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Abstract 

Cannabis sativa L., one of the oldest cultivated crops, has a complex domestication history due to its diverse uses for 
fibre, seed, oil, and drugs, and its wide geographic distribution. This review explores how human selection has shaped 
the biology of hemp and drug-type Cannabis, focusing on acquisition and utilization of nitrogen and phosphorus, 
and how resulting changes in source–sink relations shape their contrasting phenology. Hemp has been optimized for 
rapid, slender growth and nutrient efficiency, whereas drug-type cultivars have been selected for compact growth 
with large phytocannabinoid-producing female inflorescences. Understanding these nutrient use and ontogenetic 
differences will enhance our general understanding of resource allocation in plants. Knowledge gained in comparison 
with other model species, such as tomato, rice, or Arabidopsis can help inform crop improvement and sustainability 
in the cannabis industry.

Keywords:   Cannabis sativa L., domestication, fibre, flowering, hemp, medicinal, nitrogen, nutrient use, phosphorus, sink, 
source.

Introduction

Cannabis sativa L. (hereafter Cannabis) has a long domestication 
history dating back at least 12 000 years (Clarke and Merlin, 
2016; Ren et al., 2021). A unique feature of Cannabis plants 
is their production of secondary metabolites called cannabi-
noids within the glandular trichomes of their female flowers, 
with the major ones being cannabidiolic acid (CBDA) and ∆9- 
tetrahydrocannabinolic acid (THCA). Decarboxylation during 
the processing of flowers leads to their pharmacologically ac-
tive forms, with tetrahydrocannabinol (THC) having psycho-
active and intoxicating properties, while cannabidiol (CBD) 

has pharmaceutical uses as an anti-convulsant and anti- 
inflammatory drug (Lu and Mackie, 2016). In living plant tis-
sues, the decarboxylated THC or CBD usually represents less 
than 2% the total (carboxylated plus decarboxylated) pools 
(Happyana et al., 2013).

The wide geographic distribution of Cannabis led to genetic 
and phenotypic variation in local varieties and its subsequent 
domestication throughout most of Eurasia. Complex genetic 
diversity within the species is likely attributed to a successive 
blend of human selection, escapees, and outcrossing leading 
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to unique feral landraces, and their subsequent reintroduc-
tion into domesticated germplasm (Clarke and Merlin, 2016; 
Barcaccia et al., 2020; Ren et al., 2021). Extensive targeted 
selection produced two divergent usage types with distinct 
genetics and contrasting plant architecture: hemp-type (aka 
hemp or industrial hemp for fibre and seed) and drug-type 
Cannabis (aka marijuana or weed for female flowers and can-
nabinoids) (Fig. 1) (Small, 2015; Clarke and Merlin, 2016). 
The tall-growing hemp type was selected for fibre produc-
tion and contains high concentrations of CBDA and very 
little THCA. By contrast, drug-type Cannabis was selected for 
recreational and ceremonial purposes due to high amounts 
of the acid precursor of hallucinogenic THC and prolific 
production of female flowers. Recent heightened interest in 
CBDA accumulating drug-type chemovars for pharmaceuti-
cals has instigated re-introgression of hemp- into drug-type 
cultivars (Grassa et al., 2021). The term ‘chemovar’ refers to 
Cannabis germplasm categorized either as THCA dominant, 
or CBDA dominant, or balanced (approximately equal levels 

of THCA and CBDA) with further differentiation according 
to terpenoid profiles (Hazekamp et al., 2016; Reimann-
Philipp et al., 2020). It is often used instead of the more 
rigorous botanical term of ‘cultivar’, which implies that the 
progeny of those plants retains traits of interest—which due 
to the heterogeneous nature of Cannabis is often not the case 
for seed stock.

The difference in specific usage of hemp- and drug-type 
Cannabis is reflected in their cultivation. Hemp types are 
grown in field conditions across a divergent range of envi-
ronments and regions, often on marginal lands, and following 
traditional agricultural practise in broad acre systems with 
moderate inputs of fertilizer (Struik et al., 2000; Tang et al., 
2017; Landi et al., 2019; Wylie et al., 2020; Blandinières and 
Amaducci, 2022). By contrast, drug types are largely grown in 
high-input, cost-intensive protected cropping or indoor envi-
ronments due to their substantial value and quality standards 
imposed on pharmaceutical production (Madhusoodanan, 
2019; Wartenberg et al., 2021; Velechovsky et al., 2024). Hence, 
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Fig. 1.  Divergent positive trait selection in Cannabis led to two distinct usage types. Illustrated are processes accompanying Cannabis domestication 
and the subsequent split into the two main usage types (drug- and hemp type). Major selected traits are cannabinoid content, plant architecture (tall 
versus compact stature, compound highly branched female inflorescence), biomass allocation (flower versus stem/fibre), flowering (early/late) as well as 
cultivation (indoors/field). See text for details. Abbreviations: CBDA, cannabidiolic acid; THCA, ∆9-tetrahydrocannabinolic acid.
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growth regimes vary greatly for both Cannabis usage types, 
with human mitigation efforts being strongly influenced by 
abiotic and biotic stresses inherent to each type (Small, 2015; 
Clarke and Merlin, 2016; Wylie et al., 2020; Blandinières and 
Amaducci, 2022; Llewellyn et al., 2023). Inherent differences 
in nutrient requirements pose a challenge towards optimizing 
fertilizer input, which is an important factor for plant biomass 
production and product yield in commercial settings as well 
as for reducing the detrimental impact on local environments 
(Tilman et al., 2002).

In this respect, Cannabis presents an interesting case study 
to investigate how human selection and natural genetic di-
versity influence each other, and how these, advertently or 
inadvertently, influence nutrient use and its effects on plant 
development. While recent advances in next-generation 
sequencing have led to increased understanding of Cannabis 
genetic diversity to enable functional genomics (Kovalchuk 
et al., 2020; Grassa et al., 2021; Hurgobin et al., 2021; Lynch 
et al., 2024, Preprint), building on these resources to gain 
a better insight into the physiology of Cannabis plants is 
still lacking. Our review will focus on current knowledge 
of nutrient use, that is, the acquisition and utilization of 
the two macronutrients nitrogen (N) and phosphorus (P) 
and how these may influence growth and development in 
Cannabis. We will also highlight knowledge gaps that need to 

be addressed to optimize fertilizer application for Cannabis 
cultivation.

The domestication history of Cannabis is 
reflected in current cultivation practices

Although the true ancestor will likely remain unknown, recent 
genomic studies suggest that current Cannabis cultivars origi-
nate from a small number of domestication events (Kovalchuk 
et al., 2020; Ren et al., 2021). Their origins can be traced back 
to a few locations across northeast China with a subsequent 
geographic expansion and scattered distribution of genetically 
diverse landraces, escapees, and feral populations (Fig. 2). These 
early diverse geographic origins ensured development of trait 
combinations within subpopulations that made Cannabis ‘pre-
adapted’ for human cultivation in divergent locations with 
contrasting temperature zones, photoperiods, water avail-
abilities, and/or soil types with distinct nutrient availabilities 
(Clarke and Merlin, 2016). This allowed a wide distribution 
of Cannabis throughout Eurasia driven by the close co- 
evolutionary relationship of Cannabis and humans. Early selec-
tion led to cultivars with specialized purposes with frequent 
outcrossing and re-introduction enhancing genetic diversity, 
while recent hybridization led to the modern commercial 
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Fig. 2.  Cannabis accessions originate from diverse regions with contrasting soil nutrient availabilities. Geographic distribution of accessions included 
in the determination of Cannabis domestication history was overlaid with soil nutrient availability constraints. Although the exact origin of Cannabis 
is unknown, accessions genetically close to the progenitor (basal accessions) originate from regions of northern China with constraints on nutrient 
availability ranging from none/slight to severe (percentages indicate ratings of growth potential). This wide ancestral adaptation to various soil types 
enabled subsequent worldwide domestication and local selection of hemp- and drug-type landraces with diverse trait combinations at least partially 
linked to agronomic constraints of their ancestral origin. Data for Cannabis accessions are based on field or seed bank collections (Zhang et al., 2018; 
Ren et al., 2021; Mostafaei Dehnavi et al., 2022). Soil nutrient availability data were downloaded from the FAO Global Soil Partnership website (https://
www.fao.org/global-soil-partnership) and visualized using Data Basin (https://databasin.org).
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cultivars (Clarke and Merlin, 2016). These processes resulted 
in Cannabis cultivars with greatly varying architectures, mor-
phology, and biochemistry, but the underlying molecular pro-
cesses, trait associations or genes driving these variations are 
not well understood (Ren et al., 2021). Analysis is further com-
plicated because certain trait combinations might have been 
unknowingly selected for or may have been lost over time, 
while some genetic features neutral in certain growth condi-
tions or locations became beneficial or detrimental in others. 
In addition, traits might have purposefully or inadvertently 
been re-introduced from wild populations at various stages 
over thousands of years of domestication.

About 12 000 years ago, the two usage types of Cannabis 
diverged from the basal ancestors by human targeted selection, 
and from these a limited number of domesticated accessions 
expanded to the current hemp- and drug-type Cannabis culti-
vars about 4000 years ago (Clarke and Merlin, 2016; Kovalchuk 
et al., 2020; Ren et al., 2021). Hemp was selected for bast fibre 
production and constituted the main and most wide-spread 
usage type of Cannabis for millennia. Selection of hemp types 
favoured late flowering to maximize vegetative growth, and 
for not well-understood reasons this also led to a preferential 
biosynthesis of CBDA over THCA. Decreasing concentrations 
of THCA in feral drug types suggest its accumulation has no 
adaptive significance in wild populations, and in hemp-type 
cultivars extensive flower development and high THCA con-
centrations were not desired (Clarke and Merlin, 2016). More 
recently, strict requirements by regulatory bodies for low total 
THC concentrations have resulted in hemp types almost de-
void of any THCA.

By contrast, for drug-type Cannabis the aim of obtaining 
high THCA concentrations and flower biomass led to narrow, 
targeted selection, which started about 1000 years ago in 
Afghanistan and India due to more widespread ceremonial 
usage (Small, 2015). This included preference for a short pho-
toperiod to induce flower production, short stature, and quick 
flower maturation. Introduction of Afghan cultivars into ex-
isting North American and European drug-type chemovars 
over the last decades produced the modern asexually propa-
gated ‘sensimilla’ or seedless/unpollinated female accessions 
(Small, 2015; Clarke and Merlin, 2016). This further facilitated 
extensive indoor cultivation, initially largely in concealed 
growth spaces due to their illicit status. However, narrow se-
lection under high-input, protected cropping conditions and 
inbreeding between already significantly related individuals 
for extremely high THC-yielding drug-type chemovars led to 
‘spoiled’ cultivars with limited genetic diversity. These founder 
effects created genetic bottlenecks that constrained subsequent 
breeding efforts. They also resulted in the loss of beneficial traits 
such as pathogen resistance or nutrient efficiency that have be-
come key determinants for modern cost-efficient, environ-
mentally sustainable, and large-scale horticulture (McKernan 
et al., 2020, Preprint). For example, the dense, racemose flower 
structure introduced from Afghan cultivars is highly beneficial 

for commercial production but also increases susceptibility to 
fungal infections (Clarke and Merlin, 2016).

In contrast to hemp, very little is known about the nutrient 
efficiency of drug-type Cannabis and differences between culti-
vars or accessions. While drug-type Cannabis is often described 
as a neutrophile (Small, 2015), it is not clear if this reflects 
requirement or tolerance of high nitrogen supply. Overlaying 
the geographic origin with data on nutrient availability indi-
cates some ancestral Cannabis progenitors originated on soils 
constraining growth by as much as 60% or more, while others 
evolved under non-limiting conditions (Fig. 2). This implies 
that the genetic diversity for nutrient-related traits was exten-
sive even before domestication began. The contrasting selection 
of hemp- and drug-type Cannabis suggests varying degrees of 
conservation of the ancestral genetics. Traditional cultivation 
of hemp on diverse soil types across a wide geographical range 
suggests that traits related to the root uptake and organ distri-
bution of important nutrients such as N and P were retained. 
In addition, common cultivation of hemp on marginal soils 
and its use in phytoremediation demonstrate its ability to grow 
with limited fertilizer inputs and its efficient heavy metal ab-
sorption and tolerance (Struik et al., 2000; Blandinières and 
Amaducci, 2022). For drug-type Cannabis, preferential growth 
in protected cropping environments with a ‘more is better’ at-
titude to increasing product yield together with a general (mis)
interpretation of generic stress symptoms as nutrient limita-
tion has likely led to an overestimation of the optimal ferti-
lizer range (Westmoreland and Bugbee, 2022). Inadvertently, 
this may have also led to selection of drug-type cultivars able 
to tolerate, or even require, elevated nutrient input for biomass 
production. In this respect, drug-type Cannabis might be con-
sidered an extreme example for the genetic erosion observed 
in other crop species during the course of their domestication 
(Khoury et al., 2022).

Differences in nutrient response between 
Cannabis usage types: current knowledge

Macronutrients N and P are examples for factors constrain-
ing establishment of a more sustainable crop production. While 
increasing N and P fertilizer use in agricultural soils accom-
panying the ‘green revolution’ has resulted in increasing crop 
yields over the last century (Khush, 1999), a recent push to 
decrease fertilizer inputs to ensure sustainability and reduce en-
vironmental impact is hampered by limited genetic diversity 
in high-yielding varieties and their stagnating N and P use 
efficiencies (Hirel et al., 2007; Han et al., 2015). Thus, under-
standing the differences in the usage of these two nutrients 
between hemp and drug type might not only improve culti-
vation outcomes for Cannabis, but also provide valuable clues 
for the sustainability of other crops. As discussed in the pre-
vious section, the selection of basal Cannabis led to distinct 
usage types with divergent traits and resulted in a high degree 
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of heterogeneity in phenotypic and genotypic representation. 
The nutrient requirements for optimal growth for each usage 
type, and indeed across cultivars within respective types, will 
hence be different (Bernstein et al., 2019a; Cockson et al., 2020; 
Yep et al., 2020; Bevan et al., 2021; Dilena et al., 2023).

Understanding the physiological traits that are responsive to 
nutrient supply, as well as the molecular mechanisms under-
lying traits associated with nutrient use, is key for the selection 
of nutrient-efficient genotypes in any crop breeding program 
(Ferrante et al., 2017). Complementing this approach with mo-
lecular tools to determine the genetic basis of these traits allows 
for the identification and/or development of nutrient-efficient 
cultivars in other crop species (van de Wiel et al., 2015; Tiwari 
et al., 2017; Goel et al., 2018). For Cannabis, this approach has 
so far been limited to morphological and physiological traits 
within a small number of cultivars that are not represent-
ing the full and divergent phenotypic range in the existing 
germplasm (Cockson et al., 2020; Anderson et al., 2021; Bevan 
et al., 2021; Saloner and Bernstein, 2021, 2022, 2023; Shiponi 
and Bernstein, 2021a; Dilena et al., 2023; Farnisa et al., 2023; 
Massuela et al., 2023). It is therefore necessary to evaluate our 
current knowledge base to identify gaps and how to address 
them. Given the long-standing illicit legal status of drug-type 
Cannabis, the underground ‘hobbyist’ nature of its cultivation 
has led to many myths penetrating commercial growing prac-
tices which go against the horticultural science behind the cul-
tivation of other commercial crops such as tomato, cabbage, or 
lettuce (Rengel et al., 2022). Building a mechanistic under-
standing of the regulation of nutrient acquisition and utiliza-
tion in Cannabis will thus be critical for improving its yield 
potential and product quality. Here, we will focus on current 
knowledge on the response to supply of two macronutrients, 
nitrogen (N) and phosphorus (P), which are of high impor-
tance for the sustainability of Cannabis cultivation, and will 
highlight the potential of knowledge transfer from other crops.

Usage types differ in their nitrogen 
acquisition and utilization

N is critical for plant growth and development as an in-
tegral component of DNA, RNA, proteins, and free amino 
acids. Leaf biomass is tightly linked to available N in growth 
substrates, as N is also a structural component of chlorophyll 
and hence critical for carbon fixation through photosynthesis 
(Rengel et al., 2022). In angiosperms, N is present at an av-
erage 6% of total dry matter (n=62 species) and 18% of total 
protein (n=74) (Yeoh and Wee, 1994; Broadley et al., 2004). 
While it can be taken up as mineral N (nitrate and ammo-
nium), oxides of nitrogen (NOx), as well as amino acids and 
peptides, N acquisition through nitrate (NO3

−) is typically the 
preferred pathway for most plants and tightly coupled to pho-
tosynthetic activity (Lejay et al., 2008; O’Brien et al., 2016). 
Due to the high energetic cost of nitrate reduction, a mixture 

of nitrate and ammonium is considered beneficial in plant cul-
tivation as compared with either source of mineral N alone 
(Hachiya and Sakakibara, 2017). A ratio of 1 part ammonium 
to 3 or 4 parts nitrate is considered optimal for most plants 
with some benefits of higher ammonium levels reported for 
secondary metabolites such as vitamin C, carotenoids, flavo-
noids, and phenolic compounds (Shilpha et al., 2023). Cannabis 
appears to be quite sensitive to ammonium with a nitrate-to-
ammonium supply ratio of more than 3 to 1 at 15 mM total 
N supply considered optimal to balance flower biomass and 
cannabinoid concentrations in one drug-type Cannabis cultivar 
(Saloner and Bernstein, 2022). However, some species like rice, 
onion, and blueberry are more tolerant to ammonium (Britto 
and Kronzucker, 2002). This is linked to the environment these 
plants have evolved in, that is, the presence of biological ni-
trogen fixation and whether soil N, P, or both are limiting plant 
productivity (Britto and Kronzucker, 2013; Prodhan et al., 
2019; Shilpha et al., 2023).

Most research suggests that whilst human selection has 
driven cannabinoid concentrations in female inflorescences 
of drug-type Cannabis to near maximum metabolic capacity, 
flower architecture and overall biomass are key targets for fur-
ther increasing yield potential (Saloner and Bernstein, 2021; 
Shiponi and Bernstein, 2021a; Massuela et al., 2023; Stack 
et al., 2023; Wei et al., 2023). This highlights the importance 
of understanding sink–source relationships and their response 
to nutrient supply for yield improvement (Smith et al., 2018; 
Tegeder and Masclaux-Daubresse, 2018; Burnett, 2019). In rice 
and tomato, modern hybrids already feature increased spikelet/
fruit number and higher spikelet/fruit to leaf biomass ratios 
(Li et al., 2015; Li et al., 2023). Having a larger sink size, rice 
hybrids also have higher leaf N content, pre-flowering biomass, 
and efficient resource translocation during grain filling (Li 
et al., 2023). However, these properties are highly dependent 
on soil fertility with source–sink relations in need of optimiza-
tion for specific cultivation conditions, in particularly for more 
sustainable low nutrient input systems. In tomato, sink–source 
relationships are responsive to nutrient supply (de Groot et al., 
2003; Kanai et al., 2007) as well as environmental stress factors 
(drought, light intensity, CO2 levels, salt) (Matsuda et al., 2011; 
Osorio et al., 2014; Ji et al., 2020) and vary between cultivars 
(Matsuda et al., 2011; Li et al., 2015). Genetic manipulation 
may be needed given that modern crop varieties rarely surpass 
the trait boundaries of their wild progenitors. The latter were 
domesticated precisely because they already featured desired 
traits as adaptations to environmental conditions in their nat-
ural habitat (Gómez-Fernández et al., 2024).

The diverse response of hemp- and drug-type Cannabis to 
N supply can be viewed as a case in point. Industrial hemp 
is bred for vegetative (fibre) biomass—and to some degree 
seed production—and features relatively weak sink strength 
in female flowers. In general, flower biomass of industrial/
fibre hemp makes up less than 10% of total plant dry matter 
(Tang et al., 2018; Wei et al., 2023). By contrast, drug types are 
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selected based on cannabinoid content, flower architecture, and 
flower biomass and grown in the presence of excess nutrients 
(Llewellyn et al., 2023). Female flowers of drug types as well 
as many ‘floral’ hemp types are strong sinks and make up be-
tween 30% and 50% of total plant biomass (Bernstein et al., 
2019b; Anderson et al., 2021; Rodriguez-Morrison et al., 2021; 
Farnisa et al., 2023).

Comparing inflorescence biomass in response to increasing 
N supply across both usage types grown in controlled environ-
ments (Fig. 3A) highlights their different nutrient requirements 
for optimal growth, as well as differences in what constitutes 
limiting levels of N supply. While it is difficult to compare the 
absolute values of flower yield with N supply due to differ-
ences in growing conditions between the studies in terms of 
light quality/intensity and growth environment (e.g. open 
versus closed greenhouses), the trends observed suggest dif-
ferences in nutrient use and flower yield across usage types 
and cultivars. In hemp, flower biomass initially increases with 
higher N supply, reaching a cultivar-dependent optimum, after 
which increased N supply becomes detrimental (Fig. 3A). In 
comparison with drug-type Cannabis, this optimum is reached 
at lower N supply. There also appears to be a higher tolerance 
in drug types, whereby what would be a toxic N supply and 
detrimental to growth in hemp or other species is instead ac-
cepted as luxury supply without growth benefit (e.g. accumu-
lation of N without increasing flower yield). However, drug 
types are sensitive to N limitation of net photosynthesis as leaf 
chlorophyll concentration starts to decline at a total N supply 
of less than 11 mM (Saloner and Bernstein, 2021). By contrast, 
despite substantial variations in biomass, there are no significant 
differences in leaf chlorophyll concentrations of hemp cultivars 
grown at between 4 mM and 32 mM total N (Anderson et al., 
2021). Regulatory differences in N acquisition and transloca-
tion between drug- and hemp-type Cannabis are also apparent 
(Fig. 3B). In hemp, N concentration in inflorescences increases 
with N supply despite overall reduction in flower biomass due 
to toxicity (Fig. 3A) and is higher than that in drug types at 
similar levels of N supply. Together, these data confirm a higher 
N use efficiency of hemp (Tang et al., 2018; Landi et al., 2019).

In higher plants, there is a strong effect of nutrient supply on 
secondary metabolism (Amtmann and Armengaud, 2009). In 
tomato, nitrogen and phosphorus supply impact sink strength 
and fruit quality—especially in terms of carbohydrate, carot-
enoid, amino acid, and polyamine composition (Sung et al., 
2015; Vallarino et al., 2020; Weinert et al., 2021). Excess N 
supply often has a negative or no impact on the metabolite 
profile of tomato fruit (Truffault et al., 2019; Schmidt and 
Zinkernagel, 2021). In Cannabis, the impact of nutrient supply 
on the synthesis of cannabinoids and terpenes in floral organs 
is of key concern. Consistent with impacts on secondary me-
tabolite profiles in tomato, increasing N supply decreases can-
nabinoid concentrations in inflorescences across usage types: 
total content of CBD and its precursor cannabigerol decrease 
with increasing N supply in five hemp cultivars, and a relatively 

low N supply of about 4 mM was considered optimal for both 
cannabinoid concentration and total yield (Anderson et al., 
2021). Similar trends were obtained for another hemp cultivar 
that showed a broader optimal N supply range of between 
2 and 15 mM (Dilena et al., 2023). In a balanced drug-type 
chemovar, however, there was no effect of N supply on total 
CBD and THC content in dried and cured female inflores-
cences (Saloner and Bernstein, 2021). In a later study using 
the same chemovar, total cannabinoid content determined in 
fresh-frozen inflorescence material decreased with increasing 
N supply while terpenoid concentration remained unchanged 
(Song et al., 2023). N-containing compounds such as chloro-
phylls and amino acids increased, while hexose and pentose 
sugars (fructose, glucose, and xylose), phenols, and flavonoids 
as well as total carbon content decreased. A decrease of phos-
phate and hexose phosphates furthermore indicates that with 
increasing N supply, P becomes limiting, which may explain 
the increase in nicotinic acid, proline, ornithine, lysine, and 
polyamines such as putrescine (Morcuende et al., 2007; Huang 
et al., 2008; Aleksza et al., 2017).

In summary, while industrial and floral hemp seem to be 
more N efficient with high growth rates at low levels of N 
supply, meta-analysis of different studies indicates that they 
have a lower threshold for N toxicity as compared with drug 
types. In contrast to hemp and tomato, many drug types re-
quire high N inputs of >11 mM total N to reach maximum 
photosynthetic rates and flower biomass. Drug-type Cannabis 
seems to also tolerate higher N supply with no discernible 
effects on either performance or metabolic profile (Saloner 
and Bernstein, 2021; Song et al., 2023). The complex breeding 
history involving frequent introgression of hemp- into drug-
type Cannabis means that the N response of each cultivar or 
genotype needs to be assessed for optimal cannabinoid yield. It 
remains to be seen whether a more sustainable N use is achiev-
able through selective introgression of desired hemp traits into 
drug-type Cannabis without affecting yield.

Phosphorus requirements vary between 
hemp and drug-types

In most rhizosphere environments, P is one of the least plant-
available nutrients, with inorganic phosphate (Pi) often tightly 
adsorbed onto metal-based complexes (Hinsinger et al., 
2005). Therefore, field crops are heavily dependent not only 
on external fertilizer applications but also root exudation of 
Pi-releasing enzymes such as nucleases and phosphatases as 
well as of organic (carboxylic) acids such as malate, oxalate, 
and citrate, which induce localized soil acidification to en-
courage Pi mobilization (Vance et al., 2003; Richardson et al., 
2011; Gerke, 2015). Further root adaptations include auxin-
dependent lateral root and root hair formation and increasing 
Pi uptake and xylem loading (Peret et al., 2011; Zhang et al., 
2014). All these adaptations are critical as P itself is a major 
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macronutrient required for essential plant processes such as 
photosynthesis, respiration, protein activity regulation, and 
the synthesis of nucleic acids and membrane lipids (Veneklaas 

et al., 2012). In mature legume and cereal seed, the main P 
storage compound, phytate, accounts for 1–5% by weight, 
representing 65–85% of total P (Oo et al., 2023). Pi is also 
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Fig. 3.  Response of hemp- and drug-type cultivars to variation in N or P supply. (A, C) In hemp types, flower biomass increases with higher N or Pi 
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tightly linked to both sucrose and starch synthesis through 
the Calvin–Benson cycle, an integral process for plant devel-
opment that requires triose phosphates and releases Pi in a 
tightly regulated process (McClain and Sharkey, 2019). Due 
to its strong impact on carbon flows and feedback regula-
tion of N assimilation, cytosolic levels of Pi are tightly con-
trolled in most crop and model plants, and once plant P status 
is sufficient, transporters involved in Pi uptake and translo-
cation are rapidly suppressed on both transcriptional and 
post-translational levels (Aung et al., 2006; Bari et al., 2006; 
Franco-Zorrilla et al., 2007). During development, plastid Pi 
translocators are critically important for the translocation of 
photoassimilates from source to sink tissues, and trehalose-
6-phosphate is an important signal for coordination of carbon 
and nitrogen assimilation to provide the building blocks for 
organ growth (Fluegge, 1995; Hammond and White, 2008; 
Griffiths et al., 2016). Pi supply is therefore critical for plant 
metabolism and growth, with strong links to flower develop-
ment and reproduction.

In Cannabis, despite the effect of P on plant development, 
there are even fewer studies on the impact of P than that of 
N supply for both usage types. An impact of Pi on cannab-
inoid biosynthesis might be expected given cannabigerolic 
acid and cannabigerovarinic acid, the common precursors of 
phytocannabinoids, require geranyl pyrophosphate to be syn-
thesized (Gülck and Møller, 2020). Geranyl pyrophosphate is 
in turn synthesized by the plastidial methylerythritol phos-
phate pathway, of which Pi is a key component and regulator 
through triose phosphate utilization in the Calvin–Benson 
cycle (McClain and Sharkey, 2019). Early studies point towards 
cannabinoid content being positively correlated with soil P 
content in drug types of Afghan origin (Coffman and Gentner, 
1977). In a recent study of a balanced and a THC-dominant 
drug type, the highest cannabinoid concentrations were re-
ported under the lowest Pi supply of 0.16 mM, which severely 
limited plant growth and total flower biomass, while there were 
no changes in total cannabinoid concentrations with Pi supply 
levels greater than 0.5 mM (Shiponi and Bernstein, 2021a). In 
a hemp cultivar, cannabinoid concentrations, predominantly 
total CBD, increased up to 0.36 mM Pi supply, after which 
concentrations remained relatively unchanged (Cockson et al., 
2020). The CBD-dominant hemp-type cultivar BaOx reached 
an optimal level of Pi supply for flower production much ear-
lier than the two drug types (Fig. 3C). Higher Pi supply had 
a negative impact on flower biomass, while there was no re-
sponse in plant height, total above-ground biomass or root-
to-shoot ratio (Cockson et al., 2020). In drug types, Pi supply 
above the hemp optimum did not affect flower or total plant 
dry matter, which was fairly constant between 1 mM and 
3 mM Pi supply, with female flowers also strong P sinks accu-
mulating about 80% of total organ P (Fig. 3C) (Shiponi and 
Bernstein, 2021a). Within drug types, there are cultivar-specific 
differences in their Pi response: the THC-dominant chemovar 

was slower growing, and as a consequence, had a more com-
pact stature with reduced branching, while, due to stronger 
vegetative growth that was evident at the two lowest Pi supply 
levels, leaves and stems of the THC/CBD-balanced chemovar 
became N-limited at Pi supplies of 1 mM and above. This was 
accompanied by increased translocation of N to reduced leaves 
in the inflorescence helping to maintain sink strength (Shiponi 
and Bernstein, 2021a). N-limited growth in the balanced che-
movar may also explain lower net photosynthetic rates com-
pared with the THC-dominant chemovar across treatments. 
Total P accumulation in flowers reached a maximum of about 
400 µmol g−1 dry weight at the high Pi supplies across chem-
ovars. Total P content also plateaued in roots of the balanced 
chemovar, while P content kept increasing in roots of the 
THC-dominant chemovar, which resulted in higher P acqui-
sition efficiency with increasing Pi supply. Despite its higher 
P acquisition efficiency, the THC-dominant chemovar had 
a lower root-to-shoot biomass ratio (Shiponi and Bernstein, 
2021a).

These data may indicate repression of Pi uptake in the bal-
anced chemovar because of N-limitation at higher Pi supplies. 
It is of note that at limiting Pi supply, the balanced chemovar 
experienced only an approximate 15% flower yield loss while 
the THC-dominant chemovar incurred nearly 50%, relative 
to the proposed ‘optimal’ 1 mM Pi supply (Fig. 3C) (Shiponi 
and Bernstein, 2021a). The higher yield under P limiting con-
ditions in the balanced chemovar could be due to its higher 
root-to-shoot ratio most likely in combination with molecular 
traits such as increased expression of high-affinity phosphate 
transporters in roots, as well as more efficient remobilization 
of Pi from source to sink tissues (Akhtar et al., 2008; Julia et al., 
2016). Interestingly, the studied hemp cultivar had a 3-fold 
higher root-to-shoot biomass ratio at the lowest Pi supply in 
the vegetative phase and it did not change its biomass allo-
cation with increasing Pi supply (Cockson et al., 2020). For 
hemp, uninhibited P accumulation in leaves would suggest a 
constitutive phosphate starvation response with sustained Pi 
uptake as observed in plant species adapted to P limited envi-
ronments (Shane et al., 2004). At higher Pi supply to hemp 
in the reproductive phase, reductions in N and microelement 
pools in source leaves together with a lack of increase in flower 
biomass, premature senescence, and browning of mature fan 
leaves indicate that plants are becoming increasingly P toxic 
and/or N limited (Shukla et al., 2017; Cockson et al., 2020). 
P accumulation in hemp leaves is much stronger than in the 
two drug types, as a critical toxicity level of 160 µmol total P 
g−1 dry weight is already reached at an external Pi supply of 
1 mM, while such levels are only reached at between 2 and 
3 mM Pi in drug types (Fig. 3D) (Shane et al., 2004). This 
again supports the notion that hemp types are more nutrient 
efficient than drug-type Cannabis, with higher yield at rela-
tively lower levels of fertilizer input (Tang et al., 2018; Stack 
et al., 2023).
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Integrating molecular approaches for 
improvements in understanding nutrient 
regulation in Cannabis

The available data suggest that drug types have a higher toler-
ance for excessive or luxurious nutrient supply than hemp-type 
Cannabis. Within usage types, cultivar specific differences in nu-
trient response and sink strength are also evident (Wylie et al., 
2020). Recent introgression of hemp (Grassa et al., 2021), cou-
pling a functional CANNABIDIOLIC ACID SYNTHASE 
gene with the capacity of modern drug-type cultivars to produce 
high cannabinoid concentrations and flower biomass, has resulted 
in progeny with high allelic diversity, especially since drug-type 
parental lines are not homozygous to begin with (Barcaccia et al., 
2020). These more recent introgressions led to complex segre-
gation of associated nutrient efficiency traits that were relatively 
fixed in hemp- and drug-type Cannabis with restricted gene flow 
between domesticated populations (Small, 2015; Ren et al., 2021).

However, these progenies also provide a rich genetic resource 
for the analysis and interaction of such traits. Assessing the ge-
netic basis of selected traits of interest will rely on both traditional 
and molecular techniques to uncover quantitative trait loci and/
or molecular markers (Platten et al., 2019; Li et al., 2022). Such 
approaches are advantageous as conventional breeding through 
crossing and selection is highly impractical due to the dioecious 
nature of Cannabis and the unclear lineage and heterozygosity of 
drug types (Sawler et al., 2015; Ingvardsen and Brinch-Pedersen, 
2023). As proof-of-concept, desirable domestication traits relating 
to plant anatomy, fruit shape, fruit size, fruit number, and nutri-
tional quality were transferred to wild tomato by CRISPR–Cas9 
genome editing to improve agronomical value (Zsögön et al., 
2018). Extensive knowledge of carbon and nitrogen fluxes across 
different plant model species has allowed an increase in fruit yield 
in tomato through multi-gene metabolic engineering (Vallarino 
et al., 2020). In Cannabis, marker-assisted methods have been em-
ployed successfully for cannabinoid profiling (Weiblen et al., 2015; 
Laverty et al., 2019; Jin et al., 2021; Welling et al., 2022), sex deter-
mination (Toth et al., 2020), and usage type distinction (Cascini 
et al., 2019; Barbaric and Bezbradica, 2023). However, the fidelity 
of these markers is reliant on high quality and continuous im-
provement of well-annotated reference genomes (Barcaccia et al., 
2020; Ingvardsen and Brinch-Pedersen, 2023). The creation of a 
Cannabis pangenome in combination with phased genomes is 
likely to help bridge the high heterogeneity present in current 
germplasm, facilitating breeding via identification of elite and 
stable markers conserved across the variable Cannabis genomes 
(Hurgobin et al., 2021).

Optimizing for nutrient efficiency and sink 
strength

Nutrient-efficient Cannabis cultivars are key to meeting in-
dustry sustainability goals (Landi et al., 2019; Velechovsky et al., 

2024). The commercialization of Cannabis of both usage types 
into pharmaceutical products also requires good manufacturing 
practices to be consistently met by growers to ensure product 
quality standards (Craven et al., 2019; Montoya et al., 2020; 
Jameson et al., 2022). Hemp is well known for its phytore-
mediation potential due to its high uptake capacity for heavy 
metals and other soil contaminants (Testa et al., 2023). These 
traits may become detrimental if cultivation conditions are not 
well defined and constantly monitored. For example, arsenic 
is taken up by high-affinity phosphate transporters (Navarro 
et al., 2021), and thus selecting lines with high Pi acquisition 
efficiency may lead to higher tissue accumulation of heavy 
metals in field-grown produce (Blandinières and Amaducci, 
2022). The nutritional value of some hemp products could also 
be compromised by the hyperaccumulation of phosphate in 
flowers and phytate in seed—given that phosphate toxicity is 
an issue for both human and animal health (Razzaque, 2011; 
Lei et al., 2013; Alexander et al., 2022). Nutrient management, 
and by extension how nutrient status is regulated across dif-
ferent cultivars and usage types, is necessary for uniform plant 
growth, secondary metabolite synthesis, and flower develop-
ment, as well as maintaining plant health through decreasing 
susceptibility towards opportunistic pathogens detrimental to 
harvest quality (Dordas, 2008; Punja, 2021). For these purposes, 
cannabinoid production at an industrial scale is largely indoors 
under controlled environmental conditions, which also maxi-
mizes the number of crop cycles per year (Chandra et al., 2020).

Several studies have emphasized the importance of flower 
biomass for overall cannabinoid yield in both hemp- and 
drug-type Cannabis (Naim-Feil et al., 2021; Wei et al., 2023). 
By contrast, cannabinoid concentrations are relatively stable 
across moderate changes in nutrient supply and/or compo-
sition (Saloner and Bernstein, 2021; Shiponi and Bernstein, 
2021a; Massuela et al., 2023; Stack et al., 2023; Wei et al., 2023). 
This recapitulates findings in tomato that emphasize the im-
portance of source–sink interactions for fruit quality and yield 
(Osorio et al., 2014; Smith et al., 2018). A high N-to-P ratio 
is known to promote vegetative growth with a negative im-
pact on sink strength and thus fruit harvest index and fruit 
quality (Schauer et al., 2006; Tegeder and Masclaux-Daubresse, 
2018). High N levels suppress circadian clock and flowering 
genes in Arabidopsis whilst low N supply accelerates flowering 
either through promoting the expression of genes for tran-
scriptional regulators CONSTANS (CO) and SUPPRESSOR 
OF OVEREXPRESSION OF CONSTANS1 (SOC1), 
altering the phosphorylation state of transcription factor 
FLOWERING BHLH4, and/or inhibiting expression of 
transcription factors GATA, NITRATE-INDUCIBLE, 
CARBON-METABOLISM INVOLVED (GNC), and GNC-
LIKE (Cho et al., 2017; Lin and Tsay, 2017; Olas et al., 2019; 
Y. Zhang et al., 2023). By contrast, high Pi supply promotes 
flower initiation and development, whilst P limitation delays 
flowering (Nord and Lynch, 2008; Y. Zhang et al., 2023). This 
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is mediated through altered expression of flowering genes such 
as CO and SOC1; however, effects seen for mutants with al-
tered shoot P status support a metabolic control over trehalose- 
6-phosphate, an important flowering signal (Kant et al., 2011; 
Wahl et al., 2013). In Cannabis, orthologues for these key flow-
ering genes have been identified pending further functional 
characterization (Steel et al., 2023; Dowling et al., 2024). The 
emergence of inositol pyrophosphates as important signals of 
plant nutrient status and associated sensor proteins that coordi-
nate nitrate and phosphate acquisition as well as developmental 
programs will provide new targets for metabolic engineering 
(Poza-Carrion and Paz-Ares, 2019; Z. Zhang et al., 2023). These 
sensors and their regulatory networks are yet to be explored 
in plant species that differ in their nutrient efficiencies and 
breeding history. Hemp- and drug-type Cannabis provide an 
excellent opportunity to study these. Significant differences 
in sink strength within the two usage types provides valuable 
insight into the impact of N and/or P redistribution on C 
balance during the reproductive stage (Veneklaas et al., 2012). 
Vegetative plants largely rely on Pi uptake by roots during early 
growth stages, with a shift to P remobilization from shaded, 
older to young, growing leaves occurring in the later stages 
(Han et al., 2022). After the shift to flowering, plants depend 
much more heavily on Pi translocation from source organs—
and drug-type Cannabis plants allocate a large proportion of 
dry mass to female unpollinated flowers (see above). It remains 
to be seen how increasing P use efficiency in drug types grown 
indoors will affect cannabinoid and terpene concentrations 
and their profiles given the importance of P for photosynthesis, 
carbon flux, and source–sink interactions in field grown crops 
(Wissuwa et al., 2005).

Understanding the molecular regulation of plant nutrient 
status and source–sink interactions will be crucial towards the 
development of nutrient-efficient cultivars and sustainable 
crop management and will tie into optimizing crop quality and 
yield whilst reducing agrochemical inputs and therefore costs 
and environmental pollution (Zheng et al., 2021).

Towards community standards in Cannabis 
nutrient research

In Cannabis, trends in growth responses to various environmental 
factors such as nutrient supply, daylength, light intensity, or light 
quality are emerging from recent published data (Shukla et al., 
2017; Magagnini et al., 2018; Saloner et al., 2019; Anderson et al., 
2021; Bevan et al., 2021; Rodriguez-Morrison et al., 2021; Shiponi 
and Bernstein, 2021a; Llewellyn et al., 2022, 2023; Reichel et al., 
2022; Saloner and Bernstein, 2022; Westmoreland and Bugbee, 
2022; Dilena et al., 2023; Massuela et al., 2023; Peterswald et al., 
2023; Song et al., 2023). However, a lack of community standards 
presently impedes straight-forward comparison of results and their 
interpretation. Currently, hemp- and drug-type Cannabis cultivars 
are often independently tested under different ranges of P or N 

supply (Fig. 3), making it difficult to determine where actual lim-
itations to their performance lie across the entire genetic range. 
Determination of the mass balance between nutrients supplied, 
nutrients taken up by the plant, and their partitioning into down-
stream metabolites requires accurate description of tissue concen-
trations, nutrient quantities supplied, and frequency of application, 
and sensible information on nutrient formulations (Lambers and 
Barrow, 2021). For comparative analyses, a greater number of ge-
netically well-defined hemp- and drug-type Cannabis grown in 
parallel under standardized cultivation conditions is needed to 
identify traits of interest and obtain a functional understanding. 
Furthermore, accurate identifiers and terms are needed to de-
scribe morphological and physiological features, especially around 
flowering time and flower maturity, for both hemp- and drug-
type Cannabis (Mediavilla et al., 1998; Brym et al., 2023). This will 
help to detect differences in the timing of developmental transi-
tions caused by changes in nutrient supply ratios and resource al-
location. It is also important to study organs that respond quickly 
to environmental conditions, given that in many species individual 
reproductive organs are protected against fluctuations in nutrient 
status whilst photosynthetically active source leaves along the main 
stem quickly display signs of nutrient stress (Veneklaas et al., 2012).

Systematic analysis of the metabolomic and transcriptomic 
response to nutrient limitation or excess will help to define key 
metabolites and marker genes for cultivar selection (Watanabe 
et al., 2010; Cobb et al., 2013; Vallarino et al., 2020; Cuyas et al., 
2023). In this respect, determination of cannabinoid profiles 
and concentrations often lacks standardization of methodology 
and preparation of the plant materials before analysis (Welling 
et al., 2019; Kim et al., 2022). The current practice of trimming 
reduced leaves from flowers and drying harvested materials 
over long periods of time (up to several weeks) at temperatures 
ranging from 15 °C to 60 °C introduces artifacts and reduces 
reproducibility between studies with information on residual 
water content often lacking. Shock-freezing plant materials 
on-site and storage at below −70 °C until further processing, 
tissue homogenization under liquid N2 or on dry ice, and the 
use of internal standards improve cannabinoid preservation to 
reflect the actual profile and concentrations of individual can-
nabinoids in planta at harvest.

While the common practice of clonal propagation is elimi-
nating some of the phenotypic variation, comparison of exper-
imental results between growth facilities is still difficult, even if 
the same seed source is used. Highly heterozygous plants and 
the lack of true Cannabis F1 hybrids in most breeding programs 
lead to a high degree of genetic diversity, even in ‘all-female’ 
or sinsemilla cultivars (Barcaccia et al., 2020). For research pur-
poses, it would be desirable to generate suitable representations 
of hemp- and drug-type Cannabis that are genetically fixed as 
much as possible and create near-homozygous parental clones 
that serve as stable reference populations.

Optimizing nutrient use is highly dependent on cultivation 
practices. Soil-grown crops are often nutrient or water limited 
for at least some part of their growth cycle, so that boosting 
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soil health through increasing organic matter and fostering the 
soil microbiome have dramatic effect on yields (Qiao et al., 
2022; Suman et al., 2022). Plants grown in protected crop-
ping systems, on the other hand, often benefit from inorganic 
fertilizer formulations without competition from microbes 
(Sanjuan-Delmás et al., 2020; Chavan et al., 2022). Breeding 
programs therefore must generate a diverse range of cultivars 
that cater for these very different growth environments.

Concluding remarks and future 
perspectives

Cannabis sativa L. is a monotypic genus with highly poly-
morphic, heterogeneous accessions, varieties, and chemovars. 
Human selection for divergent purposes has resulted in two 
very distinct usage types—hemp-type (fibre or industrial 
hemp) and psychoactive compound-producing drug-type 
(marijuana) Cannabis. In contrast to other crop plants, very 
little research has gone into exploring the genetic basis for 
the very strong contrasts in growth habit, flowering control, 
and nutrient use between the two main usage types. This re-
view has highlighted differences in nutrient use based on the 
analysis of relevant Cannabis literature, as well as the know-
ledge gaps that still exist between observed physiological 
responses to nutrient supply and the underlying genetic fac-
tors. There is great potential to increase our understanding of 
source–sink interactions as Cannabis displays stronger con-
trasts in developmental programs, nutrient use, and metabolic 
fluxes than many current model plants such as Brassicaceae, 
cereals, and tomato. While progress in this area is encour-
aging, employing available genetic resources and ‘omics’ tools 
towards understanding the complex breeding history and bi-
ology of Cannabis will further boost genetic improvement. As 
has been the case for tomato breeding, scientific research and 
methodological advances for Cannabis will generate more re-
silient germplasm for different purposes and growth envi-
ronments. Preserving a diverse gene pool that includes wild 
accessions and landraces will furthermore provide genetic 
resources for future demands on pharmaceuticals, food prod-
ucts, clothing, biofuels, and building materials that this highly 
adaptable species can no doubt cater for.
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