TM) proteins 

that span the bilayer and are primarily of either α-helical bundle or β-barrel types [2], 
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monotopic integral membrane proteins that are affixed to a single leaflet [3], proteins 

that are anchored to membranes through lipidations [4], as well as water-soluble proteins 

that interact with membranes [5]. In vitro investigations of membrane proteins require 

membrane models that simulate cellular membrane environments while retaining favorable 

properties for experimentation. Liposomes, nanodiscs, copolymer derived native nanodiscs, 

bicelles, micelles, amphipols, and other models have emerged as useful tools in the study 

of membrane proteins [6–8]. Among these, reverse micelles (RMs) stand out as an effective 

and unique tool in the arsenal of membrane models. RMs consist of nanoscale pools of 

water, which may contain a protein, solubilized within a hydrophobic solvent, often an 

alkane. Surfactants form the interface, with their hydrophilic headgroups oriented towards 

the RM core and the hydrophobic tails interacting with the solvent (Figure 1A)[9]. Due to 

a resemblance to membrane surfaces, membrane associated proteins may be housed within 

RMs.

RMs comprise several tunable parameters, which provides adaptability for experimental 

applications. For example, size can be modified by altering water content or ionic strength 

of the aqueous core [10–12]. Chemical and physical properties of the inner RM surface may 

be tuned according to the identity of the surfactant (Figure 1B) [13,14]. Properties of the 

solvent, such as viscosity, may be adjusted according to the solvent identity [15,16]. While 

several RM formulations reliably encapsulate most proteins with minimal adjustments, 

optimization may be necessary [13]. A typical process for constructing RMs is by the 

addition of a relatively small volume of an aqueous buffer to surfactants that are suspended 

in an alkane solvent. The water content in RMs, typically called water loading (W0, 

molar ratio of water to surfactant), is often between 10 and 30 for protein applications. 

A cosurfactant, often hexanol, may be necessary to fully form the RMs, depending on the 

formulation. A typical strategy for encapsulating water-soluble proteins is by including them 

in aqueous buffer, which is introduced to surfactants in an alkane solvent and results in 

encapsulation upon RM formation (Figure 1C) [13]. For membrane proteins that are not 

water soluble, alternate strategies may be necessary such as drying water-solubilized TM 

proteins housed in micelles, followed by addition of solvent, cosolvent, then finally the 

aqueous buffer (Figure 1D) [17]. The variety of parameters and delivery methods available 

for RMs may necessitate an initial investment in optimization for some proteins. On the 

other hand, these parameters represent a versatility that enables RMs to be used as tunable 

membrane models in a wide range of studies.

RMs have long been used as models to understand the physical properties of cellular 

membranes, such as the nature of hydration dynamics at membrane interfaces [18–23], 

partitioning of small molecules [24–27], and the effect of crowding or confinement near 

membrane surfaces on molecular conformation [28–30]. In addition, RMs have been 

used to encapsulate aqueous proteins which permits studies that are otherwise difficult or 

inaccessible. Low-viscosity alkane solvents may be leveraged to increase rotational diffusion 

in RMs, essentially breaking the size limit in protein NMR without the need for deuteration 

or transverse relaxation-optimized spectroscopy (TROSY) techniques [31]. The nanoscale 

water core provides a means to study the effect of confinement on proteins [32–35] and 

the impact of solvation on protein motions [36]. RMs have been used as platforms for 

investigating long-standing open questions in protein biophysics such as cold-denaturation 
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[37–39] and hydration dynamics [40–42]. While recent development has been driven by 

a small number of groups, mostly in the protein NMR field, demonstration of RMs as 

platforms for studying membrane proteins have highlighted their potential. Here, we review 

the use and development of RMs for studying membrane proteins, including recent advances 

that promise to improve biological accuracy and facilitate new lines of investigation to this 

challenging class of protein.

Reverse micelles as platforms to house and study membrane proteins

Foundational research focused on understanding the formation and stability of RMs in 

various solvent systems [43,44]. RMs are unique membrane models due to the bulk solvent 

being hydrophobic, often an alkane, which may provide advantages. For example, the use 

of RMs to promote lipase catalysis takes advantage of this property. [45–49] RMs allowed 

access to the hydrophobic lipid substrate while stably housing the water-soluble protein 

within the RM water core, preventing direct exposure to alkanes which may be destabilizing. 

Solubilizing membrane associated proteins in an in vitro membrane model also requires 

access to hydrophobic and hydrophilic phases through an amphipathic interface. Early 

studies used RMs to house membrane associated myelin basic protein (MBP) or myelin 

proteolipid protein (PLP) in a membrane mimetic environment to study the structure of the 

protein-membrane complex [50–52]. MBP changes to a more ordered α-helical structure 

within RMs compared to aqueous conditions, reflecting its natural conformation in the 

membrane [51]. When housed in RMs, specific regions of PLP, such as the ε-amino groups 

of lysine residues, remained accessible to water, while others, like a key tryptophan residue, 

became shielded from the solvent, mirroring the expected interactions with biological 

membranes [50]. These observations highlight that RMs may house membrane proteins 

and preserve their structural integrity. While many models were initially proposed for how 

proteins were housed within RMs, the exact mode was not known [53]. It was not known if 

the hydrophobic regions of membrane proteins are directly solvated by the alkane solvent, 

if proteins may be adsorbed into the RM surface, or if a protein is solubilized by a single 

or multiple RMs. Small-angle X-ray scattering (SAXS) measurements helped resolve these 

questions in regard to transmembrane proteins and revealed the structure of the protein and 

RM complex [54]. The proteins are encapsulated within two RMs with the hydrophilic 

portions covered and protected by the aqueous core while the hydrophobic portions interact 

with either the surfactant tails or the solvent, forming a small bilayer-like environment 

(Figure 1A) [54,55].

RMs provide means to model interactions between proteins or peptides with membrane 

surfaces. The chemokine receptor CXCR1 N-terminal domain has a secondary structure 

similar to its membrane-bound form when encapsulated within bis(2-ethylhexyl) 

sulfosuccinate (AOT) RMs, as revealed through fluorescence and circular dichroism [56]. 

Upon increasing the water content, tryptophan residues became more exposed to water, 

revealing that structure and dynamics of this domain are intertwined with the level of 

hydration. Monomeric, misfolded “seed” structures of amyloid beta (Aβ) proteins are 

typically difficult to study due to aggregation effects [57]. However, encapsulation within 

AOT RMs stabilized these structures. Fourier-transform infrared spectroscopy (FTIR) 

revealed that extended β-strands formed and may mimic a conformation that is induced 
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in crowded cellular conditions and the presence of membranes. In silico models agree with 

the structural stability and conformational changes conferred when protein is encapsulated 

within an RM [58]. Alanine-rich peptide AKA2 reveals a rigid helical conformation within 

an RM, unlike the protein in aqueous conditions which forms flexible random coils. 

Simulations confirmed that RMs are expected to help stabilize membrane associated helices 

that contain polar and apolar faces. The surface and interfacial properties of RMs well-

mimic the amphipathic properties of membranes and aid study of membrane associated 

proteins and peptides.

High-resolution studies of membrane associated proteins in RMs

While these early studies established RMs as membrane models, detailed structural 

information regarding encapsulated proteins was still lacking. An early demonstration of 

RMs as membrane mimics for high-resolution NMR is encapsulation of the neurotransmitter 

pentapeptide Leu-enkephalin. NMR experiments produced high quality spectra of the 

peptide encapsulated within AOT RMs where 3D and nuclear Overhauser effect 

spectroscopy (NOESY) data was collected [59]. The structure of the peptide was similar to 

that obtained by crystallography. The peptide was adsorbed into the RM surface, mimicking 

the interaction observed with other membrane models [60]. Another study used NMR to 

observe gramicidin A (gA), a peptide that forms a dimeric ion-channel in membranes. The 

peptide was successfully encapsulated within AOT RMs and subsequently NMR diffusion 

and interresidue NOE experiments showed gA bridging two RMs as expected for the 

transmembrane dimer [61]. The use of NMR to observe these membrane-associated peptides 

revealed detail in the structural aspects of membrane interactions and showed promise for 

utilizing RMs for high-resolution observations of membrane associated proteins.

Using high-resolution NMR with RM encapsulation reveals details about the overall 

fold and functional competence of a protein. A striking observation from NMR is that 

the commonly used surfactant AOT unfolds most proteins [13,62]. While it is possible 

that small membrane-associated peptides may be tolerant to AOT, these observations 

demonstrated the necessity for alternate RM systems for encapsulating proteins (Figure 

1B). Improved surfactant systems were developed and applied to membrane proteins, 

with careful consideration for retaining fold and function upon encapsulation. The 

54kDa transmembrane potassium channel, KcsA, was encapsulated using several different 

surfactant systems while retaining its native homotetrameric structure [63]. Best spectral 

conditions were achieved with a mixture of cetyltrimethylammonium bromide (CTAB) and 

dihexadecyldimethylammonium bromide (DHAB). Retention of function was confirmed by 
15N-HSQC, which showed shifting of key residues upon titration with K+ ions (Figure 2A).

Improved RM formulations have also enabled study of lipidated, membrane-anchored 

proteins via NMR (Figure 1A). The myristoyl anchor of recoverin embeds into the CTAB/

hexanol RM shell upon encapsulation in its Ca2+-saturated, myristoyl-extruded state [64]. 

Importantly, only the myristoyl sequestered state is water-soluble; myristoyl extrusion 

typically results in aggregation. Similarly, HIV matrix protein was housed within CTAB/

hexanol RMs with the myristoylation embedded in the surfactant shell [64]. Functional 

competence was demonstrated by binding the activating lipid phosphatidylinositol 4,5-
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bisphosphate (Figure 2B). Another example is the pH-dependent myristoyl switch in 

hisactophilin, which was studied by 15N-HSQC NMR [65]. Encapsulating hisactophilin 

in a CTAB/hexanol RM revealed that the protein is in the myristoyl-extruded state versus 

the solution state where the myristol is sequestered. The protective environment of the 

amphipathic RM shell allowed NMR experimentation for the myristoyl-extruded forms of 

these proteins, which is not possible in aqueous conditions due to aggregation induced by 

the exposed lipidations.

Peripheral membrane proteins (PMPs) are a class of membrane associated proteins that 

are water-soluble, but interact with membranes, often reversibly [5,66]. Due to the 

relative ease of experiments on water-solubilized proteins versus proteins associated with 

membranes, structural and in vitro experiments performed on PMPs tend to focus on the 

water-solubilized state. This leaves the functional, membrane bound form of most PMPs 

less well characterized. RMs have been applied to the study of membrane associated PMPs 

(Figure 1A). Cytochrome c is a PMP within the mitochondria and movement to the cytosol 

facilitates apoptosis [67]. Cytochrome c is highly compatible with the decylmonoacyl 

glycerol and lauryldimethylamino-N-oxide (10MAG/LDAO) surfactant system [68,69]. 

The NMR structure showed no conformational change upon encapsulation, demonstrating 

that the protein within RMs is identical to the water-solubilized state [67]. Titration of 

cardiolipin into the RM induced an interaction between the lipid and cytochrome c, a trigger 

for apoptosis. The mapped interactions localized to three sites; the previously characterized 

A- and L-site [70], and a new N-site observed through chemical shift perturbations 

(CSPs). This study demonstrates the use of RMs to study interactions between PMPs and 

membranes.

Improving the biological accuracy of RMs as models of cellular membranes.

While RMs were demonstrated to be powerful membrane mimetics for protein studies, 

often formulations used surfactants that did not fully replicate the chemistry of cellular 

membranes. To improve their biological accuracy, RMs have been formulated to more 

closely match lipids found in membranes. By using surfactants such as 1,2-dioleoyl-sn-

glycero-3-phosphocholine (DOPC), the high phosphatidylcholine content found in many 

cellular membranes may be replicated. These formulations have been characterized with 

molecular dynamics (MD) simulations, SAXS, DLS, and terahertz spectroscopy revealing 

size, shape, and dynamical properties [71–74]. MD simulations of DOPC RMs were 

calibrated against experimental data and confirmed a small size that is tunable according 

to the water content and revealed a roughly spherical shape, qualities that are critical to 

certain studies (Figure 3)[73]. Size calibration allowed precise exploration of the nature of 

water dynamics in the aqueous core, which revealed slower hydration dynamics for smaller 

RMs. This finding that was subsequently reflected by time-domain terahertz spectroscopy 

combined with MD analysis of water in DOPC RMs that showed the water within 

hydration shell that contacts the inner RM surface has strong hydrogen bonding with the 

phosphocholine headgroups[75].

A phosphoethanolamine-headgroup containing surfactant showed promise in encapsulating 

proteins for NMR spectroscopy, providing a RM surface that more closely resembles 

Walters et al. Page 5

Biochem Soc Trans. Author manuscript; available in PMC 2024 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



biological membranes [76]. 1H-NOESY NMR experiments concluded that cytochrome 

c was natively folded after several months in this system, demonstrating robust sample 

stability. A membrane mimicking RM (mmRM) system was recently developed for 

use in protein NMR, a mixture of 1,2-dilauroyl-sn-glycero-3-phosphocholine with n-

dodecylphosphocholine (DLPC:DPC), allows PMPs to be encapsulated in their membrane 

embedded state with sample stability spanning months (Figure 4) [77]. A strongly 

membrane associating PMP, glutathione peroxidase 4 (GPx4), was encapsulated within 

the NMR optimized 10MAG/LDAO system in its water-solubilized form, with no 

detectible interaction with the RM shell (Figure 4A–B). The mmRM formulation facilitated 

embedment of GPx4 onto the interior surface, reflecting the known interaction with 

membranes (Figure 4C–F), which was also observed with phosphatidylethanolamine binding 

protein 1 (PEBP1). These mmRMs have been validated by dynamic light scattering (DLS) 

and SAXS as small and approximately spherical, important characteristics for studies such 

as protein NMR. Lipid-like surfactants provide an interior RM surface that more closely 

matches the chemistry of biological membranes, though the use of more diverse lipids could 

enhance the biological relevance of these homogenous RM systems.

Enhancing the complexity of RMs to better mimic natural membranes.

The use of lecithin from various plant and animal sources achieves a more biologically 

accurate model by better representing the diversity of membrane lipids. Lecithin is an 

extract of phospholipids from a natural source, often soybeans, and contains a complex 

mixture with various phospholipid headgroups and fatty acid tails [78]. RMs may be 

constructed using lecithin and, despite the complex make-up of the lipid extract, size and 

shape parameters of lecithin RMs are tunable [79]. For example, in addition to water content 

driving lecithin RM size [80,81], the addition of oleic acid promotes the water core size to 

expand [82]. Salts are also known to change the structure of lecithin RMs from spherical to 

cylindrical and finally to reverse vesicles as shown by the use of DLS, transmission electron 

microscopy (TEM), UV-Vis spectroscopy, and SAXS [83]. Lecithin RMs support physical 

measurements of membrane properties, such as probing the nature of water dynamics 

against membrane surfaces using femtosecond fluorescence and absorption [80]. These 

experiments revealed that the lecithin RM has three water types: strongly bound, bound, and 

free, reflecting expected hydration behavior near membranes. Lecithin also shows similar 

characteristics to DOPC RMs with hydration dynamics being slower compared to AOT 

RMs [73,80]. This is attributed to the lipids having a stronger interaction with the water 

molecules than AOT. NMR relaxation measurements of water revealed the presence of a 

faster and a slower relaxing population, corresponding to water that interacts strongly to the 

lecithin headgroups and water that is more interior in the RMs [84]. Lecithin RMs have 

also been used to understand location preferences of encapsulated molecules, modeling their 

interactions with cellular membranes. Melatonin was encapsulated within lecithin and AOT 

and in both instances melatonin associated with the surfactant headgroups [85].

Demonstrating a breadth of lipid combinations that may form stable RMs, formulations 

using native polar lipids extracted from soy lecithin, porcine brain, and bovine heart 

all form RMs capable of encapsulating proteins for NMR spectroscopy [86,87]. Each 

formulation contained differing proportions of at least 7 different phospholipid types while 
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also including fatty acids, cholesterol, and other components, yet native RMs (nRMs) made 

from each lipid extraction were of similar size and had similar water dependent tunability of 

size. Protein NMR revealed that interactions of PMPs with the interior surface of the nRMs 

are similar to the known membrane interactions[87]. Along with phospholipid-based RMs 

and mmRMs, nRMs are more biologically accurate membrane models which may be used 

for investigations of protein-membrane interactions.

Use of RMs to screen peripheral membrane proteins for fragment-based drug discovery.

A recent advance in the utility of RMs in the study of membrane associated proteins is 

applications in early-stage drug discovery. Membrane proteins are a particularly challenging 

class of protein for target-based drug development. Discovery efforts typically use screening 

methods that were developed for aqueous protein targets and are therefore limited in 

application to membrane protein targets. Fragment-based drug discovery (FBDD) is a 

powerful approach which is based on discovering small, weakly binding molecules 

(fragments) that may be combined to yield higher affinity inhibitors [88]. Biophysical 

methods are necessary for fragment screening due to their inherently weak binding, with 

protein NMR being a particularly useful method due to the structural information it provides 

[89,90]. The fragment-based approach is attractive for targets such as membrane associated 

proteins, where new classes of inhibitors may be desirable and the biases common to 

high-throughput screening libraries may need to be avoided. Existing NMR compatible 

membrane models such as bicelles and nanodiscs are large and often require extensive 

deuteration, making them cost prohibitive for screening large numbers of samples. Micelles, 

while useful, often destabilize proteins and the high concentrations of fragments required for 

screening can disrupt the micelle structure [91]. Reverse micelles offer a promising solution 

to these challenges.

Previous studies on encapsulated aqueous proteins allowed for detection of very weak 

binding fragments and demonstrated stability of RMs in the presence of large concentrations 

of fragments or other small-molecules [92,93]. A recent development applied mmRMs to 

successfully screen a PMP for fragment binders [94]. GPx4 is a highly sought after PMP 

drug target whose inhibition has been implicated in treating a number of cancer types [95]. 

Current inhibitors are highly reactive, non-specific electrophiles that are not suitable as 

drug leads; non-covalent inhibition of GPx4 may circumvent this problem. GPx4 is in its 

active form when embedded in membranes, where it reduces lipid hydroperoxides [96]. 

Therefore, non-covalent inhibition would therefore target the membrane-engaged form of 

GPx4 to block processing of the lipid substrate. A fragment screen was performed on GPx4 

in mmRMs to understand whether fragment binding could be detected [94]. The screen was 

successful and yielded a series of hits that bound to GPx4 within the membrane interface 

(Figure 5). Importantly, the fragments did not bind to water-solubilized GPx4, even at 

high concentrations, highlighting that embedment onto the mmRM surface was essential 

for formation of fragment binding sites. A fragment hit with an affinity of ~220 μM was 

improved by a secondary screen to an affinity of ~15 μM, demonstrating that hits can be 

developed towards inhibitors and eventually drug leads. The mmRM fragment screening 

approach serves as an effective entry point for inhibitor and drug development for membrane 

associated proteins.

Walters et al. Page 7

Biochem Soc Trans. Author manuscript; available in PMC 2024 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusions

These studies collectively highlight advancements in using RMs to house membrane 

proteins, to investigate protein-membrane interactions, and to initiate drug development 

efforts. They demonstrate the utility of RMs in providing a biologically relevant 

environment for detailed structural and biophysical analyses. While RMs have many benefits 

and unique applications, they are not without their drawbacks. As compared to bicelles 

or nanodiscs, the degree of curvature in RMs is high, which limits their accuracy as 

biological membrane models for some applications [97]. Initial optimization of conditions 

and additional production steps make use of RMs more time-consuming than micelles or 

bicelles. Finally, from our experience, a small fraction (roughly 10%) of proteins that are 

otherwise NMR compatible are unsuitable for use with RMs, possibly due to destabilization 

from exposure to surfactants or alkane. Despite some disadvantages, RMs are a potent 

addition to the set of tools available for membrane protein studies.

Recently, development of RMs as membrane mimics has been driven by a small number 

of groups and has mostly been limited to applications in protein NMR. We are optimistic 

that the latest improvements in biological accuracy of RMs will prove their usefulness for 

a larger and more diverse community of researchers. Distinctive aqueous protein studies 

that have been allowed by RMs, such as measurements of protein hydration dynamics 

and observations of confinement effects, may now be applied to entirely new classes of 

membrane associated proteins with the recent development of more accurate membrane 

mimetic RMs. The RM-based fragment screening approach promises to open a range 

of difficult membrane associated targets to inhibitor development. This body of work 

underscores the continued evolution and application of RM technology in membrane 

protein research, offering new insights and methodologies that enhance our understanding 

of these complex biological systems. Further developments in biological accuracy of RMs 

as membrane models and applications to new proteins and drug targets promise to advance 

membrane protein studies.
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Abbreviations

10MAG decylmonoacyl glycerol

AOT bis(2-ethylhexyl) sulfosuccinate

CSP chemical shift perturbation

CTAB cetyltrimethylammonium bromide
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DHAB dihexadecyldimethylammonium bromide

DLPC 1,2-dilauroyl-sn-glycero-3-phosphocholine

DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine

DPC n-dodecylphosphocholine

FBDD Fragment Based Drug Discovery

gA gramicidin A

GPx4 glutathione peroxidase 4

LDAO lauryldimethylamino-N-oxide

MD molecular dynamics

MBP myelin basic protein

mmRM membrane mimicking Reverse Micelle

NOESY nuclear Overhauser effect spectroscopy

nRM native Reverse Micelle

PLP myelin proteolipid protein

PMP Peripheral Membrane Protein

RM Reverse Micelle

SAXS Small-angle X-ray scattering

TEM transmission electron microscopy

TM transmembrane

TROSY transverse relaxation-optimized spectroscopy
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Perspectives

• Study of membrane associated proteins is dependent on the available 

membrane models, all of which have strengths and weaknesses. Reverse 

micelles are a promising and unique addition to the toolset for investigating of 

this challenging class of proteins.

• Reverse micelles provide an adaptable membrane model useful for studying 

transmembrane, lipid-anchored, and peripheral membrane proteins. Recent 

work has revealed versatility in the lipids that may be used to construct RMs 

and has highlighted their use as screening platforms in fragment-based drug 

discovery for peripheral membrane proteins.

• Promising future directions include leveraging new formulations to further 

improve biological accuracy of reverse micelles as membrane models and 

extending use of RMs to new areas in biophysical, structural, and inhibitor 

development studies for membrane associated proteins.
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Figure 1. 
Depictions of multiple protein types encapsulated within RMs, commonly used RM 

surfactants, and RM construction workflows. A) RMs may house aqueous proteins within 

a water core surrounded by a surfactant shell, all solubilized in an alkane solvent. 

Transmembrane (TM) proteins may be housed within two RMs, each protecting the 

hydrophilic regions of the protein with the hydrophobic portions interfacing with surfactant 

tails or alkane solvent. Lipidated proteins may be encapsulated with their membrane anchors 

embedded into the surfactant shell. Peripheral membrane proteins (PMPs) may reside in the 

aqueous core of the protein with the membrane interface interacting with the surfactant shell. 

B) Optimized surfactants that are commonly used for aqueous protein encapsulation include 

the 10MAG/LDAO binary mixture and CTAB. The DLPC/DPC binary mixture effectively 

houses PMPs in their membrane embedded state. AOT was historically commonly used, but 

is now accepted as destabilizing to most proteins. C) General workflow for encapsulation 

of a water-solubilized proteins, which may be applicable to aqueous proteins, lipid-anchored 

proteins (depicted here), or PMPs. Small volume of aqueous buffer containing protein is 

added to the solvent containing lipids and mixed, with hexanol then added if necessary. A 

detailed protocol may be found in [13]. D) General workflow for TM protein encapsulation. 
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A TM protein housed in a micelle is lyophilized from aqueous conditions, the alkane solvent 

is added, followed by hexanol, then the aqueous buffer. Details may be found in [17].
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Figure 2. 
Reverse micelle encapsulation of functionally competent transmembrane and lipidated 

proteins. A) Overlay of 1H-15N HSQC spectra of a titration of encapsulated KcsA with 

potassium, from 0 mM to 28 mM K+. Arrows indicate increasing concentrations. Residues 

known to be associated with the KcsA selectivity filter are labeled in red, and other assigned 

residues are labeled in black. Resonances corresponding to the multiple conformers of 

residues T72 and E71 are connected by red lines. Reprinted from Kielec et al, Reverse 
micelles in integral membrane protein structural biology by solution NMR spectroscopy. 
Structure. 2009 Mar 11;17(3):345–51, Copyright 2009, with permission from Elsevier. B) 

Zoomed regions of the overlay of 1H-15N HSQC spectra of a titration of encapsulated 

myristoylated HIV matrix protein with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). 

Color of spectra corresponding to molar rations of lipid to protein are given. Reprinted from 

Valentine et al, Reverse Micelle Encapsulation of Membrane-Anchored Proteins for Solution 
NMR Studies. Structure. 2010 Jan 13;18(1):9–16, Copyright 2010, with permission from 

Elsevier.
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Figure 3. 
Experimentally calibrated molecular dynamics simulations of DOPC micelles. A) 

Hydrodynamic radius as a function of W0 from DLS measurements (black) [74], from 

initial MD trials using a fixed DOPC headgroup surface area to determine aggregation 

number (red), from intermediate trial-and-error attempts to calibrate aggregation number 

(green), and optimized MD simulations (blue) that reflect experimental measurements. 

Linear regressions are shown as lines and reported in the figure. Number of DOPC per 

RM is shown in parentheses. B) Snapshots of typical configurations from optimized MD 

simulations reflect somewhat ellipsoidal RMs at lower W0 values and more spherical 

shapes at larger W0 values. DOPC is in green, water oxygens are in red, water hydrogens 

are in white. Adapted with permission from Abel et al, On the structural and dynamical 

properties of DOPC reverse micelles. Langmuir. 2016 Oct 18;32(41):10610–20. Copyright 

2016 American Chemical Society.
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Figure 4. 
Demonstration of PMP encapsulation in a RM formulation optimized for aqueous proteins 

versus a RM formulation optimized to mimic membranes. A) Overlay of 1H-15N HSQCs 

of aqueous GPx4 (black) and GPx4 encapsulated in the 10MAG/LDAO mixture (red) and 

B) associated CSPs calculated per residue showing no interaction with the surfactant shell. 

C) Overlay of 1H-15N HSQCs of aqueous GPx4 (black) and GPx4 encapsulated in the 

DLPC/DPC mixture (red) and D) associated CSPs calculated for each residue. E) Mapping 

the residues that have CSPs greater than 1σ (orange) and 2σ (red) above a trimmed mean 

gives a structural map that may be used to F) estimate the interface of GPx4 with the 

mmRM which corresponds with the known membrane interface. Unobservable residues are 

depicted in white and residues with CSPs lower than 1σ are depicted in black. Adapted with 

permission from Labrecque et al, Membrane-mimicking reverse micelles for high-resolution 
interfacial study of proteins and membranes. Langmuir. 2022 Mar 17;38(12): 3676–86. 

Copyright 2022 American Chemical Society.
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Figure 5. 
Use of mmRMs to screen for small-molecule binders for a PMP to initiate inhibitor 

design. A) A hit, discovered in a screen of a 1911-member library, was titrated against 

GPx4 encapsulated in mmRMs to characterize affinity and B) reveals binding within the 

membrane interface. Residues having significant CSPs upon fragment binding are depicted 

in red, other membrane interface residues in black, unassigned interface residues in gray, and 

non-interfacial residues are in blue. C) Example of a fragment hit that shows partitioning 

within the surfactant shell and D) a fragment hit that partitions into the alkane phase in the 

absence of protein, both demonstrated by 1H-1H NOESY spectra. Both are hits and reveal 

that multiple modes of partitioning within membranes may acceptable starting points for 

inhibitor design. All panels are adapted from [94].
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