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Abstract

Medicinal plants are integral to traditional medicine systems worldwide, being pivotal for human health. Harvesting
plant material from natural environments, however, has led to species scarcity, prompting action to develop cultiva-
tion solutions that also aid conservation efforts. Biotechnological tools, specifically plant tissue culture and genetic
transformation, offer solutions for sustainable, large-scale production and enhanced yield of valuable biomolecules.
While these techniques are instrumental to the development of the medicinal plant industry, the challenge of inherent
regeneration recalcitrance in some species to in vitro cultivation hampers these efforts. This review examines the
strategies for overcoming recalcitrance in medicinal plants using a holistic approach, emphasizing the meticulous
choice of explants (e.g. embryonic/meristematic tissues), plant growth regulators (e.g. synthetic cytokinins), and use
of novel regeneration-enabling methods to deliver morphogenic genes (e.g. GRF/GIF chimeras and nanoparticles),
which have been shown to contribute to overcoming recalcitrance barriers in agriculture crops. Furthermore, it high-
lights the benefit of cost-effective genomic technologies that enable precise genome editing and the value of inte-
grating data-driven models to address genotype-specific challenges in medicinal plant research. These advances
mark a progressive step towards a future where medicinal plant cultivation is not only more efficient and predictable
but also inherently sustainable, ensuring the continued availability and exploitation of these important plants for cur-
rent and future generations.

Keywords: Explants, medicinal plants, morphogenic genes, nanoparticles, plant growth regulators, recalcitrance, regeneration,
transformation.

Introduction

Among the breadth and diversity of plant species, medicinal  that two-thirds of the global population relies on plant medi-
plants have held a significant place in human health and culture  cines for primary healthcare. A quarter of newly developed
since ancient times. The World Health Organization estimates  drugs sold worldwide are based on molecules derived from

Abbreviations: BBM, BABY BOOM; Cas9, CRISPR-associated protein 9; CRISPR, clustered regularly interspaced short palindromic repeats; GIF, GRF-
INTERACTING FACTOR 1; GRF, GROWTH-REGULATING FACTOR; gRNA, guide RNA; MG, morphogenic gene; NP, nanoparticle; PGR, plant growth regulator;
SAM, shoot apical meristem; SE, somatic embryogenesis; TC, tissue culture; TDZ, thidiazuron; WUS, WUSCHEL.
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plants (Calixto, 2019). With >35 000 identified medicinal plant
species, the repertoire of biomolecules of benefit to humankind
is yet to be mined to its full potential. The global herbal med-
icine market compound annual growth rate (CAGR) is esti-
mated to be ~11% over the 2022-2030 period and is expected
to be worth ~US$348 billion by 2030 (www.databridgemar-
ketresearch.com). By 2050, the market value is projected to
reach US$5 trillion, with China and India to dominate the
herb trading market (Booker et al., 2012). Such demand in
countries where self-medication through sourcing from the
natural environment is current practice has put preservation
of native medicinal plant species under significant pressure. As
the universal interest in plant-based medicines continues to ex-
pand, there is a growing need to generate sufficient supply of
medicinal plants and preserve their native populations.

Increasingly, biotechnological approaches are being uti-
lized to satisty this growing demand. Since the 1990s, plant
tissue culture and genetic transformation have been the en-
abling technologies for crop improvement, and promise to
fulfil the same role in medicinal species (Canter ef al., 2005).
In vitro cultivation enables large-scale multiplication of plant
tissue and thus yield of desirable biomolecules. Growth in a
controlled environment, encompassing both the medium and
external conditions, delivers a more consistent product per
cropping cycle, improving market value, and provides a plat-
form for germplasm preservation. Tissue culture (TC) medium
normally contains plant growth regulators (PGRs) that, when
dosed, can induce plants to generate high numbers of multi-
plication units. Under controlled conditions, micropropagation
enables growth at scale. Unfortunately, not all species can ac-
climate to in vitro culture conditions, and this inability to grow
and be propagated in tissue culture is called TC recalcitrance
(Benson, 2000).

In most species, TC methods are also essential to the suc-
cess of genetic transformation, the process whereby a beneficial
segment of DNA is transterred into the plant’s genome (Yildiz,
2012). Genetic transformation offers an ability to amplify bio-
molecule yields to much higher levels that are well beyond what
can be achieved through traditional breeding methods (Pandey
et al., 2010). After DNA integration, transformed cells require
cues to initiate morphological reprogramming to produce an
entire plantlet. Typically, PGRs in the medium stimulate this
process. Cellular receptivity to transformation and regenera-
tion is often species or even genotype specific. The inability of
a plant to incorporate foreign DNA into its genome is termed
transformation recalcitrance, and the failure to form tissue,
typically shoots or embryos, post-transformation is defined as
regeneration recalcitrance (Fig. 1). Discovery and characteriza-
tion of the genes and pathways involved in the process of plant
morphogenesis, their interplay with phytohormones, and an
understanding of the events following a wound response have
paved the way towards providing a set of molecular tools to cir-
cumvent plant recalcitrance. Multiple recalcitrant crop species
have benefited from the controlled expression of morphogenic
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genes (MGs) to stimulate the regeneration of transgenic plants.
Although still in its infancy, the use of MGs to combat regener-
ation recalcitrance in medicinal species has shown the potential
to be broadly applicable (Zhang et al., 2021). In this review, we
describe the benefits to TC and transformation and the three
main approaches that have been used to overcome regenera-
tion recalcitrance in medicinal plants to date: (i) selection of
explants with innate ability to regenerate; (i1) addition of PGRs
in TC media; and (iii) the use of enabling technologies involv-
ing MGs.

Plant tissue culture: an important
biotechnological tool

Plant tissues can be preserved aseptically in vitro through TC
practices. Although TC requires specialized facilities, equip-
ment, and trained labour, its major advantages over traditional
propagation methods include unparalleled scalability free of
seasonal constraints within a smaller physical and environ-
mental (e.g. water, fertilizer) footprint, pest-free plants upon
release to the glasshouse or field, and is economical in terms of
daily maintenance costs. Another benefit is that elite germplasm
from heterogenous and outcrossing species can be maintained
without the need to pass through fertilization and a seed stage
(Kenta et al.,2016). The same advantage is applicable to annuals
and tree species alike. For the latter, TC provides maintenance
conditions without the development of secondary growth,
often considered detrimental to in wvitro life. In some species
and genotypes, the constant exposure to TC conditions can
lead to somaclonal variations, genetic and/or epigenetic, that
are perpetuated in the culture and can lead to loss of valuable
traits in TC-maintained lines (Kenta et al., 2016). However, in
some species such as strawberry, somaclonal variation is a de-
liberate strategy to gain novel traits that can provide tools for
crop improvement (Krishna et al., 2016).

In contrast to well-established TC protocols for agricultural
crops, medicinal plants often lack standardized procedures, as is
the case for Frangula purshiana, Arctostaphylos uva-ursi, Physostigma
venenosum, Strychnos nux-vomica, and Ochrosia elliptica, all dicot-
yledonous species (Chaturvedi et al., 2007). The wide range of
species diversity, genetic variability, complex secondary metab-
olite mixtures which influence growth and development, the
limited research and resources, and in some cases regulatory
challenges often hinder the TC progress in medicinal plants.
The stages of in vitro plant culture are summarized in Fig. 1.
Establishing an in vitro culture requires that plant tissue(s) are
sterilized and placed in media within enclosed vessels. Ideally,
TC explants free of embryonic/meristematic cells can produce
entire plants under the right media and growth conditions. This
remarkable developmental plasticity, which naturally facilitates
a species’ survival and reproduction success under various nat-
ural biotic and abiotic pressures, has enabled the fundamental
elements of TC to be developed. This potential of a cell to
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Fig. 1. A schematic of the plant tissue culture and transformation process. Left: a typical plant tissue culture/micropropagation cycle is represented with

its different stages: collection of explants from a mature donor plant (Stage 0, S0), sterilization and initiation of explants on shoot proliferation medium
(Stage 1, S1), repeated shoot multiplication and elongation (Stage 2-S2), rooting (Stage 3, S3), and acclimatization to ex vitro growing conditions (Stage

4, S4). The circular arrow at the multiplication stage represents the iteration of in vitro multiplication cycles for large-scale production of TC plantlets.

In vitro recalcitrance can occur at any stage (S1-S4). Right: genetic transformation of a plant species involves transferring a piece of DNA, such as

a gene(s) of interest (GOI), with a selectable marker (Sel), into cells within the explants either through co-cultivation with Agrobacterium cells carrying

the transformation vector or directly through biolistics. The transformed explants are proliferated on a callus initiation medium with selection pressure
(+selection) to select only those cells which have the GOI integrated into their genome. The proliferated calli are then transferred to regeneration medium
for embryo development and shoot regeneration with continued selection pressure. The regenerated plantlets enter the usual micropropagation stages
(S2-S4). The circular arrow at the regeneration stage represents the continued multiplication of transformed plants. Alternatively, transformed calli can
be used to initiate sterile cell suspension cultures, bypassing the need to generate a transgenic plant. In vitro recalcitrance can be encountered during
genetic transformation (1) or through the process of transgenic plant regeneration at callus proliferation, embryo development, and/or plantlet growth

stages (2, 3).

change its cellular identity into any other cell type has been
termed cellular totipotency (Condic, 2014). Under the right
PGR cues, differentiated somatic cells can re-enact embryonic
developmental pathways, a process termed somatic embryo-
genesis (SE) (Fig. 2). This regeneration capacity of plant species
has long been exploited for vegetative plant propagation and
biotechnology endeavours (Fehér, 2019). However, the ease of
establishment of a plant species in TC 1s inexplicably variable,
with the majority of medicinal plant species lying towards the
recalcitrant end of the spectrum, as opposed to being highly
regenerative.

Genetic transformation: enabling plant
improvement

While TC practices and techniques facilitate the generation
of high volumes of genotype-specific clones, they also pro-
vide tissue for genetic modification purposes. To deliver the
desired piece of DNA into plant cells, traditional transforma-
tion methodologies use either physical means (particle bom-
bardment or biolistics) or Agrobacterium sp., a bacterium which
naturally transfers a DNA segment (transfer or T-DNA) across
the plant cell membrane (Fig. 1). Under a selective agent(s)
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Fig. 2. Tissue culture and genetic transformation differences between monocots and dicots. (A) Preferred choice of explants in monocots are: shoot
apex (SA), axillary bud (AB), immature embryo (IE), embryogenic callus (EC), callus (C), and somatic embryo (SE). (B) Biolistic transformation is more
frequently used to transform monocot species where a piece of linearized DNA containing a gene(s) of interest (GOI) and one of a limited set of selectable
markers (Sel) are coated onto microparticles that are delivered into the explant through high velocity bombardment. (C) Direct or indirect somatic
embryogenesis is the predominant regeneration pathway in monocot post-transformation. (D) Preferred choice of explants in dicots are: SA, flowers (F),
microspores (M), cotyledons (CO), hypocotyls (H), epicotyls (E), embryonic axis (EA), cotyledonary nodes (CN), embryonic leaflets (EL), EC, AB, C, and
SE. (E) Agrobacterium-mediated transformation of GOl with one of a broader range of selectable markers in a transformation vector. (F) Dicots exhibit
regenerable callus formation from many types of explants due to direct or indirect organogenesis, the products of which can be readily regenerated into
entire plants. Regenerated shoot (RS), somatic embryo (SE), callus (C), and mature leaf (ML).

(antibiotic or herbicide), non-transgenic cells are eliminated
and, with the appropriate external stimuli in the media, the
genetically modified cells can regenerate (Fig. 1). The ability
to genetically modify medicinal plant species is not only im-
portant to introduce novel traits or modify existing ones, but is
also a scientific tool for the purposes of dissecting the molec-
ular basis for the production and regulation of specific biomol-
ecules, for example knowledge which can refine subsequent
efforts to enhance their yield. Whilst tissue culture and trans-
formation protocols have been successtully developed in sev-
eral agriculturally important crops, efforts in medicinal species
have been limited (Gémez-Galera ef al., 2007). For example,
Aloe vera, Ginkgo biloba, and Garcinia indica with well-defined
regeneration systems do not have a transformation protocol or
may become less regenerative after genetic transformation, as is
the case with Plumbago zeylanica and Euphorbia nivulia (Pandey
et al.,2010). Regeneration-recalcitrant species have limitations
with respect to the bioengineering applications that can be

implemented for the improvement of agromorphological traits
and the alteration of their beneficial biomolecule profiles.

In contrast to crop species that have benefited from the con-
certed knowledge of many years of breeding, medicinal plants
generally have a highly heterozygous genome often exacer-
bated by being obligate outcrossing species. Until the recent
application of MG expression, Coker was the sole Gossypium
hirsutum (cotton) cultivar amenable to transformation (Juturu
et al., 2015). Similarly, in Cannabis sativa (cannabis), regenera-
tion from calli has been shown to be highly cultivar dependent
(Zhang et al., 2021). In this study, transgenic plants were pro-
duced in only one cultivar of 100 tested, a result achieved with
the combined use of MGs and explants with high potential for
totipotency stimulated with exogenous application of potent
synthetic phytohormones (Zhang et al., 2021). These exam-
ples demonstrate the complexities encountered in recalcitrant
species and the diverse approaches required to enable genetic
modification and regenerability.
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Modern molecular technologies that have been widely ap-
plied to agriculture crops are yet to be routinely used in most
medicinal plants. These species would benefit from leveraging
large-scale sequencing methodologies that have seen dramatic
cost reductions in the last decade to provide (pan)genome in-
formation, spatiotemporal tissue transcriptome datasets, ideally
at cellular resolution, together with an understanding of the
epigenome. This information will significantly facilitate bio-
engineering of medicinal plants, offering, for example, markers
for trait selection via traditional breeding approaches and the
ability to use gene editing tools such as CRISPR (clustered
regularly interspaced short palindromic repeats) effectively by
enabling accurate design of guide RNAs (gRINAs) that are
target specific and avoid off-target edits (Yang et al., 2021).

Choice of explants

Successtul standardization of in vitro regeneration protocols
depends on the health and accessibility of tissues from a plant
donor (S0, Fig. 1). Exploring TC capabilities in a medicinal
plant demands consideration of the specific requirements of
the taxonomic group to which the species belongs during ex-
plant selection and regeneration. For example, gymnosperm
medicinal tree species often exhibit varied responses to TC due
to a ‘phase change’ (shift from juvenile to adult state) that results
in a significant loss of vegetative propagation capacity, reducing
the ability of tissues to regenerate in vitro (Pereira et al., 2021).
In such cases, production of SEs using juvenile embryo organs
has emerged as a preferred regeneration method, maintain-
ing explant juvenility and ensuring a high regeneration rate.
Similarly, distinct morphological and developmental differ-
ences between monocots and dicots significantly influences
their TC responses, the favoured transformation method, and
ultimately regeneration efficiency. Monocots provide a limited
range of explant types that commonly regenerate through ei-
ther direct or indirect SE (Fig. 2). In contrast, regeneration in
dicots can occur through direct or indirect organogenesis in
a wider range of explant types which are readily regenerated
into plants. Many medicinal dicots are amenable to TC, and a
diverse array of regeneration approaches have been success-
fully applied compared with monocots, as exemplified by the
examples listed in Table 1.

The divergentTC responses between dicots and monocots has
led to different transformation approaches being used (Kausch
et al., 2019). Initially limited only to dicots, Agrobacterium-
mediated gene transfer poses a challenge in monocot species
due to their non-natural host status (Potrykus, 1990). Monocot
transformation recalcitrance was overcome by the introduc-
tion of biolistic transformation and protoplast-based systems in
which the plant cell wall is enzymically removed prior to DNA
introduction (Kausch et al., 2019) (Fig. 2). Additionally, there
are far fewer effective selectable markers available in mono-
cots compared with dicots. While aminoglycoside resistance

markers such as kanamycin, neomycin, and G418 (geneticin)
have proven ineffective in most monocots, they have been
used extensively in dicot transformation systems (Jones, 2009).
Transformation selection of many monocots has been achieved
using herbicide-resistant markers (e.g. phosphinothricin) and
through the development of newer antibiotic selection marker
systems (e.g. hygromycin).

‘While plants consist of various tissues and organs, not all are
commonly used as explants due to difficulties in viable exci-
sion. Despite many tissues displaying totipotency or pluripo-
tency, they are often inhibited from expressing this capability
by neighbouring tissues. Isolation and in vitro culture of these
tissues could free them from being recalcitrant (Bonga, 2017).
For example, in Beta vulgaris, the guard cells exhibit high toti-
potency and have the remarkable ability to undergo SE when
isolated from leaves (Hall et al., 1996). The choice of explants
in medicinal plants becomes limited when the donor popula-
tion is small, as in the case of endangered species, necessitating
the use of mature tissues. Furthermore, factors such as a lack
of dedifferentiation capacity (the process of specialized cells
reverting to a more primitive state), limited cell division po-
tential, or the presence of specialized metabolites can have an
antagonistic effect on regeneration (Benson, 2000). In many
cases, regeneration can be enabled through selection of organs
that contain undifferentiated cells, such as young tissues of em-
bryonic and meristematic origins.

Mature and immature zygotic embryo explants offer a
higher proportion of undifferentiated cells and fewer special-
ized structures, and accumulate fewer inhibitory compounds.
These traits are advantageous for initiating embryonic callus
cultures or producing viable shoots through SE in many dicots
and monocots (Benson, 2000). Zygotic embryos contain pre-
embryogenic determined cells with embryogenic competence
(Bhojwani and Dantu, 2013). In many monocots, immature
embryos have proven to be efficiently transformable, with their
size and growth conditions influencing transformation effi-
ciency, but challenges persist in the consistent production of
high-quality immature embryos year-round (Lee and Wang,
2023). Alternatively, mature seeds offer a cost-effective, easy to
store, and reliable source of explants such as cotyledons, hypo-
cotyls, epicotyls, and cotyledonary nodes, allowing for con-
tinuous supply under controlled conditions, and are used for
callus induction and shoot proliferation. Cotyledonary node
regions have axillary meristems at the junction between cot-
yledon and hypocotyl, which can proliferate and regenerate
by the formation of multiple adventitious shoots on a cul-
ture medium containing cytokinin. A cotyledonary node as
an explant offers several advantages such as simple accessibility,
speedy response, and immense potential to favour shoot orga-
nogenesis and SE. Several examples showing high regeneration
with the use of immature and seed-derived explants in var-
ious medicinal plants are listed in Table 1. Recently, half-seeds
have become the trend for explants as they possess advantages
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of having a greater nutrition supply for shoot regeneration
compared with a cotyledonary node alone. They can also be
prepared within a shorter time frame, which reduces the total
regeneration period and labour costs (Xu ef al., 2022).

Ma et al. (2020)

Reference

Another TC approach which takes advantage of the embry-
ogenic process is co-culturing in which two different plant
species are grown together in close proximity for promoting
SE. In this system, one plant species which exhibits a higher
frequency of SE releases specific molecules into the culture
medium that stimulate and induce the formation of SEs in
the co-cultivated species with a naturally lower rate of SE.
Active components identified in embryogenic culture me-
dium include arabinogalactan proteins (AGPs), endochitin-
ases, and lipochitooligosaccharides (von Arnold et al., 2002).
The beneficial effect of this strategy has been studied in the
regeneration of wheat (Triticum aestivum) (Bakos et al., 2003)
and to overcome recalcitrance in grapevine (Vitus sp.) (Ben
Amar et al., 2007) and Cichorium species (Couillerot et al.,
2012).

The shoot apical meristem (SAM), located at the cotyledon—
embryo axis junction, possesses axillary meristems capable of
developing into shoots without the need for dedifferentiation
or redifferentiation (Sticklen and Oraby, 2005). It offers several
advantages, including ease of in vitro culture, rapid regenera-
tion, clonal multiplication, competence for genetic transfor-
mation, and the ability to be sustained in vitro for extended
periods without cryopreservation. The strategy underlying the
SAM-based transformation system involves multiplying trans-
genic SAM or germline cells in vitro and reprogramming them
to differentiate (Baskaran and Dasgupta, 2012). The SAM-
based biolistics or Agrobacterium-mediated transtormation sys-
tems have achieved genotype-independent transformation in
medicinal plants such as Catharanthus roseus (Madagascar per-
iwinkle) (Bahari et al., 2019) and ‘Tanacetum cinerariifolium (py-
rethrum) (Li et al., 2022).

The use of male and female gametophytes has also been
explored due to their ability to produce haploid and doubled
haploid plants through gametic embryogenesis, allowing devel-
opment of homozygous lines from heterozygous parents in a
single step. However, not all species are amenable to this type of
in vitro morphogenesis, and many medicinal species remain re-
calcitrant. Moreover, determining the optimum developmental
stages of microspore explants is essential for maximum in vitro
response (Benson, 2000). Also, the basis of microspore embry-
ogenesis is the switching of the developmental process from
normal gametophytic to sporophytic embryogenesis which
requires pre-treatments such as cold or heat shock, carbohy-
drate, and nitrogen starvation, making the regeneration pro-
cess more tedious (Sharma et al., 2018). Notwithstanding these
challenges, isolated microspore cultures emerge as a promising
technique to produce double haploids, surpassing anther and
ovule cultures in terms of efficiency. Routinely used in veg-
etable crops, this method has recently been adapted to me-
dicinal plants with encouraging outcomes, notably the recent
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in picloram and green plant regeneration
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successful induction of microspore-derived embryonic struc-
tures in Artemisia annua (Purnamaningsih et al., 2024).

Plant growth regulators and other chemical
factors

Tissue culture medium provides the essential growth compo-
nents to the explant, but it can also be considered as an interface
for communication with the plant. The medium components
can dictate certain growth behaviour, and the molecules in-
timately involved in reshaping plant development are PGRs.
Phytohormones are ubiquitously used as PGRs in TC prac-
tices, cytokinins and auxins in particular having an impact on
de novo shoot organogenesis (Raspor et al., 2021). Cytokinins,
auxins, and other phytohormones have a diversity of molecular
structures that either exist in nature or are of synthetic origin.
For example, >20 different cytokinins and auxins are currently
commercially available. Endogenous phytohormones control
most aspects of plant growth and development, and modulate
responses to abiotic/biotic stresses and other environmental
cues. During the establishment and maintenance of meriste-
matic cells of the embryo and SAM, phytohormones fall under
the regulation of MG products, which sometime behave in in-
tricate positive feedback loops, as exemplified by WUSCHEL
(WUS) and cytokinin (Leibfried et al., 2005).

PGRs are important medium components that have a large
impact on developmental and metabolic processes even at low
concentrations. Optimizing PGR regimes, including applica-
tion of novel, potent PGRs and removing the inhibitory inter-
active effects of endogenous and exogenous hormones, is often
a first approach to overcome in vitro regeneration recalcitrance
in many plant species. In this section, we will cover the roles of
media components permitting regeneration capability to re-
calcitrant explants, but the reader needs to keep in mind that
the enabling functions of cytokinin and other molecules are
achieved through the involvement of a wide range of molec-
ular players with morphogenic activities. Application of cyto-
kinin is often viewed as the enabling factor in TC regeneration,
but this must be viewed in a context of a cascade of events
that occur in meristem cells or tissue of embryonic origins
that requires the recruitment of morphogenic players that were
silenced prior to the application of PGRs.

Exogenous phytohormones

Under in vitro cultivation, the fate of an explant hinges on the
fundamental golden hormonal regeneration rule:a high ratio of
cytokinin to auxin in the medium stimulates the formation of
shoots, while a reversed ratio encourages the development
of roots. Usually, under the influence of cytokinin, explants can
produce elevated numbers of shooting units. Cytokinin can
also trigger direct and indirect SE (Fig. 2) and enable regener-
ability of cells. Use of cytokinins for micropropagation and

Overcoming recalcitrance in medicinal plants | 61

regeneration is so prevalent that it is often considered the first
approach when studying micropropagation or regeneration in
anew species (Smeringai ef al., 2023). Use of cytokinin in both
micropropagation and calli regeneration protocols has pro-
vided excellent results in amenable species. With a wide range
of natural and synthetic cytokinins, finding a desirable regen-
eration response in recalcitrant species is often a trial-and-error
approach where a cytokinin’s molecular conformation, con-
centration, type of delivery to the explant, and interplay with
other phytohormones form a complex matrix of conditions
to test. In the last decade, thidiazuron (TDZ), a synthetic phy-
tohormone (see below in the section on synthetic PGRs), has
proven to be tremendously effective in a wide range of me-
dicinal, woody, and other species. It is successfully used to pro-
mote de novo regeneration and SE initiation, and to stimulate
shoot organogenesis and callus induction and proliferation. In
the medicinal species Salvia bulleyana, direct organogenesis was
observed from leat explants while using TDZ (Grzegorczyk-
Karolak et al., 2021) and in embryo explants of cannabis
(Galén—AVila et al., 2020; Zhang et al., 2021). Moreover, recent
advancements in our understanding of auxin and cytokinin
crosstalk have shed light on the complex world of regeneration
phenomena, including SE, for the future of TC and transfor-
mation (Asghar ef al., 2023). As for auxin, a wide variety of
species require exogenous application of auxin in the medium
as a pre-requisite to trigger a totipotency reversal in somatic
cells. Calli produced under auxin acquire a competency for or-
ganogenesis that increases cell susceptibility to SE and shooting
upon subsequent cytokinin exposure.

Endogenous phytohormones

Endogenous phytohormones are the native molecules already
present in the explant when moved to in vitro growing condi-
tions. Endogenous levels of phytohormones can be sufficient
on their own to trigger a regeneration response from the right
explant type, as seen in the previous section. In other instances,
endogenous phytohormones are a hindrance to TC. As such,
establishing cultures from vegetative explants such as leaves,
petioles, and nodal segments acquired from mature medicinal
trees can be difficult as they contain elevated levels of endog-
enous phytohormones, carbon sources, and other substances
that can interfere with the effects of additives present in the
growth medium, interfering with their regeneration potential
and leading to potential developmental issues. Application of
external phytohormones is often ineffective in mitigating the
impact of endogenous levels of auxins. For instance, in plants
with high endogenous auxin levels, including some medicinal
species, the addition of auxin transport inhibitors, auxin antago-
nists, or auxin biosynthesis inhibitors positively affects shooting
induction, as is the case in Carapichea ipecacuanha (Koike et al.,
2020), and has been used to achieve successful regeneration
in otherwise recalcitrant plants such as cannabis (Smykalova
et al.,2019). Applications of auxin transport inhibitors such as
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1-naphthylphthalamic acid (NPA), 2,3,5-triiodobenzoic acid
(TIBA), 2-(1-pyrenoyl) benzoic acid (PBA), and the flavo-
noid quercetin have seen increased regeneration rates in model
organisms, fruit-bearing trees, and cereals (Yu ef al., 2012; Hu
et al., 2017; Ohbayashi et al., 2022). In medicinal species, the
presence of TIBA in the medium has improved organogenesis
from calli in mulberry (Bhau and Wakhlu, 2001), while NPA
and TIBA have also shown a positive effect in cannabis (Dreger
and Szalata, 2022), and quercetin too has shown increased
regenerability in Oldenlandia wmbellate (Saranya Krishnan and
Siril, 2017). To flush out endogenous phytohormones or to
load explants with PGRs, pre-treatment of explants in a liquid
medium enriched with molecules such as cytokinins can stim-
ulate or promote the regeneration process. For instance, shoot
regeneration was successfully achieved in the woody medicinal
plants G. biloba (Isah, 2020) and Pterocarpus marsupium (Ahmad
et al.,2018) through pre-treatment with TDZ.

Similarly, endogenous levels of cytokinins play an impor-
tant role in regeneration efficiency, and the technological
approaches to measure endogenous concentration can subse-
quently be used to optimize the concentration of exogenous
cytokinin to be applied to a culture, narrowing the window of
the matrix of media conditions to be tested (Smykalova et al.,
2019). Novel rapid methods for quantifying endogenous phy-
tohormones offer a tool for more effective TC protocols to
be developed for cultivating recalcitrant species (Erland et al.,
2017). A recent study in the woody medicinal plant Cyclocarya
paliurus has highlighted the importance of seasonal variability
of endogenous cytokinins when explants are isolated from per-
ennial plant species (Cheng et al., 2023). The study demon-
strated that similar adventitious shooting rates can be obtained
across explants from different seasonal origins if the concen-
tration of exogenously supplied 6-benzylademine, a cytokinin,
is adjusted to match the endogenous level of phytohormone
according to season (Cheng et al., 2023).

Novel synthetic plant growth regulators

Recalcitrance can also be overcome by substituting natural
or commonly used PGRs with powerful synthetic counter-
parts that share similar physiological properties (Benson, 2000).
Synthetic PGRs offer several advantages, including light in-
sensitivity and resistance to degradation during autoclaving,
exhibit potency levels 10-1000 times higher than natural
hormones, and therefore are often required in lower concen-
trations for activity (Phillips and Garda, 2019). Some auxin-
based herbicides such as dicamba, 2,4-dichlorophenoxyacetic
acid, and picloram are used to induce SE in various species
(Miroshnichenko et al., 2017). TDZ has found extensive ap-
plication in TC as it demonstrates remarkable potency in
propagating recalcitrant woody, legume, and medicinal species
in vitro, including cannabis (Ali et al., 2022). TDZ’s efficacy is
well established in TC, facilitating highly efficient regenera-
tion across genotypes and explant types; hence it broadens the

scope of transformation protocols to elite genotypes. However,
it is worth noting that excessive TDZ concentration and pro-
longed exposure can lead to issues such as the formation of
fasciated and compact shoots, hyperhydricity (shoot vitrifica-
tion or glassiness), and downstream rooting challenges (Dewir
et al., 2018).

Many plant species exhibit varied responses to the different
cytokinins, and it becomes necessary to optimize TC protocols
for individual species. Topolins in general, and meta-topolin in
particular, were identified as a result of the continuous search for
superior cytokinins. Meta-topolin and its derivatives are natu-
rally occurring aromatic cytokinins that have shown promising
effects in micropropagation of several medicinal plant species
and promote induction of multiple shoots, improving physio-
logical and biochemical traits and successful rooting (Ahmad
and Anis, 2019). Additionally, several compounds such as brassi-
nosteroids, jasmonates, salicylic acid, phloroglucinol, pluronic
F-58, phytosulfokine-alpha, lignosulfonates, fipexide, abscisic
acid, and trichostatin exhibit growth-modulating effects and
have been used as PGRs in several species (Table 1), offering
novel avenues for addressing recalcitrance issues in TC.

Ethylene inhibition and the role of silver compounds

Ethylene, a key regulator of physiological and developmental
processes, exhibits contradictory impacts on regeneration,
varying with species, genotypes, and explant type. While the
concentration of auxins and cytokinins in culture media is
precisely controlled, ethylene, being a gas, is typically released
during in vitro culture, accumulating in closed vessels. Thus,
understanding its role is critical for enhancing regenera-
tion and addressing recalcitrance in certain species or tissues
(Neves et al., 2021). Ethylene can adversely affect morpho-
genic responses, contributing to hyperhydricity. Strategies to
regulate ethylene, using inhibitors such as salicylic acid, CoCl,,
and AgN O3, show promise for improving T'C protocols (Bashir
et al., 2022). Interestingly, in some cases, ethylene has a positive
influence, potentially reversing recalcitrance in genotypes with
limited regeneration capacity (Neves ef al., 2023).

Silver ions, especially in the form of AgNOj and silver thi-
osulfate, are favoured due to their physical, chemical, and bi-
ological availability, water solubility, stability, non-toxicity, and
specificity to inhibit ethylene action, disrupting its signalling
pathway and impacting growth by enhancing polyamine bi-
osynthesis (Pal Bais and Ravishankar, 2002; Kumar et al.,
2009; Prem Kumar et al., 2016). Additionally, AgNOj; reduces
aminocyclopropane-1-carboxylic acid, a precursor to ethylene,
decreasing ethylene production and browning of explants
(Gong et al., 2005). As a result of these properties, AgNO;,
silver thiosulfate, and other Ag compounds are gaining promi-
nence in refining TC protocols for addressing recalcitrance is-
sues in various plant species, including medicinal plants (Table
1).In a later section, we describe the use of silver nanoparticles
(AgNQO3) to reduce the impact of ethylene in TC.



Other media components

Apart from phytohormones, other factors within the TC me-
dium such as macro- and micronutrients, vitamins, carbon
source, solidifying agents, and other additives all play a role
in the in vitro growth of explants. Medium permutations af-
fecting the type and concentration of these constituents have
been shown to relieve TC recalcitrance (Fig. 1, Stage S1-S3)
in multiple species (Long et al., 2022) (Table 1). For example, a
doubling of the regeneration rate of indirect somatic embryo-
genesis was achieved in the recalcitrant rice elite cultivar IR 64
with optimization of an established TC protocol by manipulat-
ing the type and concentration of carbon source and gelling
agent, and by supplementation of the medium with additives
such as free amino acids (Sundararajan et al., 2020). Similar
increases in regeneration frequency have been observed in me-
dicinal species such as the endangered TC-recalcitrant plant
Oplopanax elatus, where regeneration frequencies could be
increased by similarly modulating both carbon source and con-
centration and gelling agent in the cultivation medium (Moon
et al., 2013; Sahoo et al., 2023). Use of maltose or a combi-
nation of maltose and sucrose has proven more effective in
increasing regeneration in the medicinal plants Cymbopogon
schoenanthus (Abdelsalam et al., 2018) and Kelussia odoratissima
(Ebrahimi et al., 2018), respectively. Through the sugar sensing
pathway, use of sucrose in the medium can have an antagonistic
effect on cytokinin homeostasis (Cosié et al.,2021) and other
phytohormones (Raspor et al., 2021). Other media additives
such as activated charcoal have provided some beneficial effects
to ameliorate TC recalcitrance by sequestering and thereby
rendering inert chemical inhibitors present in the media or
secreted by the explant during their early stages of culture.
However, the prolonged presence of activated charcoal in the
medium can pose a challenge, as it has the potential to also ab-
sorb growth-promoting substances, ultimately diminishing the
growth response or regeneration processes (Pinar et al., 2020).

Morphogenic genes

MGs are transcription factors that control cell fate and, conse-
quently, govern plant development. Harnessing MGs can sig-
nificantly improve and accelerate explant regeneration through
their involvement in hormone biosynthesis, perception, and
developmental signal transduction pathways, and hence trans-
formation efficiency. Over the past two decades, MGs have
been increasingly employed and have unlocked transformabil-
ity in many recalcitrant crops, as outlined in two recent reviews
(Maren et al.,2022; Lee and Wang, 2023).

Overexpression of MGs to stimulate an embryogenic or
meristematic response to induce regeneration is classified
into two categories: (i) genes that enhance a pre-existing em-
bryogenic response under in vitro conditions; and (i) genes
involved in the direct formation of embryo or meristem-
like structures without the need for induction conditions
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(Gordon-Kamm et al., 2019). An example of the first type
of inducer is SOMATIC EMBRYOGENESIS RECEPTOR
LIKE KINASE 1 (SERK1) which has been shown to be an
enabler for cells to develop into somatic embryos, a change
achieved through the modulation of auxin biosynthesis, trans-
port, and perception (Yan et al., 2023). Previous studies have
demonstrated its role in SE in both monocots and dicots
(Sivanesan et al., 2022). Constitutive expression of SERK1 has
enhanced SE initiation in Coffea canephora (Pérez-Pascual et al.,
2018), Oryza sativa (Hu et al., 2005), and Arabidopsis thaliana
(Hecht et al.,2001).

Major regulators of SAM formation and maintenance
such as the homeobox genes WUSCHEL (IWUS) and
SHOOTMERISTEMLESS (STM) have also been used as
MGs to improve embryonic responses (Lenhard et al., 2002).
Expression of AtWUS in Medicago truncatula leaf explants in-
duced callogenesis and the production of highly embryogenic
calli, generating plantlets even in the absence of growth regu-
lators in the medium (Kadri ef al., 2021). Also, overexpression
of WUS promoted SE and lateral branching in birch (Betula
platyphylla) through an increased expression of SE-related
genes such as BpSTM (Lou et al.,2022), and thus has proven to
be a promising tool in developing plant growth regulator-free
regeneration systems.

MGs in the second category have been extensively studied
in various crops, as reviewed in detail elsewhere (Gordon-
Kamm et al., 2019). One such gene is BABYBOOM (BBM)
whose product belongs to the AP2/ERF superfamily of tran-
scription factors (Boutilier ef al., 2002). BBM plays a multifac-
eted role in processes such as cell proliferation, plant growth,
and development, and notably it induces embryogenesis in dif-
ferentiated cells. Its initial success in stimulating SE via ectopic
expression without addition of external PGRs was observed in
Brassica napus (Boutilier et al., 2002). Subsequently, BBM and
BBM-like genes have been utilized in numerous plant species
to improve transformation efficiency and regeneration (Jha and
Kumar, 2018). Recently, there has been a shift in the use of
BBM for enhancing transgenic plant regeneration beyond her-
baceous plants and crops to include recalcitrant fruit trees. For
example, the overexpression of MdBBMT1 in apple has resulted
in a remarkable enhancement of apple transformation effi-
ciency (Chen et al., 2022; Xiao et al., 2023).

Beyond the promoter controlling gene expression, several
factors influence the outcome of MG expression, including the
target cell or tissue type(s), the source of the MG (i.e. whether
it is derived from the native or another species), hormone de-
pendency, and co-expression with other MGs. For instance,
the gene LEAFY COTYLEDONT1 (LEC1) plays a role in SE,
and its overexpression can trigger embryo-like structures in
vegetative tissues (Zhu et al., 2014). However, in conifers such
as Picea abies (Norway spruce), overexpressing the LEC1-type
gene PaHAP3A which is active during embryo development
did not induce embryonic features in vegetative tissues. Instead,
when activated during zygotic maturation, ectopic somatic
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embryos formed on the surface of zygotic embryos. This high-
lights that specific cells or tissue types are more receptive to
MGs and that the spatiotemporal control of MG expression is
an important consideration using this approach (Uddenberg
et al., 2016). Additionally, the expression of endogenous genes
may produce different developmental responses compared with
homologues of other species. For example, ectopic AtBBM or
BnBBM expression in Nicotiana tabacum produced develop-
mental responses that differed from those observed using the
endogenous tobacco BBM gene (Srinivasan ef al., 2007).

Several MGs that play an important role in plant regener-
ation are hormone dependent and are also involved in phy-
tohormone signal transduction. For example, CUP-SHAPED
COTYLEDON genes (CUC1 and CUC2) contribute to
SAM formation during embryogenesis and shoot regenera-
tion (Aida ef al., 1997). Overexpressing these genes in trans-
genic calli from A. thaliana hypocotyls promoted adventitious
shoots (Daimon et al., 2003). However, when cultured on
hormone-free medium, the same transgenic calli did not pro-
duce shoots, highlighting the need for an appropriate hor-
mone context for CUCT and CUC2 functionality. On the
other hand, ENHANCER OF SHOOT REGENERATION
genes (ERS1 and ERS2), involved in the cytokinin response
pathway, and MONOPTEROS, an auxin-response gene, pro-
moted a hormone-independent response in shoot meristem
formation when overexpressed (Banno et al., 2001; lkeda
et al., 2006; Ckurshumova et al., 2014). Additionally, the lev-
els of PGRs can influence the phenotypic response of genes
involved in morphogenesis. For instance, transgenic A. thali-
ana explants overexpressing LEC2 produced somatic embryos
and calli under low and high auxin concentrations, respec-
tively (Wojcikowska et al., 2013). Similarly, when WUS was
expressed in the root in the absence of phytohormones, shoots
and leaves were observed; somatic embryos arose in the pres-
ence of auxin (Gallois et al., 2004). In the same study, floral
structures were observed when WUS was induced along with
LEAFY, a master regulator of floral development, providing
evidence that unique phenotypes can be observed when MGs
are co-expressed.

In many crops, achieving effective transformation often
requires the use of selectable marker genes (Fig. 1) (Zuo
et al., 2002). To address this issue, researchers have explored
genes, including MGs, that enable the identification of trans-
genic events without the need for a selectable marker. The
maize homeobox gene KNOTTED1 (KNT1) is essential
for meristem initiation and maintenance, and is normally
expressed in shoot meristems. When KN1 was overexpressed
in N. tabacum under non-selective conditions (without anti-
biotics) on a hormone-free medium, a 3-fold increase in
transformation efficiency was observed relative to the kan-
amycin selection treatment, demonstrating its usefulness as
a positive selection system for plant transformation (Luo
et al., 2000). Similarly, co-expression of maize transcrip-
tion factor genes BBM and WUS?2 enabled regeneration of

stable transgenics in the recalcitrant maize inbred line B73
and sorghum (Sorghum bicolor) P898012 (Mookkan et al.,
2017). GROWTH-REGULATING FACTOR 4 (GRF4)
and its cofactor GRF-INTERACTING FACTOR 1 (GIF1)
form a transcription factor complex required for pluripotent
cell formation in male and female reproductive structures
(Lee et al., 2018). Expression of GRF4—GIF1 substantially
increased the efficiency and speed of regeneration in wheat,
triticale, and rice, and induced efficient wheat regeneration
in the absence of exogenous cytokinins, facilitating selec-
tion of transgenic plants, thereby eliminating the need for
antibiotic-based selectable markers (Debernardi et al., 2020).

While MGs have proven valuable in transforming and
regenerating recalcitrant plant species, they come with a po-
tential drawback—the risk of deleterious pleiotropic effects.
When these MGs are expressed strongly and constitutively,
they can lead to unwanted changes in plant morphology,
reduced fitness, altered metabolism, and even infertility in
regenerated plants (Gordon-Kamm et al., 2019). To maxi-
mize their benefits while minimizing these drawbacks, an
additional step is needed to control MG expression after
the transformation or regeneration process has occurred
and their usefulness has expired. Several strategies to con-
trol the timing and level of expression of MGs have been
developed, including their inducible expression, excision
from the nuclear genome post-transformation, use of tissue-
specific plant promoters, using GRF-GIF chimeras, innova-
tive Agrobacterium-mediated delivery methods, and T-DNA
border read-through. Some successful examples of the ap-
plication of these approaches are listed in Table 2, with can-
nabis among the first medicinal plant species in which use
of GRF-GIF chimeras was attempted (Zhang et al., 2021).

Over the past two decades, significant advancements in ge-
netic transformation have been witnessed in major crop spe-
cies such as rice, maize, wheat, sorghum, soybean, and cotton
(Nalapalli et al., 2021). Comprehensive improvements in var-
ious aspects of the TC process have led to a high success rate
in obtaining transgenic plants, with MGs playing a pivotal role.
This transformation success has been particularly evident in
monocot crops, where both Agrobacterium-mediated and par-
ticle bombardment gene delivery methods have been refined
to achieve remarkable efficiency (Shrawat and Lorz, 2006).
While recent advances in MG research, including genes such
as BBM, WUS, GRF, and GRF-GIF chimeras, have effec-
tively addressed transformation and regeneration challenges in
many recalcitrant crop species, their application in the realm
of medicinal plants has remained limited. This discrepancy
presents a dual challenge and opportunity within the fields of
plant biotechnology and medicinal plant research. The limited
use of MGs in improving medicinal plants can be attributed
to several factors such as complex biology and the diverse
nature of medicinal plant species, lack of research funding
and commercial investment, as well as regulatory and ethical
considerations.
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transformation or biolistic transformation.

Novel techniques to improve
transformation efficiency and overcome
recalcitrance

Nanoparticles

In recent years, the field of TC has undergone a remark-
able transformation with the use of nanoparticles (NPs).
Nanoparticles are ultra-small structures measuring <100 nm
in size that can be used to deliver molecular cargo through
biolistic or transfection methods. They can also act as active
agents themselves in TC medium. TC is often challenged by
microbial contamination, and NPs provide a promising alter-
native to antibiotics for addressing this concern (Alfarraj ef al.,
2023). Endophytes found in many medicinal plants can also
become problematic in in vitro cultures even though they may
not be pathogenic as they can negatively impact plant health
and vigour (Wu et al., 2021). While research on the use of
NPs against endophytic bacteria is in its early stages, efforts are
being made to tackle this issue (Rakhimol et al., 2023). NPs
adhere to and penetrate the bacterial cell membrane, bind to

the sulthydryl group of enzymes involved in metabolic activi-
ties, and inactivate transport chain mechanisms, thus inhibiting
their proliferation in the medium (Ahlawat et al., 2022) (Fig.
3). In addition, NPs generate reactive oxygen species which
interact with the bases of microbial DNA and arrest their rep-
lication (Kim et al., 2011). These activities not only serve as
a microbial deterrent but are also hypothesized to stimulate
secondary metabolite production (Sena et al., 2023). NPs have
been used as effective elicitors for the biosynthesis of medicinal
compounds by causing changes in expression of key genes in
diverse metabolite pathways (Ayoobi et al., 2024).

The favourable impact of NPs on overcoming barriers re-
lated to callus induction, SE, and organogenesis can be attrib-
uted to their ability to regulate key PGRs such as auxin,
cytokinin, and gibberellins (Fig. 3). This regulation involves
enhancing protein and enzyme activity, as well as improving
photosynthesis by enhancing light absorption (Mandeh et al.,
2012; Salih et al., 2021). Also, they reduce the rate of tran-
spiration, maintaining cellular osmotic pressure, and facilitate
water and nutrient uptake (Arruda et al.,2023). Recent studies
have also underscored the effectiveness of NP combinations,
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demonstrating that blends of different NPs are more potent
than single types in promoting callus biomass production and
enhancing regeneration, especially when using mature em-
bryo explants (Arruda ef al., 2023). Silver NPs bind to ethylene
receptors involved in signalling, thus hindering ethylene ac-
tion, and reduce hyperhydricity. Likewise, the promotion by
silver NPs of regeneration from callus cultures derived from
diverse plants is linked to their capacity to increase antioxi-
dant reserves (Phong et al., 2023). This dual action potentially
mitigates oxidative stress and supports the regeneration process.
Several successtul although limited medicinal plant examples
to date are shown in Table 3.

Genetic engineering in plants is frequently limited by sev-
eral factors such as the presence of a multilayered and rigid
cell wall, cell damage, random DNA integration within the
genome (excluding targeted gene edits), and negative effects of
high antibiotic concentrations when traditional gene delivery
methods are used, reducing transformation efficiency, regen-
eration, and compromising the genetic stability of resulting
plants (Sarmast and Salehi, 2016; Dong and Ronald, 2021).To
address these issues, researchers have turned to NP-mediated
gene delivery methods (Fig. 3). These methods, free from the
external forces utilized in biolistics or electroporation, deliver
biomolecules to intact plant cells and offer advantages such as
the ability to traverse biological membranes and target spe-
cific tissues or cells, protect cargoes (DNA, RINA, proteins,
and ribonucleoproteins) from degradation and release them in
controlled quantities and intervals (Cunningham et al., 2018;
Squire et al., 2023). Delivery of cargo inside liposome INPs,
for example, is an efficient method in species with protoplast-
amenable regeneration protocols. In cannabis, passive diffusion
of silicon polymer-coated gold NPs to which two Agrobacterium
vectors were fused was successfully used to transiently trans-
form intact leaves with two transcription factors (Ahmed et al.,
2021). NPs have therefore emerged as a promising and bio-
compatible tool for manipulating a plant’s genome or for the
transient expression of genes of interest.

NP-MG combinations have the potential to make signifi-
cant advances in the field of plant genetic engineering (Squire
et al.,2023). Addressing the pleiotropic effects of MGs, DNA-
free direct delivery of transcription factors has emerged as a
promising solution. For instance, AtWUS was successfully
delivered into tobacco using cell-penetrating peptides through
amethod known as delivered complementation in planta (Wang
et al., 2023). These short peptides, forming cell-penetrating
peptide—cargo complexes, enable cytosolic delivery of cargo
molecules through the plasma membrane by covalent conjuga-
tion, overcoming the need for introducing foreign DNA (Guo
et al., 2019). Additionally, nanomaterial-based small-molecule
approaches are being explored to mimic endogenous transcrip-
tion factor proteins, replicating their multidomain structure
and gene-regulating functions (Patel et al.,2014). Furthermore,
NPs can deliver CRISPR -associated protein 9 (Cas9)/gRINA
ribonucleoproteins into regenerative tissues with the aim of

generating targeted DNA modifications in transgene-free
plants (Demirer et al., 2021). These approaches hold enormous
promise for application in plants. Such innovative techniques
provide greater precision and control over gene expression, ul-
timately advancing our ability to manipulate medicinal plants
for various purposes.

Overexpression of histone genes

Many economically important crops remain highly recalcitrant
to Agrobacterium infection. The success of plant transforma-
tion depends on complex interactions between the plant and
Agrobacterium, involving numerous genes from both organisms
(Rahman et al., 2023). Several strategies have been attempted
to enhance transformation efficiency, such as using highly vir-
ulent Agrobacterium strains or super binary vectors with extra
Vir genes, and optimizing plant culture conditions (De Saeger
et al.,2021). Despite these efforts, there are limits to improving
transformation in recalcitrant crops using these methods. An
alternative approach to boosting plant transformation involves
moditying the plant itself. This can be achieved by identifying
plant genes that play roles in the transformation process. Some
candidate plant genes have been identified through genetic
screening (Mysore ef al., 2000).

One of the identified genes, the A. thaliana histone H2A gene
HTA1 (RATS), is involved in the integration of T-DNA into
the plant genome. Overexpression of AtHTA 1 has been shown
to increase Agrobacterium transformation efficiency of A. thali-
ana plants (Mysore et al., 2000). Similarly, expression of other
histone genes such as HTR and HFO, whether in their native
host or in alternative plant species, has also led to increased
transformation susceptibility, suggesting that exploring the ma-
nipulation of plant genes involved in the process offers a prom-
ising avenue for expanding the range of recalcitrant crops that
can be effectively transformed using Agrobacterium (Tenea et al.,

2009).

Other tissue culture-independent transformation
methods

The reproducibility of transformation protocols involving TC
is a complex puzzle, particularly in recalcitrant plant species
(Gharghi et al., 2023). In planta transformation offers a simpler,
faster, and TC-independent alternative which involves direct
uptake of foreign DNA into plant tissues through techniques
such as microinjection, electroporation, or by protoplasts
without the use of any vector (Su et al.,2023).Various improve-
ments in Agrobacterinm-mediated transformation efficiency
have been achieved by modifying factors such as pre-culture
conditions, chemoattractant concentration (acetosyringone
and chloroxynil), and Agrobacterium strains (Karthik ef al.,2018).
Apart from biolistics, other common in planta methods include
injecting Agrobacterium into the SAM, floral dip or spray, pollen
uptake, and embryo/seed imbibition (Kaur and Devi, 2019).



Another promising solution comes in the form of a rapid, re-
liable imbibed seed-piercing method, which has the poten-
tial to be applied to fibre-producing crops (Majumder ef al.,
2020). Pollen magnetofection is being explored to overcome
the plant cell wall barrier in some crops which makes them
resistant to DNA delivery and recalcitrant to transformation.
It involves coupling DNA with magnetic NPs in the pres-
ence of a magnetic field (Dobson, 2006). This method takes
advantage of the unique characteristics of pollen, which has
surface apertures (5-10 pm diameter) with either reduced wall
thickness or devoid of walls, facilitating DNA uptake (Ressayre
et al., 1998).This technique has been successfully demonstrated
to produce transgenic seeds in cotton and other crops such
as pepper and pumpkin (Zhao et al., 2017), recalcitrant maize
inbred lines (Wang et al., 2022), and okra (Farooq et al., 2022).
Despite its advantages, pollen magnetofection has some limita-
tions, not being suitable for certain plant species with incom-
patible pollen apertures, and it is not effective for introducing
genetic material into maternally inherited organelles such as
chloroplasts and mitochondria (Lv et al., 2020). Another re-
cent TC-free transformation method has shown great poten-
tial for transforming herbaceous, tuberous, and woody species
by taking advantage of the shooting regenerability of their
roots, tubers, or stem sections, respectively (Cao et al., 2023).
In the cut—dip—budding gene delivery system, the method uti-
lizes a scion donor (cut) that is challenged with Agrobacterium
thizogenes (dip) to enable the generation of transgenic shoots
(budding). It has been successtully applied to various medic-
inal plants with root-suckering capabilities, in species such
as Clerodendrum spp (Lu et al., 2024), ‘laraxacum mongolicum
(Pugongying), and Rehmannia glutinosa (Dihuang) (Cao et al.,
2024).

Non-transformation methods

Due to ethical, regulatory, and other concerns regarding the
production of transgenic plants, significant effort has been
invested in developing methods that do not rely on DNA
integration to overcome transformation or regeneration re-
calcitrance. For example, new Agrobacterium strains are being
developed that can transiently express but do not integrate
T-DNA into the host genome. Additionally, advancements in
CRISPR/Cas technology have improved the robustness of
this process by allowing genetic changes to be accomplished
without any integration of foreign DNA through transient ex-
pression of a site-specific nuclease using viral vectors in the
form of either mRINA, which is unstable and quickly degrades,
or protein, which is not transmitted from parent to offspring
(Sedeek et al., 2019). Gene edits can also be implemented
through the transtection of gRINA-loaded Cas9 ribonucleo-
proteins by polyethylene glycol (PEG) in species where regen-
eration from protoplasts is possible, or by particle bombardment
in regenerative explants. Multiple examples in non-medicinal
plant species are covered in a recent review (Gu et al., 2021).
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MGs can essentially be co-delivered in the same way to pro-
duce gene edits in regeneration-recalcitrant medicinal plants.

Future advances using artificial intelligence

The numerous environmental and genetic factors on which
a successful TC process depends are complex, non-linear, and
non-deterministic due to the highly interactive nature of these
variables. Their unravelling can be a time-consuming and
costly endeavour. To assist with this challenge, artificial intel-
ligence models and optimization algorithms are now being
applied to enhance different stages of TC (Hesami and Jones,
2020). For instance, a combination of a generalized regression
neural network (GRNN) and a genetic algorithm (GA) was
used to model and predict in vitro shoot regeneration outcomes
of wheat. Metadata collected from previous in vitro shoot re-
generation studies on the basis of 10 factors, including geno-
types, explants, PGR type, and concentration, were considered
to develop and optimize genotype-independent regeneration
protocols (Hesami et al., 2020). Similarly, other input variables
such as digitized images have been used to capture visual data,
for example to classify non-embryonic callus and somatic
embryos during SE and to recognize different phases of em-
bryo development (Hesami and Jones, 2020). These advances
in data-driven modelling demonstrate the potential of artifi-
cial intelligence for overcoming genotype-related challenges in
medicinal plants and promoting more efficient and widespread
crop trait improvement through genetic engineering and TC
techniques.

Conclusion

Although MGs have an undisputed impact on explant regener-
ation, in some instances they require a specific cellular context
to enable their morphogenic functions. We have highlighted
studies where the right balance of exogenous phytohormones
(Daimon et al., 2003) or explant type (Uddenberg et al., 2016)
was needed to trigger a regeneration response. Overcoming
regeneration in recalcitrant species foremostly requires an un-
derstanding of how explant, phytohormones, and MGs, both
endogenous and exogenously supplied, interact and enable
each other. The use of MGs and NPs to enhance transforma-
tion and regeneration in medicinal plants represents a prom-
ising field of research, with the potential to radically transform
cultivation practices and up-scale the production of valuable
therapeutic compounds. While various MGs associated with
embryogenesis and meristem development have been identi-
fied, their individual and combined effects on medicinal plant
transformation need thorough evaluation (Duan et al., 2022).
Given the diverse nature of medicinal plants, a universal so-
lution is unlikely, necessitating the exploration of new MG
combinations for different species and even within the same
species.
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Over the past two decades, extensive basic research has
elucidated many MGs, with ongoing discoveries providing
continued insights for testing and refining their use. These
advancements are complemented by the emergence of faster,
more affordable, and efficient genome sequencing tools, paving
the way for a deeper genetic understanding of medicinal plants.
Furthermore, innovative strategies for controlling or limiting
MG expression hold promise for enhancing transformation ef-
ficiency, making it more routine and accessible for diverse me-
dicinal plant species. Additionally, the integration of artificial
intelligence stands to further revolutionize this field by stream-
lining the research process, offering predictive insights into gene
functions and interactions. This, in turn, facilitates CRISPR/
Cas-mediated genome modifications in many important spe-
cies and accelerates cultivar development. Ultimately, progress
in in vitro cultivation, genetic transformation, and regeneration
techniques is essential for ensuring the conservation and sus-
tainable use of medicinal plants for present and future gen-
erations. The convergence of cutting-edge biotechnology and
computational tools points towards a future where medicinal
plant production is more predictable, efficient, and sustainable.
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