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Abstract 

Opium poppy is a crop of great commercial value as a source of several opium alkaloids for the pharmaceutical indus-
tries including morphine, codeine, thebaine, noscapine, and papaverine. Most enzymes involved in benzylisoquinoline 
alkaloid (BIA) biosynthesis in opium poppy have been functionally characterized, and opium poppy currently serves as 
a model system to study BIA metabolism in plants. BIA biosynthesis in opium poppy involves two biosynthetic gene 
clusters associated respectively with the morphine and noscapine branches. Recent reports have shown that genes 
in the same cluster are co-expressed, suggesting they might also be co-regulated. However, the transcriptional reg-
ulation of opium poppy BIA biosynthesis is not well studied. Opium poppy BIA biosynthesis involves three cell types 
associated with the phloem system: companion cells, sieve elements, and laticifers. The transcripts and enzymes 
associated with BIA biosynthesis are distributed across cell types, requiring the translocation of key enzymes and 
pathway intermediates between cell types. Together, these suggest that the regulation of BIA biosynthesis in opium 
poppy is multilayered and complex, involving biochemical, genomic, and physiological mechanisms. In this review, 
we highlight recent advances in genome sequencing and single cell and spatial transcriptomics with a focus on how 
these efforts can improve our understanding of the genomic and cell-specific regulation of BIA biosynthesis. Such 
knowledge is vital for opium poppy genetic improvement and metabolic engineering efforts targeting the modulation 
of alkaloid yield and composition.

Keywords:  Alkaloid biosynthesis, benzylisoquinoline alkaloids, opium poppy, pangenome, single-cell and spatial muti-omics, 
transcriptional regulation.

Introduction

Opium poppy (Papaver somniferum L.) is a multipurpose plant 
principally grown for the morphinan derivatives it produces, 
which are an indispensable part of modern medicine (Zohary 

et al., 2012; Guo et al., 2018; Singh et al., 2019; Xu et al., 2022). 
Poppy seed is a source of commercially important edible oils 
and is an essential ingredient in many cuisines, while the plant 
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is also grown for ornamental purposes due to its attractive 
flowers (Tétényi, 1997; Bernáth and Németh, 2010; Zohary 
et al., 2012; Lančaričová et al., 2016; Butnariu et al., 2022). 
Recently, new applications of poppy have been proposed as 
a potential source for biodiesel production and nanomateri-
als (Gozmen Şanli et al., 2019; Tabatabaei majd et al., 2020; 
Kadhim et al., 2023). Opium poppy has also caused consider-
able challenges for human health and society due to the ad-
dictive properties of morphinan-derived medications and their 
illicit consumption as opium or heroin (Guo et al., 2018; Singh 
et al., 2019). Opium poppy is one of the earliest domesticated 
crops, but its geographic origin is unclear and remains a con-
troversial topic, with origins in Mesopotamia or the western 
Mediterranean being the primary two theories (Kapoor, 1995; 
Salavert, 2017; Labanca et al., 2018; Jesus et al., 2021; Nencini, 
2022). Today, opium poppy is legally cultivated only in des-
ignated regions to ensure the medicinal and non-medicinal 
material supply while preventing its addictive properties from 
causing public health and political issues (UNODC, 1961; 
Bernáth and Németh, 2010).

Opium poppy is diploid (2n=22) and primarily self- 
pollinated (Brandt et al., 1887; Kapoor, 1995; Tétényi, 1997; 
Evans, 2009). The evolutionary relationships between opium 
poppy and other species in the Papaver genus were established 
using morphological and cytological data (Pei et al., 2021). 
With an annual growth habit and the presence of anthocyanin 
in flowers, P. somniferum was established as one of the recently 
evolved species within the Papaver genus and grouped in the 
Papaver section with three other species: P. setigerum, P. glaucum, 
and P. gracile (Srivastava, 1989; Tétényi, 1997; Liscombe et al., 
2005; Labanca et al., 2018; Lane et al., 2018; Y. Li et al., 2020). 
Cytological analysis indicated that P. setigerum (Troy poppy, 
n=22) is the only other species in the genus with a chromo-
some number that is a multiple of 11 (Tahara, 1915; Yasui, 
1921, 1937; Sugiura, 1940; Kaul et al., 1979; Srivastava, 1989). 
The cross compatibility of P. somniferum and P. setigerum and 
homologous chromosome pairing during meiosis in interspe-
cific hybrids of the two species also supported their close ge-
netic relationships (Yasui, 1937; Hrishi, 1960; Malik et al., 1979; 
Espinasse and Dosba, 1982; Ojala and Rousi, 1986; Kadereit, 
1987; Pyysalo et al., 1988). Furthermore, only P. somniferum and 
P. setigerum can produce morphine. Papaver setigerum was ini-
tially considered as the putative progenitor of the cultivated 
P. somniferum (Zohary et al., 2012; Salavert et al., 2018, 2020). 
However, recent advances in poppy genomic sequencing and 
data analyses indicated that P. somniferum and P. setigerum have 
a common ancestor and diverged approximately 5.0 million 
years ago (Yang et al., 2021; Zhang et al., 2023).

Benzylisoquinoline alkaloids (BIAs) are a diverse group of 
tyrosine-derived specialized metabolites with approximately 
2500 known structures, found predominately in plants of the 
order Ranunculales (Hagel and Facchini, 2013; Beaudoin and 
Facchini, 2014; Singh et al., 2019; Y. Li et al., 2020; Yucebilgili 
Kurtoglu and Unver, 2021). Morphine was the first BIA isolated 

from opium poppy at the beginning of the 1800s, by Sertürner 
(Norn et al., 2005; Gach et al., 2011; Stefano et al., 2017). It was 
initially claimed to be a sleep-inducing agent and named after 
the Greek god of dreams, Morpheus. Morphine is currently 
regarded as a powerful painkiller that is widely used both orally 
and subcutaneously. The addictive properties of opium were 
also acknowledged in morphine, especially in chronic usage 
cases. Despite these side effects, morphine is an irreplaceable 
drug for relieving pain treatment (Gach et al., 2011; Catania 
et al., 2022; INCB, 2022; Singh et al., 2023). Besides morphine, 
opium poppy also produces other highly valuable pharmaceu-
tical BIAs such as codeine, thebaine, papaverine, and noscapine. 
Codeine is a narcotic or opioid analgesic, in a similar manner 
to morphine, and is also commonly used to treat pain, cough-
ing and diarrhoea (Dastmalchi et al., 2019b; Singh et al., 2019). 
Thebaine is used for the semi-synthesis of many non-addictive 
painkillers (Chen et al., 2018). Papaverine and noscapine are 
non-narcotic drugs. Papaverine is used for antispasmodic treat-
ment, and noscapine is a potential anticancer drug (Winzer 
et al., 2012; Li and Smolke, 2016; Tamiru-Oli et al., 2018).

Opium poppy is used as a model system to study the BIA 
biosynthesis pathway because it is the only cultivated plant 
that produces morphine and a wealth of other bioactive BIAs 
(Tamiru-Oli et al., 2018; Pei et al., 2021; Catania et al., 2022). 
The BIA biosynthesis pathway has been successfully character-
ized through continuous efforts since the 1960s (Evans, 2009; 
Hagel and Facchini, 2013; Beaudoin and Facchini, 2014; Singh 
et al., 2019; Q. Li et al., 2020; Ozber and Facchini, 2022). We 
now know that BIAs share a common biosynthetic origin de-
spite their marked structural diversity. More than 35 enzymes 
participating in the opium poppy BIA biosynthesis pathway 
have been functionally characterized (Singh et al., 2019; Agarwal 
et al., 2020) (Fig. 1). Biosynthesis begins with the conversion of 
two tyrosine derivatives, dopamine and 4-hydroxyphenyl acet-
aldehyde (4-HPAA), to the first committed intermediate (S)-
norcoclaurine by norcoclaurine synthase (NCS) (Hagel and 
Facchini, 2013; Beaudoin and Facchini, 2014; Dastmalchi et al., 
2018; Singh et al., 2019; Yucebilgili Kurtoglu and Unver, 2021; 
Ozber and Facchini, 2022) (Fig. 1). Next, (S)-norcoclaurine 
sequentially undergoes hydroxylation, O- and N-methylations 
to form the central branch-point intermediate, (S)-reticuline, 
which is shared among all species belonging to Papaveraceae 
family (Y. Li et al., 2020; Catania et al., 2022). (S)-Reticuline 
then goes through several structural rearrangements depending 
on Papaver species or chemotypes of opium poppy to yield dif-
ferent final products such as morphine, sanguinarine, noscap-
ine, or magnoflorine (Fig. 1).

The structure and components of the BIA biosynthetic 
pathway are now well characterized. Studies have indicated that 
the BIA metabolism in opium poppy is a spatially separated 
process involving three distinct cell types: companion cells, 
sieve elements, and laticifers of the phloem system (Onoyovwe 
et al., 2013; Beaudoin and Facchini, 2014; Singh et al., 2019; 
Ozber and Facchini, 2022). This results in a multilayered and 
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Fig. 1. The benzylisoquinoline alkaloid (BIA) biosynthesis pathway in opium poppy. All enzymes shown have been functionally characterized, and enzyme 
families are shown with different colours. The noscapine (light purple box) and morphine gene clusters (light green box) are shown. 2OG, 2-oxoglutarate; 
4-HPAA, 4-hydroxyphenylacetaldehyde; 4ʹOMT, 3ʹ-hydroxyl-N-methylcoclaurine 4ʹ-O-methyltransferase; 6ʹOMT, norcoclaurine 6-O-methyltransferase; 
AT1, 1,13-dihydroxy-N-methylcanadine 13-O-acetyltransferase; BBE, berberine bridge enzyme; CAS, canadine synthase; CFS, cheilanthifoline synthase; 
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complex regulation of opium poppy BIA biosynthesis, involv-
ing biochemical, genomic, and physiological mechanisms. 
Our understanding of these regulatory mechanisms is rela-
tively limited, but increased knowledge could inform opium 
poppy breeding and biotechnology (Singh et al., 2019; Ozber 
and Facchini, 2022; Watkins and Facchini, 2022). Biochemical 
mechanisms of regulation have been well reviewed elsewhere 
(Singh et al., 2019). In this review, we focus on the genomic 
and cell-specific mechanisms of BIA biosynthesis regulation. 
We highlight gaps in knowledge and discuss how recent tech-
nical advances in whole genome sequencing and single cell 
and spatial transcriptomics can provide powerful tools to ad-
vance the field.

Structure of the benzylisoquinoline alkaloid 
biosynthetic pathway in opium poppy

The BIA biosynthetic pathway is divided into three main steps: 
(i) the formation of (S)-norcoclaurine, the common precursor 
to all other BIAs produced in plants, from two l-tyrosine deriv-
atives, (ii) the conversion of (S)-norcoclaurine to the branch 
point intermediate (S)-reticuline, shared among all species 
belonging to the Papaveraceae family, and (iii) conversion of (S)-
reticuline to the bioactive BIAs such as magnoflorine, noscap-
ine, sanguinarine, codeine, and morphine (Fig. 1) (Tamiru-Oli 
et al., 2018; Singh et al., 2019). Although the BIA biosynthesis 
pathway produces numerous structurally diverse compounds, 
it only involves genes encoding a limited number of protein 
families (Dang et al., 2012; Hagel and Facchini, 2013; Beaudoin 
and Facchini, 2014; Dastmalchi et al., 2018) (Fig. 1). The cyto-
chromes P450 (CYPs) are the major family with more than 
11 members. Of these, the (S)- to (R)-reticuline (STORR) or 
reticuline epimerase (REPI) is a P450-oxidoreductase, which 
evolved from gene duplication, rearrangement, and fusion and 
is responsible for the gateway reaction directing metabolites 
towards the morphinan branch (Winzer et al., 2015; Guo et al., 
2018; Y. Li et al., 2020; Yang et al., 2021; Catania et al., 2022). 
The other protein families include S-adenosylmethionine-
dependent O- and N-methyltransferases, FAD/NAD oxido-
reductases, amino/acetyltransferases, pathogenesis-related-10 
family and major latex proteins (PR10/MLPs), 2-oxoglutarate/
Fe(II)-dependent dioxygenases (ODDs), NADPH-reductase, 
decarboxylase, and carboxylesterases (Dang et al., 2012; Hagel 

and Facchini, 2013; Beaudoin and Facchini, 2014; Dastmalchi 
et al., 2018, 2019b).

Thebaine synthase (THS) and neopinone isomerase (NISO), 
two other members of the PR10/MLP protein family with 
NCS, catalyse two reaction steps in the morphine branch that 
were previously assumed to be spontaneous (Lee and Facchini, 
2010; Chen et al., 2018; Dastmalchi et al., 2019b). Although 
most enzymes involved in the BIA biosynthesis pathway have 
been characterized, enzymes responsible for a small number 
of reactions steps are still unknown (Beaudoin and Facchini, 
2014; Singh et al., 2019). The conversion of l-tyrosine to do-
pamine involves a tyrosine decarboxylase (TYDC), respon-
sible for the decarboxylation of l-tyrosine to tyramine, and 
a yet to be identified hydroxylase that is required for the hy-
droxylation of tyramine to dopamine. Similarly, a second en-
zyme, thought to be a decarboxylase, required for converting  
l-tyrosine to 4-HPAA is also uncharacterized in opium poppy 
(Fig. 1). Additionally, many reactions that are currently assumed 
to be spontaneous could be catalysed by novel enzymes that are 
yet to be identified, as was the case with the reactions catalysed 
by NCS or THS (Samanani and Facchini, 2001; Chen et al., 
2018). Advances in shotgun proteomics could be helpful to 
identify novel proteins and elucidate their function. Knowing 
all components of the BIA biosynthesis pathway is vital for 
studies aiming to unravel the transcriptional regulation BIA 
biosynthesis genes.

Transcriptional regulation of 
benzylisoquinoline alkaloid gene 
expression

Transcription factors (TFs) are the primary regulators of gene 
expression, and understanding their role is essential to char-
acterize the transcriptional regulation of BIA biosynthesis in 
opium poppy (Kawano et al., 2012; Winzer et al., 2012; Mishra 
et al., 2013; Kakeshpour et al., 2015; Agarwal et al., 2016; Jia 
et al., 2023; Tan et al., 2023). However, only a handful of TFs 
with putative regulatory roles have been reported in opium 
poppy, and our understanding of the transcriptional regulation 
of BIA biosynthesis is still limited. To this end, we set out to 
identify additional candidate TFs that may potentially regu-
late the expression of BIA genes using publicly available RNA 
sequencing data.

CNMT, coclaurine N-methyltransferase; CODM, codeine O-demethylase; COR, codeinone reductase; CXE1, 3-O-acetylpapaveroxine carboxylesterase; 
CYP82X1, 1-hydroxy-13-O-acetyl-N-methylcanadine 8-hydroxylase; CYP82X2, 1-hydroxy-N-methylcanadine 13-O-hydroxylase; DBOX, 
dihydrosanguinarine oxidase; MSH, N-methylstylopine 14-hydroxylase; N7OMT, norreticuline 7-O-methyltransferase; NCS, norcoclaurine synthase; NISO, 
neopinone isomerase; NMCH, N-methylcoclaurine 3ʹ-hydroxylase; NMCH (CYP82Y1), N-methylcanadine 1-hydroxylase; NOS, noscapine synthase; 
OMT2:OMT3, 4ʹ-O-desmethyl-3-O-acetylpapaveroxine 4ʹ-O-methyltransferase; P6H, protopine 6-hydroxylase; PR10/MLP: pathogenesis-related-10 
family and major latex protein; REPI, reticuline epimerase; RNMT, reticuline N-methyltransferase; SalAT, salutaridinol 7-O-acetyltransferase; SalR, 
salutaridine reductase; SalSyn, salutaridine synthase; SanR, sanguinarine reductase; SOMT, scoulerine 9-O-methyltransferase; SPS, stylopine synthase; 
T6ODM, thebaine 6-O-demethylase; THS, thebaine synthase; TNMT, tetrahydroprotoberberine N-methyltransferase; TYDC, tyrosine decarboxylase; 
TyrAT, tyrosine aminotransferase (Beaudoin and Facchini, 2014; Singh et al., 2019; Ozber and Facchini, 2022).
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In the first instance, we used a recent RNA-seq dataset 
comprising gene expression data across six tissues of opium 
poppy: stem, capsule, root, leaf, petal, tap root, and fine root 
(Supplementary Table S1) (Jia et al., 2023). A principal com-
ponent analysis of the top 500 most variable genes separated 
samples according to tissue type, similar to what was reported 
in the study (Fig. 2A). The tap and fine root samples clustered 
together, suggesting that these tissues have very similar gene 
expression profiles; these samples were therefore combined 
in the subsequent analyses. We then calculated an index of 
tissue specificity (tau; τ) for all expressed genes from the Jia 
et al. (2023) dataset (Supplementary Table S2); genes with a 
τ value greater than 0.8 were considered to be tissue-specific 
(Fig. 2B) (Kryuchkova-Mostacci and Robinson-Rechavi, 
2017). Interestingly, the majority (71 out of 73) of the known 
and predicted BIA biosynthesis genes had the highest ex-
pression in either stem or root, supporting previous reports 
(Supplemantary Tables S2, S3) (Facchini and De Luca, 1994; 
Bird et al., 2003; Facchini and Park, 2003; Jia et al., 2023). More 
than half of these genes (43 out of 73) were associated with the 
three main branches of the BIA biosynthesis pathway, namely 
(S)-reticuline, noscapine, and morphine.

Genes and TFs operate in a concerted manner, with many 
interacting partners ultimately influencing gene expression 
outcomes. This has given rise to the concept of gene co-
expression network analysis, which entails the identification 
of genes and TFs that cluster together with similar expression 
profiles at a point in time or upon exposure to perturbations 
(van Dam et al., 2017; Hurgobin and Lewsey, 2022). The co-
expression of BIA genes has recently been reported (Q. Li 
et al., 2020). The authors also identified several uncharacter-
ized MLP/PR10 proteins among the genes co-expressed with 
BIA genes, suggesting that these proteins may have important 
functions in the pathway. Another study reported the differen-
tial expression of BIA uptake permeases (BUPs), which act as 
alkaloid transporters, across the same tissues mentioned above 
(Dastmalchi et al., 2019a). Out of the nine homologues identi-
fied, eight homologues (BUP1, BUP2, BUP4–BUP9) exhib-
ited tissue-specific expression based on RT-qPCR results. The 
genes encoding these transporters also clustered within the 
genome closely to known BIA biosynthetic genes. This ob-
servation implies that the transporters and biosynthetic genes 
may also be co-expressed, because genes that are located close 
to one another within the physical space of the genome may 
share topological associating domains, which can drive sim-
ilar expression patterns (Hurst et al., 2004; Pombo and Dillon, 
2015; Kustatscher et al., 2017). However, none of these studies 
identified TFs among the co-expressed genes.

Consequently, we set out to identify TFs that may be in-
volved in the transcriptional regulation of BIA biosynthesis 
via weighted gene co-expression network analysis (WGCNA) 
(Langfelder and Horvath, 2008). Our analysis identified 13 
modules of co-expressed genes and TFs (Supplementary Fig. 
S1; Supplementary Table S4). We identified 57 of the known 

BIA biosynthesis genes in these modules; the majority (55 
genes) of these genes resided in four modules (salmon, light-
cyan, tan, and lightblue) which were predominantly stem- or 
root-specific. (Fig. 2C; Supplementary Table S4). A significant 
number of TFs (263 root-specific and 26 stem-specific) were 
also identified in the 13 modules, with the majority (238 root-
specific and 24 stem-specific) being in the salmon, lightcyan, 
tan, and lightblue modules (Supplementary Table S4).

Co-expression of a group of genes suggests, but does not 
prove, that they may be regulated by a common TF or set of 
TFs. This is termed co-regulation. Potential regulatory interac-
tions may be examined further by the construction of gene 
regulatory networks (GRNs) (Karlebach and Shamir, 2008). 
This approach identifies putative interactions between TFs 
and their downstream target genes (interaction edge), which 
allows the identification of key candidate regulators of traits 
of interest (Van den Broeck et al., 2020). In this respect, we 
used the co-expressed TFs and target genes (including known 
BIA biosynthesis genes) identified by WGCNA to construct 
a stem-specific GRN and a root-specific GRN. We did so 
using the SCION method and additional RNA-seq data gen-
erated by Guo and colleagues (Supplementary Protocol S1; 
Supplementary Tables S5, S6; Guo et al., 2018; Clark et al., 
2021). Sixteen BIA biosynthesis genes that were missing from 
the co-expression modules were also included among the tar-
gets as they could potentially be regulated by the TFs identi-
fied in this study (Supplementary Table S3). The stem GRN 
consisted of 26 TFs and 437 target genes, with a total of 1906 
TF-target interactions (edges) (Supplementary Table S5). 
Similarly, the root GRN contained 263 TFs and 2190 target 
genes, connected by 374 894 edges (Supplementary Table S6). 
Next, we extracted a stem-specific morphine subnetwork 
and root-specific (S)-reticuline, noscapine, and morphine 
subnetworks from the two GRNs (Supplementary Table S5). 
The stem-specific morphine subnetwork consisted of 17 TFs, 
14 BIA target genes and a total of 72 TF-target interactions, 
and predominantly contained TFs from the bHLH, C2H2, 
HB-KNOX, and MADS-MIKC families (Fig. 2D). The root-
specific (S)-reticuline subnetwork contained 263 TFs, 14 BIA 
target genes, and 2364 TF-target interactions. Similarly, the 
root-specific noscapine subnetwork contained 258 TFs and 
eight BIA targets connected by 1312 edges. The root-specific 
morphine subnetwork contained 263 TFs, four BIA targets 
and 637 edges (Supplementary Table S6). The TFs (regulators) 
predicted in all the three root-specific subnetworks were pre-
dominantly from the AP2/ERF-ERF, WRKY, MYB, bHLH, 
NAC, and C2H2 TF families (Fig. 2E, F).

Our combined analyses of tissue specificity, WGCNA, and 
GRN identified many potential regulators of BIA biosynthesis 
in opium poppy. While useful, it is important to remember that 
such type of in silico predictions often harbour false positives. 
Therefore, wet-lab validation is key to ensuring the credibility 
of these predictions. To this end, DNA affinity purification and 
sequencing (DAP-seq) is a cheap and rapid assay to generate 
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Fig. 2. Identification of putative candidate regulators of BIA biosynthesis in opium poppy. (A) A principal component analysis plot of six RNA-seq libraries 
generated based on the 500 most variable genes and showing clustering according to tissues. Numbers in brackets correspond to the proportion 
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genome-wide in vitro TF–DNA interaction maps for candi-
date TFs (Bartlett et al., 2017). Virus-induced gene silencing 
has been instrumental for functional validation of BIA biosyn-
thesis genes in opium poppy (Hileman et al., 2005). The same 
approach can be used to target candidate TFs and, in combi-
nation with RNA-seq, provide vital data on the expression 
patterns of predicted downstream target BIA genes.

Overall, our findings support what has been reported in 
the literature. Some of the TF families mentioned above were 
previously predicted to have a role in the regulation of BIA 
biosynthesis based on the analysis of TF binding sites and ex-
pression profiles of BIA biosynthesis genes. Members of the 
10-gene cluster for noscapine biosynthesis all have similar 
WRKY and MYB binding motifs in their promoter regions 
and are also shown to be co-expressed, implicating these two 
TF families in the co-regulation of the gene cluster (Winzer 
et al., 2012; Kakeshpour et al., 2015). The W-box cis-element, 
a known WRKY binding site, has also been identified in the 
promotor regions of TYDC, norcoclaurine 6-O-methyltransferase 
(6OMT), coclaurine N-methyltransferase (CNMT), reticuline 
7-O-methyltransferase (7OMT), salutaridinol 7-O-acetyltransferase 
(SalAT), and codeinone reductase (COR) genes (Mishra et al., 
2013; Agarwal et al., 2016). Recently, HB6, a member of the 
HB–HD–ZIP TF family that likely regulates 19 genes in-
volved in (S)-reticuline, morphinan, noscapine, sanguinarine, 
and laudanine biosynthesis, has been identified using assay for  
transposase-accessible chromatin using sequencing (ATAC-
seq) and transcriptome analyses (Kryuchkova-Mostacci and 
Robinson-Rechavi, 2017; Van den Broeck et al., 2020; Jia et al., 
2023).

Another important type of gene expression regulator is 
microRNAs (miRNAs) (Jones-Rhoades et al., 2006). These 
endogenous single-stranded non-coding small RNAs that are 
18–30 bp in length are involved in post-transcriptional reg-
ulation in eukaryotes either by targeted-mRNA cleavage or 
by affecting translation (Filipowicz et al., 2008). In plants, they 
have been shown to play a crucial role in regulating the bio-
synthesis of secondary metabolites such as flavonoids, terpe-
noids, alkaloids, and phenolic acid compounds (Hossain et al., 
2022; Jeena et al., 2022; Sun et al., 2022; Zhang et al., 2022). 
Pso-miRNA13, miRNA408, and pso-miRNA2161 are three 
miRNAs identified to be involved in BIA biosynthesis regula-
tion in opium poppy (Boke et al., 2015; Singh et al., 2019; Jeena 
et al., 2022). While pso-miRNA13 and pso-miRNA2161 
have been found only in opium poppy, miRNA408 is present 
in other species, for example, in red sage (Salvia miltiorrhza), 

playing a regulatory role in salvianolic acid biosynthesis. Pso-
miRNA13 is supposed to cleave transcripts of 7OMT, which 
is responsible for the conversion of the central precursor (S)-
reticuline to (S)-laudanine, which is then converted to pa-
paverine (Fig. 1). Therefore, 7OMT silencing could indirectly 
enhance the biosynthesis of other BIAs, such as morphine, 
noscapine, or sanguinarine. Pso-miRNA2161 is predicted to 
target transcripts of 3ʹ-hydroxyl-N-methylcoclaurine 4ʹ-O-
methyltransferase and is likely involved in regulating BIA ac-
cumulation in stem and capsule tissues. On the other hand, 
miRNA408 possibly silences the berberine bridge enzyme 
(BBE), which is responsible for the conversion of (S)-reticuline 
to (S)-scoulerine. Moreover, transcripts of other BIA biosyn-
thetic genes, TYDC, COR, and SalAT, might be silenced by 
these miRNAs through in silico analyses. Future works are re-
quired to elucidate the regulation mechanism of miRNAs in 
BIA biosynthesis.

Compartmentalization of 
benzylisoquinoline alkaloid biosynthesis 
between different tissue and cell types

In opium poppy, BIA biosynthetic gene transcription, transla-
tion, and enzyme activity involve three distinct cell types: com-
panion cells, sieve elements, and laticifers of the phloem system 
(Fig. 3) (Bird et al., 2003; Weid et al., 2004; Samanani et al., 2006; 
Liscombe and Facchini, 2008; Lee et al., 2013; Onoyovwe et al., 
2013; Singh et al., 2019; Ozber and Facchini, 2022). Sieve ele-
ments that are enucleate and incapable of RNA and protein 
synthesis are kept alive by the connection with neighbouring 
companion cells via numerous plasmodesmata, resulting in the 
sieve element–companion cell complex (Fukuda et al., 2005; 
Faulkner, 2018; Kim and Frommer, 2023). This complex is a 
mandatory component of the phloem in all vascular plants. In 
contrast, laticifers are highly specialized cells and present only 
in the phloem system of several phylogenetically unrelated 
groups (Castelblanque et al., 2016; Ramos et al., 2019; Johnson 
et al., 2021). They form a tube-like network throughout the 
plant body and produce and store latex. Most BIAs of opium 
poppy are accumulated in latex of laticifers (Weid et al., 2004; 
Onoyovwe et al., 2013; Beaudoin and Facchini, 2014; Singh 
et al., 2019; Ozber and Facchini, 2022).

Previous research based on in situ hybridization and immu-
nofluorescence suggested that most BIA-related genes are tran-
scribed and translated into enzymes in companion cells, then 

of variance explained by the respective principal component. (B) Heatmap of tissue-specific gene expression, with red and blue indicating high and 
significantly low expression, respectively. (C) Stem and root gene co-expression modules identified using weighted correlation network analysis (WGCNA) 
(upper panel) and heatmap depicting the expression patterns of the genes included in each module (lower panel). Numbers in parentheses represent 
the number of genes and transcription factors in each module. (D) A stem gene regulatory sub-network highlighting morphine pathway genes and their 
predicted regulators (transcription factors). (E–G) Root gene regulatory sub-networks of S-reticuline, noscapine and morphine pathway genes and their 
predicted regulators, respectively. Ellipses and rectangles represent the predicted regulators and their target genes, respectively. Nodes are coloured 
according to their assigned WGCNA modules. For ease of visualization, subnetworks were filtered based on the following edge weight cut-offs: 0.5 (D) 
and 0.75 (E–G).
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Fig. 3. Schematic illustration of the cellular localization of morphine biosynthesis in opium poppy. (A) Morphine biosynthesis involves three cell types: 
companion cells (cc), sieve elements (se), and laticifers (la) of the phloem system. (B) The enzymes synthesized in companion cells are transported to 
sieve elements (black horizontal arrows) through plasmodesmata. The intermediate compounds of salutaridine and thebaine are transferred from sieve 
elements to latifer cells (red horizontal arrows) through apoplast by a family of benzylisoquinoline uptake permeases (BUPs). The enzymes required 
for the final stages of alkaloid biosynthesis are mainly localized in laticifers. Transcripts and proteins primarily detected in each cell type are shown 
in black italic and in blue, respectively. vc, vascular cambium; pp, phloem parenchyma; xy, xylem vessels. 4ʹOMT, 3ʹ-hydroxyl-N-methylcoclaurine 
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transported to sieve elements and laticifers (Bird et al., 2003; 
Weid et al., 2004; Samanani et al., 2006; Liscombe and Facchini, 
2008; Lee et al., 2013). Recently, with advances in transcrip-
tomic and proteomic sequencing, transcripts of some genes and 
their mature enzymes were also found in laticifers, indicating 
translation likely occurs in those cells (Onoyovwe et al., 2013; 
Chen et al., 2018; Dastmalchi et al., 2019b; Ozber et al., 2022). 
The enzymes involved in the early stages of the morphinan 
pathway (converting dopamine and 4-HPAA to salutaridine) 
are mainly present in sieve elements, while those catalysing 
the final steps are primarily found in laticifer cells (Fig. 3) 
(Beaudoin and Facchini, 2014; Ozber and Facchini, 2022). For 
example, transcripts of four genes responsible for producing 
morphine from thebaine [thebaine 6-O-demethylase (T6ODM), 
NISO, COR, and codeine O-demethylase (CODM)] and their 
corresponding enzymes are detected in laticifers (Onoyovwe 
et al., 2013). Similar models are observed for noscapine and pa-
paverine biosynthesis in opium poppy (Ozber et al., 2022). Two 
genes [3-O-acetylpapaveroxine carboxylesterase (CXE) and noscap-
ine synthase (NOS)] involved in the two final steps of noscapine 
biosynthesis are expressed in laticifers, whereas the remaining 
genes in the noscapine cluster are exclusively transcribed and 
translated in companion cells.

BIA biosynthesis related components, composed of enzymes, 
precursors, and final products, are mainly transported between 
companion cells, sieve elements, and laticifers through symplast 
and apoplast pathways (Fig. 3) (Bird et al., 2003; Weid et al., 
2004; Samanani et al., 2006; Onoyovwe et al., 2013; Beaudoin 
and Facchini, 2014; Ozber and Facchini, 2022). The numerous 
plasmodesmata between companion cells and sieve elements 
establish the symplast transport, facilitating the movement of 
BIA biosynthetic enzymes from companion cells to sieve ele-
ments. However, not all proteins from companion cells are 
transferred to sieve elements, and the distribution of BIA bio-
synthetic enzymes has been shown differently between parts of 
poppy plants (Bird et al., 2003; Weid et al., 2004; Fukuda et al., 
2005; Beaudoin and Facchini, 2014; Faulkner, 2018; Kim and 
Frommer, 2023). The tissue-specific mechanism of BIA bio-
synthetic enzyme distribution between companion cells and 
sieve elements remains to be studied in detail.

Symplastic transport of pathway intermediates between 
sieve elements and laticifers is also suggested based on the pres-
ence of plasmodesmata connecting them (Facchini and De 
Luca, 2008). Recently, an uptake transporter family, known as 
benzylisoquinoline uptake permeases (BUPs), has been identi-
fied to transfer BIAs from sieve elements to laticifers in opium 
poppy (Fig. 3) (Dastmalchi et al., 2019a). This indicated the 
presence of apoplast transport for BIAs from sieve elements 
to laticifers. Interestingly, although BUPs were found in BIA 

gene clustering, including noscapine, none had an importing 
capacity for noscapine or papaverine (Dastmalchi et al., 2019a; 
Ozber and Facchini, 2022). This suggests the existence of ad-
ditional transporters for carrying BIAs to laticifers. Proteins of 
the ATP-binding cassette (ABC) family or multi-antimicrobial 
extrusion (MATE) family are responsible for the transloca-
tion of berberine in Coptis japonica, and are therefore poten-
tial transporter candidates for future research in opium poppy 
(Shitan et al., 2003; Takanashi et al., 2017).

Future perspectives: new approaches 
that could deepen the understanding of 
benzylisoquinoline alkaloid biosynthesis 
regulation

Single-cell multi-omics and spatial transcriptomics

The majority of studies conducted to date to identify met-
abolic pathway-associated genes and enzymes in plants have 
relied on the use of whole tissues/organs (Giacomello, 2021; 
Tenorio Berrío et al., 2021; Zhang et al., 2022; Depuydt et al., 
2023). In poppy, for example, global BIA gene expression has 
been surveyed at the organ-level, predominantly in the cap-
sules, but also in leaves, roots, and stem (Winzer et al., 2012; 
Guo et al., 2018; Zhao et al., 2019; Q. Li et al., 2020; Yang et al., 
2021; Xu et al., 2022; Jia et al., 2023). However, the localization 
of BIAs is not limited to distinct organs but also to specific cells 
within these organs. The cell-type-specific biosynthesis and ac-
cumulation of BIAs in poppy has been documented to a certain 
extent, but knowledge gaps remain in terms of the underlying 
mechanisms that enable expression of BIA pathway genes to 
be controlled in a cell-type-specific manner (Samanani et al., 
2006; Onoyovwe et al., 2013; Chen et al., 2018; Dastmalchi 
et al., 2019b; Ozber and Facchini, 2022; Ozber et al., 2022). The 
application of single-cell ‘omics’ technologies provides an op-
portunity to bridge these gaps. One such application is single- 
cell RNA-seq (scRNA-seq) whereby the transcriptional  
activity of single cells can be mapped and quantified (Shaw 
et al., 2021). The coordination of BIA biosynthesis involves 
three distinct cell types (companion cells, laticifers, and sieve 
elements) but it remains unknown whether all cells within 
each of these cell types behave uniformly or if, within cell-
types, there are functional subpopulations of cells. Many plant 
species have been reported to have more than one type of 
companion cell, which differ in their structural features as well 
as their degree of plasmodesmatal connectivity with neigh-
bouring cells (Kim and Frommer, 2023). It is possible that this 
could also be the case for opium poppy. ScRNA-seq could be 

codeinone reductase; NCS, norcoclaurine synthase; NISO, neopinone isomerase; NMCH, N-methylcoclaurine 3ʹ-hydroxylase; REPI, reticuline epimerase; 
SalAT, salutaridinol 7-O-acetyltransferase; SalR, salutaridine reductase; SalSyn, salutaridine synthase; T6ODM, thebaine 6-O-demethylase; THS, thebaine 
synthase (Liscombe and Facchini, 2008; Lee et al., 2013; Beaudoin and Facchini, 2014; Ozber and Facchini, 2022).
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employed to investigate this and potentially identify marker 
genes for each subpopulation within the companion cells.

Additionally, given that BIA biosynthesis also occurs in 
organs other than the capsules, it would be interesting to in-
vestigate whether the expression profile of the pathway genes 
differs between organs and their cells, shedding more light on 
the biology of the pathway. The differential accumulation of 
BIAs across organs is well-known, with sanguinarine located 
exclusively in the roots, papaverine and noscapine found only 
in the shoot latex, and morphine and codeine found in roots, 
but to a greater extent in shoot latex (Facchini and De Luca, 
1994). The association between tissue-specific gene expression 
and accumulation of BIAs was recently reported (Q. Li et al., 
2020). The authors identified the genes involved in the san-
guinarine pathway and the later stages of the morphine and 
noscapine portion of the BIA biosynthesis pathway to be root-
specific and latex-specific, respectively. An extension of this 
finding would be to identify which cell subpopulations within 
these distinct organs exhibit this pattern of gene expression.

The organ-level gene network analyses (co-expression and 
regulation) that have been performed in opium poppy have 
improved our understanding of the basis for BIA gene tran-
scriptional regulation (Q. Li et al., 2020; Xu et al., 2022; Jia et al., 
2023). Extending these organ-level analyses to the single-cell 
resolution would allow cell-specific modules and their constit-
uent genes and corresponding TFs to be identified. Additionally, 
the analysis of cell-specific GRNs could potentially identify 
TFs that drive the expression of key enzymes and transporters 
in a targeted manner and encourage the commercial produc-
tion of opioids using synthetic biology. A step further would 
be to compare cell-specific gene expression and regulation be-
tween different poppy lineages to gain a better understanding of 
the differences in BIA variation among cultivars; this could as-
sist with the selection of elite varieties in breeding programmes.

The study of the poppy epigenome is likely to complement 
transcriptional studies in this species and offer novel insights 
into the epigenetic regulation of BIA biosynthesis. This can be 
achieved via ATAC-seq, which enables the identification of ac-
cessible chromatin regions (ACRs) in the genome (Buenrostro 
et al., 2015). These regions tend to be associated with promoters 
of genes that are actively expressed and harbour cis-regulatory 
elements (CREs) that are associated with these genes. CREs 
are the DNA recognition sequences (motifs) that TFs bind to, 
allowing TFs to find the genes that they regulate. The appli-
cation of ATAC-seq in plants is in its infancy, with only one 
such study reported in opium poppy (Lu et al., 2016; Farmer 
et al., 2021; Jia et al., 2023). Recently, Jia et al. (2023) mapped 
the open chromatin landscape of poppy across six tissues (leaf, 
stem, capsule, petal, tap root, and fine root), and integration 
with tissue-specific RNA-seq data revealed the presence of 
ACRs in the BIA genes exclusively in the capsule, stem, and 
root (Jia et al., 2023). Analysis of the CREs within the ACRs 
highlighted common DNA motifs, which suggested that 
these tissues share several TFs that regulate the tissue-specific 

expression of BIA biosynthesis genes. The combined applica-
tion of scRNA-seq and scATAC-seq could further expand on 
these findings by potentially revealing whether there are sub-
populations of cells within each tissue type that are preferen-
tially associated with the BIA gene-specific ACRs and how 
this differs among poppy cultivars with varying BIA contents.

The cell-specific accumulation of BIAs in poppy has been 
investigated using traditional approaches such as immunofluo-
rescence and RNA in situ hybridization, which have been ap-
plied to whole tissues (Bird et al., 2003; Samanani et al., 2006; 
Lee and Facchini, 2010; Beaudoin and Facchini, 2014). In this 
respect, single-cell metabolomics (SCM), which is the high-
throughput analysis of metabolites at the single-cell level, could 
prove beneficial for confirming the findings from previous 
studies as well as uncovering novel information (Guo et al., 
2021; Hu et al., 2023). For instance, SCM could be used to 
investigate the differential accumulation of BIAs in cell sub-
populations. It may also be possible to capture the presence 
of minor intermediate metabolites or novel ones that might 
be otherwise undetectable in the more heterogeneous mix-
tures of cells from whole organ samples; this will not only 
provide a more complete picture of the metabolic diversity 
of the pathway but also present opportunities for synthesiz-
ing new drugs. Q. Li et al. (2020) recently reported that co-
variation patterns between gene expression and alkaloid levels 
were similar across tissues and time points. However, given that 
these measurements were performed using bulk tissues and 
were hence averaged, it is possible that subtle differences at the  
single-cell level were missed. Therefore, the integration of 
SCM with scRNA-seq would allow for more accurate cor-
relations between cell-type-specific expression of biosynthetic 
enzymes and the presence of the corresponding metabolites 
across tissues and developmental stages.

Application of the single-cell ‘omics’ technologies discussed 
above requires the relevant tissues to be dissociated into indi-
vidual cells, resulting in the cells losing their spatial informa-
tion. The knowledge of where cells are located and how close 
they are to one another is crucial for understanding intercel-
lular communication (Longo et al., 2021). Spatial transcrip-
tomics addresses this issue by localizing transcripts to precise 
regions in native tissues, and when combined with scRNA-seq 
and scATAC-seq would allow associations to be identified be-
tween the transcriptomic and epigenetic regulation of single 
cells and their spatial location, shedding light on the interac-
tions between cell subpopulations (Fig. 4A) (Longo et al., 2021; 
Nobori et al., 2023; Peirats-Llobet et al., 2023). The integration 
of these modalities would be valuable in gaining an under-
standing of the spatiotemporal regulation of BIA metabolism; 
in particular it would be interesting to know how the cells 
interact with each other during development or under stress. 
It will also be interesting to see how this correlates with the 
accumulation of BIAs via the application of SCM, hence fur-
thering our understanding of the differential accumulation of 
these metabolites in poppy (Hu et al., 2023).
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Fig. 4. Proposed schemes for applying the latest omics tools to study the regulation of alkaloid biosynthesis in opium poppy. (A) Integration of single-cell 
‘omics’ technologies with spatial transcriptomics in opium poppy. A spatial barcoded map of the vascular tissue is obtained; this map represents the 
gene expression of localized mRNA transcripts across the tissue section. In parallel, the vascular tissue undergoes tissue dissociation for the application 
of single-cell modalities. This includes single-cell RNA sequencing (scRNA-seq) for obtaining the gene expression profiles of single cells, single-cell 
assay for transposase-accessible chromatin using sequencing (scATAC-seq) for surveying the open chromatin landscape of the cells, and single-cell 
metabolomics (SCM) for assessing the metabolite content of the cells. Finally, the individual single-cell ‘omics’ measurements are integrated with spatial 
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Pangenomics and natural variation

The presence of major genome structural variations (SVs) 
makes plant genomes highly complex and diverse, with con-
siderable intra- and inter-species divergence between genomes 
(Buckler et al. 2006, Soltis and Soltis 2021). Consequently, 
single reference genomes do not fully capture the entire ge-
netic diversity of the species, and hence the development of 
pangenomes as new references (Hurgobin and Edwards, 2017; 
Bayer et al., 2020). Pangenomes represent the full complement 
of the DNA sequence of a species, which now also captures 
major SVs such as presence/absence (PAV) and copy number 
(CNVs) variations, chromosomal rearrangements and trans-
locations as a result of recent advances in long-read DNA 
sequencing technologies (Ho et al., 2020). This emerging ap-
proach has been instrumental in dissecting SVs associated with 
yield and quality related traits in multiple species (Zhou et al., 
2022; Li et al., 2023; Wang et al., 2023). Pangenomes are often 
constructed from hundreds or even thousands of phylogeneti-
cally and geographically diverse accessions that include landra-
ces, modern varieties, and their wild relatives (Gao et al., 2019). 
Including crop wild relatives in developing pangenomes would 
provide the genetic diversity required for breeding improved 
and new crop varieties.

Plant secondary metabolites are formed by stepwise enzy-
matic reactions that together form biosynthetic pathways. The 
genes associated with such pathways are sometimes found as bi-
osynthetic gene clusters (BGCs) (Polturak and Osbourn, 2021). 
The existence of BGCs might be important to ensure co-
inheritance and co-regulation, as well as to avoid the accumu-
lation of intermediate compounds to toxic levels (Nützmann 
et al., 2018; Z. Liu et al., 2020). Such clusters have been reported 
in opium poppy including for the genes associated with BIA bi-
osynthesis (Winzer et al., 2012; Guo et al., 2018; Conneely et al., 
2022; Zhou and Liu, 2022) (Fig. 1). An increasing body of evi-
dence shows that gene and genome duplications have provided 
the basis for the diversification of plant secondary metabolism 
in multiple species including in opium poppy (Itkin et al., 2013; 
Wang et al., 2020; Liu et al., 2021).

The single reference opium poppy genome was first assem-
bled in 2018 (Guo et al., 2018). This genomic resource has been 
vital for getting deeper insight into the genomic arrangement of 
key BIA biosynthesis genes, revealing gene clusters for noscap-
ine and morphine biosynthesis spanning a 584-kbp genomic 
region on chromosome 11 (Guo et al., 2018). The reference ge-
nome was further improved with Hi-C sequencing, generating 

chromosome-scale scaffolds that allowed the anchoring of 35 
additional BIA genes (Q. Li et al., 2020). It was also shown that 
CNVs of key BIA genes significantly correlate with alkaloid 
profiles and that co-expression of BIA genes increases with 
BGCs (Q. Li et al., 2020). Comparison of three chromosomal 
scale genome assemblies representing P. somniferum, P. setigerum 
and P. rhoeas revealed that SVs involving gene duplication, trans-
location, and fusion have contributed to the generation and 
maintenance of BIA gene clusters in opium poppy (Yang et al., 
2021). Independently, genome and transcriptome comparisons 
between a Chinese landrace and the reference opium poppy 
cultivar implicated genome expansion as one of the major driv-
ers of high BIA biosynthesis (Pei et al., 2021). A recent study 
involving the re-sequencing of 10 opium poppy cultivars re-
ported CNVs in 63 out of the 109 BIA genes and showed that 
the CNV of key BIA biosynthesis genes was responsible for the 
diversity in alkaloid yield and composition (Q. Li et al., 2020). 
The same authors reported that BIA genes in the same cluster 
are highly co-expressed, suggesting co-regulation.

Opium poppy breeding has involved extensive selection 
for plants with increased alkaloid yield and varying alkaloid 
compositions, generating a considerable number of varieties 
with diverse alkaloid profiles (Singh et al., 2014). As such, the 
genetic diversity in BIA biosynthetic genes has provided the 
molecular basis for much of the observed variation in alkaloid 
profiles (Millgate et al., 2004; Hagel and Facchini, 2010; Winzer 
et al., 2012, 2015; Pathak et al., 2013; Agarwal et al., 2016). 
A large deletion spanning the 10-gene noscapine cluster re-
gion has led to the development of non-noscapine producing 
cultivars with significantly elevated morphine and/or thebaine 
contents (Winzer et al., 2012). Similarly, the high papaverine-
accumulating variety pap1 and thebaine oripavine poppy 1 va-
riety top1 (also known as Norman) are mutants harbouring 
variations in regulatory and structural genes of the BIA bi-
osynthesis pathway (Millgate et al., 2004; Pathak et al., 2013; 
Agarwal et al., 2016). Despite the strict international regula-
tion that limited licit opium poppy production and germplasm 
movement, germplasm collections of considerable sizes rep-
resenting P. somniferum and other related species are currently 
maintained by various international and national gene banks 
(Bajpai et al., 1999; Brezinova et al., 2009; Dittbrenner et al., 
2012; Celik et al., 2016). Several studies have characterized a 
subset of these resources to show the existence of considerable 
morphological and chemical diversity (Dittbrenner et al., 2012; 
Celik et al., 2016; Verma et al., 2016; Hong et al., 2022).

information to annotate the cells. (B) An overview of opium poppy pangenome construction. Diverse germplasm collections from different geographic 
regions representing landraces, modern cultivars, and their wild relatives are used for whole genome re-sequencing. The data generated are compared 
to the current opium poppy reference genome sequence to identify genome-wide structural variations (SVs), based on which a non-redundant poppy 
pangenome is constructed. The pangenome is used for an in-depth analysis of SVs associated with the BIA biosynthetic genes; as an example, the 
presence of a deletion in the second exon of a candidate BIA biosynthesis gene is shown. Such information will inform genetic improvement of traits of 
commercial interest including total alkaloid yield and composition.
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The development of an opium poppy pangenome that inte-
grates the existing germplasm would be vital for revealing the 
true extent of genetic variability in the genome as well as form-
ing the basis for opium poppy breeding aiming to improve traits 
of commercial interest (Fig. 4B). With long-read sequencing 
becoming increasingly accessible, it will be possible to construct 
a graph-based, non-redundant pangenome that incorporates 
SVs from individual genomes, facilitating the visualization of 
accession-specific sequences in a single resource and making 
comparisons between accessions easier (Garrison et al., 2018; 
Bayer et al., 2020; Zanini et al., 2022). The availability of a poppy 
pangenome promises to shed light on fundamental aspects of 
genetic variation pertaining to the BIA biosynthesis genes. The 
majority of plant pangenomics studies have focused on the var-
iations within the coding regions of genes (Golicz et al., 2016; 
Montenegro et al., 2017; Hurgobin et al., 2018; Y. Liu et al., 2020; 
Walkowiak et al., 2020). However, the presence of genetic vari-
ants in CREs that are associated with genes of interest, such as 
the BIA biosynthesis genes, should not be overlooked; these can 
affect gene expression while reducing the effect of pleiotropy. 
As such, variations in CREs could be exploited for expanding 
the allelic diversity of BIA biosynthesis genes in poppy. More 
specifically, it may be possible to apply genome editing tech-
nologies such as CRISPR/Cas9 to create different types and 
strengths of CRE mutations in genes of interest to investigate 
how these regulatory variations affect BIA biosynthesis genes.

Concluding remarks

The considerable advances in poppy research over the last 
decades have led to remarkable improvements in our know-
ledge of the BIA biosynthesis pathway and the subcellular 
localization of pathway components. Improved genome assem-
blies and genome comparisons across related Papaver species 
have also shed light on the genomic organization of BIA bio-
synthesis genes and the contribution of major genome SVs to 
the generation and maintenance of BIA gene clusters. Current 
reports showing the co-expression of BIA pathway gene 
clusters point to the possibility that these genes are also co- 
regulated. However, our understanding of how opium poppy 
BIA biosynthesis is regulated is still very limited.

Elucidation of the transcriptional and regulatory mechanisms 
of the BIA pathway, especially at the single-cell level, may aid 
with the identification of key regulators that can be targeted 
for improvement of traits of interest and for biotechnological 
applications. To this end, the contribution of single-cell ‘omics’ 
technologies discussed above will be significant. Gene expres-
sion analysis at the single-cell resolution has proved powerful 
in studying transcriptome dynamics associated with the regu-
lation of important biological processes including secondary 
metabolism. The identification of ACRs and CREs that are 
associated with genes of interest will complement these tran-
scriptional studies by providing a comprehensive view of the 
epigenetic regulation of BIA biosynthesis at the single-cell 

level. Last, but not least, the analysis of metabolites at cell-type 
resolution would shed more light on the differential accumu-
lation of BIAs in key cell types and how this process differs 
between tissues and poppy lineages of varying BIA content. 
The integration of these individual modalities with spatial 
transcriptomics is likely to generate crucial data that can fur-
ther our understanding of how the expression of BIA genes is 
coordinated in the different cells/tissues.

Considerable genetic diversity exists in the global poppy 
germplasm collection. This collection provides the genetic 
and chemical diversity that underpins poppy research and 
genetic improvement. The wild relatives of opium poppy are 
also potential sources useful genes that can be deployed to 
improve key traits in commercial poppy cultivars, but these 
resources are underexploited. An opium poppy pangenome 
that captures the diversity in landraces, commercial culti-
vars, and their wild relatives is crucial to unravel the ge-
nome structural variants associated with alkaloid yield and 
composition.
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