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their association with
clinical prognosis
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Background:Osteosarcoma is a malignant tumor originating frommesenchymal

bone tissue, characterized by high malignancy and poor prognosis. Despite

progress in comprehensive treatment approaches, the five-year survival rate

remains largely unchanged, highlighting the need to clarify its underlying

mechanisms and discover new therapeutic targets.

Methods: This study utilized RNA sequencing data from multiple public

databases, encompassing osteosarcoma samples and healthy controls, along

with single-cell RNA sequencing data. Various methods were utilized, such as

differential expression analysis of genes, analysis of metabolic pathways, and

weighted gene co-expression network analysis (WGCNA), to pinpoint crucial

genes. Using this list of genes, we developed and validated a prognostic model

that incorporated risk signatures, and we evaluated the effectiveness of the

model through survival analysis, immune cell infiltration examination, and drug

sensitivity evaluation.

Results: We analyzed gene expression and metabolic pathways in nine samples

using single-cell sequencing data. Initially, we performed quality control and

clustering, identifying 21 statistically significant cell subpopulations. Metabolic

analyses of these subpopulations revealed heterogeneous activation of

metabolic pathways. Focusing on the osteoblastic cell subpopulation, we

further subdivided it into six groups and examined their gene expression and

differentiation capabilities. Differential expression and enrichment analyses

indicated that tumor tissues were enriched in cytoskeletal and structural

pathways. Through WGCNA, we identified core genes negatively correlated

with four highly activated metabolic pathways. Using osteosarcoma patient

data, we developed a risk signature model that demonstrated robust

prognostic predictions across three independent cohorts. Ultimately, we

performed a thorough examination of the model, which encompassed clinical

and pathological characteristics, enrichment analysis, pathways associated with

cancer markers, and scores of immune infiltration, highlighting notable and

complex disparities between high-risk and low-risk populations.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1507476/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1507476/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1507476/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1507476/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1507476/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1507476&domain=pdf&date_stamp=2024-12-06
mailto:18163132366@163.com
https://doi.org/10.3389/fimmu.2024.1507476
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1507476
https://www.frontiersin.org/journals/immunology


Qin et al. 10.3389/fimmu.2024.1507476

Frontiers in Immunology
Conclusion: This research clarifies the molecular mechanisms and metabolic

features associated with osteosarcoma and how they relate to patient outcomes,

offering novel perspectives and approaches for targeted therapy and prognostic

assessment in osteosarcoma.
KEYWORDS

osteosarcoma, metabolic pathways, comprehensive analysis, immune infiltration,
prognostic analysis
1 Introduction

Osteosarcoma, also known as osteogenic sarcoma, is a

malignant tumor originating from mesenchymal bone tissue,

characterized by its ability to produce bone-like tissue or bone

matrix (1, 2). Osteosarcoma is the most prevalent primary

malignant bone cancer, particularly affecting adolescents with a

notable frequency (3, 4). This condition demonstrates a

considerable level of aggressiveness and frequently results in an

unfavorable prognosis, creating a considerable strain on both

patients and their families. The treatment of osteosarcoma is

constrained by tumor characteristics, chemosensitivity, and the

challenges posed by post-recurrence therapy. Despite recent

advances in comprehensive treatment modalities, including

surgery, chemotherapy, and radiotherapy, the five-year survival

rate for osteosarcoma patients has not seen significant

improvement, leaving them facing substantial therapeutic

challenges (5). Therefore, exploring the pathogenesis of

osteosarcoma and identifying new therapeutic targets is of utmost

importance (6, 7).

Carbohydrate metabolism, lipid metabolism, and nucleotide

metabolism are critical for maintaining normal biological functions

in cells, including tumor cells (8). The biosynthesis of

glycosylphosphatidylinositol (GPI) anchors represents a significant

post-translational modification that facilitates the attachment of non-

transmembrane proteins to the outer layer of the plasma membrane

(9). This modification plays a role in various biological functions,

including signal transduction, cell adhesion, transport, and

metabolism (10). On the other hand, the synthesis of

glycosaminoglycans, especially heparan sulfate/heparin, is a

multifaceted process characterized by the enzymatic action of

several different enzymes (11). Glycosaminoglycans consist of linear

polysaccharide chains made up of repeating disaccharide units (12).

Heparan sulfate/heparin is critical for providing both structural

support and regulatory functions within the extracellular matrix

and on cell surfaces, influencing a wide array of biological

activities, such as adhesion between cells, signaling processes, blood

clotting, and the formation of new blood vessels. Glycolysis and

gluconeogenesis are core pathways in the body’s energy metabolism.

Glycolysis is the process of breaking down glucose into pyruvate,
02
generating ATP, while gluconeogenesis refers to the conversion of

non-carbohydrate precursors into glucose or glycogen (13, 14). Both

glycolysis and gluconeogenesis play crucial roles inmaintaining blood

glucose levels, providing energy, and regulating metabolic balance.

The biosynthesis of unsaturated fatty acids also involves the catalytic

activity of various enzymes (15). Unsaturated fatty acids are

important components of cell membranes, critical for maintaining

membrane fluidity and stability (16, 17). Furthermore, unsaturated

fatty acids are involved in various biological processes such as signal

transduction, cell adhesion, and inflammatory responses. Given that

osteosarcoma is a malignant connective tissue tumor, its development

may be associated with disturbances in the aforementioned metabolic

and biosynthetic processes.

To enhance our comprehension of the regulatory mechanisms

governing gene expression in osteosarcoma and its association with

cellular metabolism, we acquired bulk RNA sequencing data from

both osteosarcoma tissues and healthy control samples sourced

from various public databases (18). With this data, we performed

differential expression analysis, enrichment analysis, and weighted

gene co-expression network analysis (WGCNA) to identify genes

with aberrant expression, relevant pathways, and gene co-

expression modules linked to osteosarcoma (19). This

foundational work will facilitate subsequent functional studies

and therapeutic target identification. Additionally, we employed

single-cell RNA sequencing (scRNA-seq) to analyze gene

expression at the single-cell level within osteosarcoma tissues.

Through clustering analysis, metabolic profiling, and pseudotime

analysis, we explored the heterogeneity, metabolic characteristics,

and developmental trajectories of osteosarcoma cells. The analyses

of differential expression and enrichment revealed numerous genes

and pathways exhibiting markedly abnormal expression patterns in

osteosarcoma, which are closely associated with biological processes

including malignant proliferation, invasion, and metastasis.

Based on the analyses, we constructed a risk signature model for

osteosarcoma patients using the TARGET-OS cohort. This model

integrates core genes identified through WGCNA, marker genes

derived from single-cell analyses, and differentially expressed genes.

Optimal prognostic gene combinations were selected using Cox

regression and LASSO regression analyses. The risk signature

model demonstrated robust predictive efficacy across three
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independent cohorts, promising to provide valuable support for the

prognostic assessment and individualized treatment of

osteosarcoma patients. To further validate the clinical relevance of

this risk signature model, we conducted comprehensive biological

and immunological analyses. Through the comparison of variations

in gene expression, clinical and pathological characteristics, and the

extent of immune cell infiltration among various risk categories, we

observed that the group identified as high-risk demonstrated worse

prognostic indicators on multiple fronts. These findings not only

further validate the effectiveness of the risk signature model but also

reveal potential mechanisms underlying poor prognosis in

osteosarcoma patients.

In summary, this study systematically analyzes gene expression in

osteosarcoma, elucidating its pathogenesis andmetabolic characteristics,

andconstructs a risk signaturemodel forosteosarcomapatientsbasedon

the TARGET-OS cohort. This model provides significant support for

prognostic evaluation and individualized treatment, laying the

groundwork for further functional studies and therapeutic target

identification. The findings contribute to a deeper understanding of

the pathogenesis of osteosarcoma and offer new avenues for developing

treatment strategies.
2 Materials and methods

2.1 Data acquisition and preprocessing

We obtained osteosarcoma or healthy control tissue data from

three sources: (1) 88 cases of bulk RNA-seq data from osteosarcoma

within the TARGET-OS dataset , downloaded via the

“TCGAbiolinks” R package; (2) 395 cases of bulk RNA-seq data

from healthy control tissues (muscle and bone tissues), downloaded

from the Genotype-Tissue Expression (GTEx, www.gtexportal.org/

home/index.html) portal (20); (3) three collections of data were

obtained from the Gene Expression Omnibus (GEO) database

utilizing the “GEOquery” R package: GSE21257, which includes

53 cases of bulk RNA-seq data related to osteosarcoma; GSE16091,

comprising 34 cases of bulk RNA-seq data concerning

osteosarcoma; and GSE152048, consisting of 9 cases of single-cell

RNA-seq (ScRNA-seq) data pertaining to osteosarcoma (21).

Leveraging the Combat function available in the “sva” package,

we combined the TARGET-OS and GTEx datasets. Following this,

the expression data underwent normalization to the Transcripts Per

Kilobase of exon model per Million mapped reads (TPM) format.

Any patient records with incomplete information were excluded.

All data used in this study were sourced from public databases that

allow unrestricted downloading and reuse. We ensured that all our

analyses complied with relevant regulations, thus obviating the need

for additional ethical approval.
2.2 Single-cell sequencing data analysis

The “Seurat” package (version 3.1.5; http://satijalab.org/seurat/)

was utilized within the R software environment (version 3.6.1) to

analyze the raw output data for each sample individually. Cells with
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fewer than 300 expressed genes or those with mitochondrial genes

representing more than 10% of the total expressed genes were

excluded from the analysis. Moreover, potential doublets (and, to a

lesser degree, higher-order multiplets) that appeared during the

encapsulation process or as pairs of undissociated cells during

sample preparation were removed using the “DoubletFinder”

package (version 2.0.2) in R. To address batch effects and

integrate the various samples, the “harmony” R package was

employed. Violin plots were created to illustrate the number of

genes and transcripts identified in each sample. To pinpoint genes

exhibiting significant intercellular variation in expression, we

calculated both expression differences and mean expression levels

across different cell subpopulations. For reducing dimensionality,

we used the Uniform Manifold Approximation and Projection

(UMAP) algorithm to explore the distribution of cell

subpopulations within each sample (22). Additionally, Principal

Component Analysis (PCA) was employed to differentiate cell

subpopulations at a resolution of 0.6, with UMAP plots

facilitating the visualization of the distribution of each

subpopulation and their variations across different samples. By

leveraging the composition of marker genes, we annotated major

cell types using the “SingleR” package and visualized the expression

patterns of characteristic genes for each cell subpopulation.

The “scMetabolism” R package was employed to evaluate the

metabolic levels within specific cell clusters. Bubble plots were created

to represent the highly activated metabolic processes across different

cell clusters, whereas box plots were used to show the activity of four

significantly active metabolic pathways in osteoblasts. Subsequently,

we conducted unsupervised clustering analysis with the

“ConsensusClusterPlus” R package, based on the metabolic levels of

upregulatedpathways inosteoblastic cells.The ideal numberof clusters

was established by finding the minimum median Proportion of

Ambiguous Clustering (PAC) value. Subsequently, we utilized the

“scMetabolism” R package once again to evaluate the metabolic levels

of cells within each cluster. Utilizing the FindMarkers function from

the “Seurat 4.4” R package, we pinpointed genes with high expression

levels in cells of Cluster 1. These identified genes were then analyzed

through Over Representation Analysis (ORA, which includes GO and

KEGG) as well as Gene Set Enrichment Analysis (GSEA, specifically

gseKEGG) by employing the “clusterProfiler” R package to assess

functional enrichment.

We isolated the osteoblastic cell subpopulation and subjected it to

further dimensionality reduction and clustering. Volcano plots were

employed to visualize significant genes within each subpopulation.

CytoTRACE2was utilized topredict the cellular potential and absolute

developmental potential of each subpopulation. Additionally, we

conducted pseudotime analysis of the subpopulations using

monocle2. Lastly, we examined the changes in upregulated

metabolic pathways in osteoblastic cells over pseudotime.
2.3 Differential expression analysis and
enrichment analysis

By employing the “limma” R package, we discovered

differentially expressed genes (DEGs) from the merged TARGET-
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OS and GTEx datasets, with the selection criteria set as |logFC| > 1

and adj.p.Val < 0.05, comparing cancerous tissues to normal tissues.

Visualization of these results was achieved through the generation

of volcano plots and heatmaps. Following this, an analysis of Gene

Ontology (GO) was carried out on the DEGs, showcasing the five

most significant pathways categorized under Biological Process

(BP), Cellular Component (CC), and Molecular Function (MF).

In addition, a Kyoto Encyclopedia of Genes and Genomes (KEGG)

analysis was executed on the DEGs, identifying the 20 pathways that

exhibited the greatest statistical significance.
2.4 Weighted gene co-expression
network analysis

We initially employed Gene Set Variation Analysis (GSVA) to

assess the scores of four highly activated metabolic pathways across

individual samples within the combined TARGET-OS and GTEx

datasets. Subsequently, WGCNA was utilized to identify genes

associated with osteosarcoma metabolism. Initially, a gene co-

expression network was constructed. By calculating the scale-free

topology index under varying soft-thresholding powers (b), we
determined the optimal b value for network construction. Next,

we employed a hierarchical clustering algorithm to partition the

network into multiple co-expression modules, each represented by a

distinct color. To further investigate the relationship between these

modules and the four metabolic pathways, we computed the

correlations between module eigengenes and the four metabolic

pathways, generating a module eigengene heatmap. Modules with

absolute correlation coefficients greater than 0.3 and statistical

significance were prioritized for further analysis. In these

modules, we explored the relationship between module

membership and the importance of genes to pinpoint hub genes.

Ultimately, we performed GO enrichment analysis on the key genes

found within these modules.
2.5 Risk signature based on osteosarcoma
patients from the TARGET-OS cohort

To establish a risk signature using the TARGET-OS cohort as the

training set, we first identified the intersection of core genes from

WGCNAanalysis, marker genes derived from single-cell analysis, and

DEGs, and visualized this intersection using aVenn diagram.Next, we

carried out a univariate Cox regression analysis focused on the

intersecting genes to evaluate their link to patient survival.

Afterward, we executed Least Absolute Shrinkage and Selection

Operator (LASSO) regression analysis on those same intersecting

genes, identifying the best prognostic genes using the optimal

parameter l. The formula was utilized to calculate the score for each

patient:

Risk   score =oi=1
n ½GeneExpi*Coefficienti�

According to the median score, samples from patients with

osteosarcoma were divided into groups of high and low risk. We

used GSE21257 and GSE16091 for validation purposes. In the end,
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Kaplan-Meier curves were used to depict the survival outcomes for

each group across three separate cohorts. Furthermore, we plotted

time-dependent receiver operating characteristic (ROC) curves to

evaluate the discriminatory power for patient survival at various

time points (1, 3, and 5 years).
2.6 Further analysis of the model

We first analyzed the differences in gene expression and clinical

pathological features between the two risk groups. Following this,

the “limma” R package was utilized to identify DEGs, and GSEA

was performed to illustrate the KEGG pathways that were

upregulated and downregulated in connection with these DEGs.

Next, we retrieved cancer hallmarks from the Molecular Signatures

Database (MSigDB, https://www.gsea-msigdb.org/gsea/msigdb)

and compared the scores of different cancer hallmark pathways

across the groups using GSVA.

We utilized the CIBERSORT algorithm via the “IOBR” R

package to calculate the levels of immune cell infiltration,

subsequently comparing these levels across the two risk

categories. Afterward, we evaluated the variations in the

expression of immune factors and estimated the therapeutic

impacts of immune checkpoint inhibitors, relying on Tumor

Immune Dysfunction and Exclusion (TIDE) scores. Next, we

examined the differences in pro-tumor immune cells, particularly

Cancer-Associated Fibroblasts (CAF) and Myeloid-Derived

Suppressor Cells (MDSC), between the two groups. In conclusion,

we employed the “OncoPredict” R package to assess the drug

responsiveness of each group.
2.7 Cell culture

In this study, the following cell lines were utilized for in vitro

experiments: Normal Human Osteoblast (NHOST) Cells, MG63,

SAOS2, U2OS, and HOS (from the Chinese Academy of Sciences

Cell Bank). Among these, NHOST served as the normal control cell

line, while the others were classified as tumor cell lines. NHOST was

cultured in OGM BulletKit (Lonza, Switzerland) medium; MG63

was maintained in Minimum Essential Medium (MEM, Hyclone,

USA); SAOS2 and U2OS were cultured using McCoy’s 5A medium

(Hyclone, USA); and HOS was grown in Dulbecco’s Modified Eagle

Medium (DMEM, Hyclone, USA). All culture media were

supplemented with 10% fetal bovine serum (FBS, Hyclone, USA),

and 1% penicillin-streptomycin mixed solution (Keygen, China)

was added to inhibit bacterial growth. All cells were incubated in a

humidified environment at 37°C with 5% CO2 to maintain

logarithmic growth.
2.8 Transfection

Transfection experiments were performed on the MG63 and

SAOS2 cell lines, utilizing siRNA (Sangon, China) for transient

transfection to knock down the COL5A1 gene. A negative control
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(NC) was used as a reference group. Initially, cells were seeded in

six-well plates and allowed to reach 80% confluency. A suitable

amount of Opti-MEM reduced serum medium (Thermo, USA) was

used to dissolve Lipofectamine 3000 (Thermo, USA) and siRNA,

followed by a 5-minute incubation. The two solutions were then

mixed and allowed to sit for 20 minutes before being added to the

six-well plates. After transfection, the culture medium was replaced

after 5 hours. During transfection, no antibiotics were added to any

medium to avoid their effect on cell activity.
2.9 Total RNA extraction and RT-qPCR

Cells were digested and collected at the bottom of the tube.

Trizol (Takara, Japan) was used to lyse the cells with 950 ml to
inhibit RNAse activity. After 5 minutes, 150 ml of chloroform

(China National Pharmaceutical Group, China) was added, and

the mixture was vortexed until it resembled watermelon juice. After

centrifugation for 5 minutes, the supernatant was collected and

mixed with an equal volume of isopropanol (SINOPHARM, China)

to precipitate RNA. The mixture was then centrifuged again for 5

minutes, retaining the precipitate, which was washed with 1 ml of

75% ethanol or anhydrous ethanol, and thoroughly dried. All

operations were conducted to ensure the absence of RNAse

contamination, and the RNA concentration, DNA contamination,

and protein contamination were measured post-extraction.

Subsequently, the PrimeScript RT kit (TaKaRa, Japan) was

employed to el iminate genomic DNA. Based on the

manufacturer’s recommendations and the measured RNA

concentration, an appropriate liquid mix was prepared to remove

DNA. Reverse transcription was then performed to generate cDNA.

Real-time quantitative PCR analysis was conducted based on the

SYBR GreenER Supermix (TaKaRa, Japan) instructions, with all

samples and reagents pre-mixed and analyzed on a Roche480 PCR

system (Roche, Switzerland). Each group included three technical

replicates, with b-actin serving as the internal control.
2.10 Cell counting kit-8

Twenty-four hours post-transfection, cells were seeded into a

96-well plate (4000 cells/well) and allowed to adhere, with three

technical replicates set for each group. CCK8 reagent (KeyGEN,

China) was pre-mixed with the culture medium according to the

manufacturer’s instructions, resulting in a final volume of 100 ml per
well. The plates were then shielded from light and placed in

the incubator. After 1.5 hours, the cells were analyzed using a

spectrophotometer at a wavelength of 450 nm, with measurements

repeated at various time points.
2.11 Statistical analysis

In this research, a survival analysis was carried out utilizing the

Kaplan-Meier technique, while the log-rank test was applied to
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assess and compare the survival curves of individuals categorized

into high-risk and low-risk groups. The area under the receiver

operating characteristic (ROC) curve (AUC) was determined, with

an AUC exceeding 0.6 interpreted as a sign of reliable test

performance. A p-value below 0.05 was considered statistically

significant in all evaluations. All statistical procedures were

executed using R software (version 4.3.1).
3 Results

3.1 Single-cell sequencing data analysis

We conducted quality control by comparing the number of

detected genes and transcripts across the selected nine samples

(Figure 1A). Analysis of gene expression differences and average

expression levels in various cell subpopulations revealed significant

expression differences for MYLPF, MYL1, HBB, TNNC2, HBA2,

HBA1, PLA2G2A, MYH3, ACTC1, and FABP4 across these

subpopulations (Figure 1B). The UMAP plot illustrated a

mathematically uniform distribution of cells from the nine

samples (Figure 1C). Subsequently, we applied Principal

Component Analysis (PCA) to cluster the cell subpopulations.

The clustering yielded 21 distinct cell subpopulations, which

exhibited the lowest standard deviation and statistically significant

results (Figure 1D). The UMAP plot also demonstrated effective

clustering of the different cell subpopulations (Figure 1E). This

clustering approach effectively distinguished between cell

populations across the various samples (Figure 1F). Next, we

identified and annotated the cell subpopulations based on

biological classification, resulting in Osteoblastic cells (44130),

Neurons (4588), T cells (5795), Macrophages (17310), MSC

(3595), Endothelial cells (2872), Monocytes (5225), and Tissue

stem cells (2782) (Figure 1G). Finally, we visualized the marker

genes for each cell subpopulation (Figure 1H).
3.2 Metabolic analysis of single-
cell subpopulations

There is heterogeneity in the activity of various metabolic

pathways across different cell subpopulations. Glycerophospholipid

metabolism is notably activated in Endothelial cells, Monocytes, and

Macrophages. Interestingly, we observed that the metabolic pathways

of Glycosylphosphatidylinositol (GPI)-anchor biosynthesis,

Glycosaminoglycan biosynthesis—specifically heparan sulfate/

heparin, Glycolysis/Gluconeogenesis, and Biosynthesis of

unsaturated fatty acids are highly activated in Osteoblastic cells,

Neurons, and Mesenchymal Stem Cells (MSC). The overall

activation levels of metabolic pathways also display heterogeneity

across the subpopulations, with the Macrophage subpopulation

exhibiting the highest number of active metabolic pathways, while

all pathways in T cells remain inactive. In the Osteoblastic cell

subpopulation, the aforementioned four metabolic pathways are

significantly activated (Figure 2A). We presented a box plot to
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illustrate the activation levels of these pathways across different cell

subpopulations, showing that their activation in Osteoblastic cells is

generally higher than in the other subpopulations (Figure 2B).

Subsequently, we performed consensus clustering, which

exhibited high cohesion and low coupling when the number of

clusters (k) was set to 2 (Figure 2C). At this point, the PAC value
Frontiers in Immunology 06
was at its minimum (Figure 2D). The differences in activation levels

across the four metabolic pathways were examined between the two

clusters, showing that cluster 1 exhibits notably greater pathway

activation than cluster 2 (Figure 2E).

Next, we examined the highly expressed genes in cluster 1 and

conducted an Over-Representation Analysis (ORA). The results
FIGURE 1

Identification of 8 cell clusters with diverse annotations revealing high cellular heterogeneity in OS based on single-cell RNA-seq data. (A) After
quality control of scRNA-seq, 86297 core cells were identified. (B) The variance diagram shows the variation of gene expression in all cells of OS.
The red dots represent highly variable genes and the black dots represent non-variable genes. (C) UMAP showed a clear separation of cells in OS.
(D) PCA identified the top 20 PCs at p<0.05. (E) The umap algorithm was applied to the top 20 PCs for dimensionality reduction, and 21 cell clusters
were successfully classified. (F) Classification of cell clusters in each sample. (G) All 8 cell clusters in OS were annotated with SingleR and CellMarker
according to the composition of marker genes. (H) Expression levels of marker genes for each cell cluster.
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indicated that the cells in cluster 1 are enriched in pathways and

biological processes related to cellular metabolism and catabolism

(nucleobase-containing compound catabolic process, pyrimidine

nucleotide metabolic process), apoptosis and cell death (positive

regulation of proteolysis, release of cytochrome c from

mitochondria), and nucleocytoplasmic transport (nucleocytoplasmic

transport, nuclear transport, protein localization to chromosome). In

contrast, the cells found in cluster 1 exhibited a downregulation in
Frontiers in Immunology 07
pathways or biological processes related to RNA splicing and

processing (involvement of actomyosin in RNA splicing through

transesterification reactions involving bulged adenosine as a

nucleophile, splicing of RNA via transesterification reactions, and

mRNA splicing through the spliceosome), cell adhesion and junctions

(including focal adhesion and cell-substrate junctions), as well as

nuclear structure and function (nuclear speck) (Figure 2F). The results

of the KEGG analysis revealed that the cells within cluster 1 exhibited
FIGURE 2

Identification of cell clusters with highly activated metabolism activities in OS at the single cell level. (A) The highly activated metabolic process of in
each cell cluster revealed by the “scMetabolism” R package. (B) Boxplots showing the activities of four highly activated metabolic pathways in
osteoblastic cells. (C) Consensus matrix(k=2). (D) The proportion of ambiguous clustering (PAC) score, a low value of PAC implies a flat middle
segment, allowing conjecture of the optimal k (k = 2) by the lowest PAC. (E) Two distinct metabolism patterns of OS at the single-cell level
unraveled by the unsupervised clustering. (F–H) Barplot reveals the dysregulated GO-BP terms (F) and KEGG pathways (G, H) in OS cells with highly
activated metabolism activities.
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a decrease in oxidative phosphorylation while demonstrating an

increase in pathways associated with adherens junctions, focal

adhesion, leukocyte transendothelial migration, platelet activation,

and vascular smooth muscle contraction (Figures 2G-H).
3.3 Analysis of osteoblastic
cell subpopulations

We performed dimensionality reduction clustering on 44,130

Osteoblastic cells, identifying a total of six distinct subpopulations

(Figure 3A). The volcano plot revealed heterogeneity in the top five

highly expressed or lowly expressed genes among the

subpopulations. Notably, the gene expression profile of the C5
Frontiers in Immunology 08
subpopulation was significantly different from that of the other

subpopulations. Specifically, SSPN was markedly underexpressed in

all other subpopulations but exhibited the opposite trend in C5;

ASPN, COL12A1, COL1A1, and LRP1 were significantly

underexpressed in certain subpopulations but were upregulated in

C5; conversely, MT1X was lowly expressed in C5 but highly

expressed in C1 (Figure 3B). Results from CytoTRACE2 indicated

that C3 possesses the highest differentiation potential, while C2, C1,

C0, and C4 displayed similar potentials. C5 had the lowest

differentiation potential (Figure 3C). The results from pseudo-

time analysis were consistent, with C4 located at the starting

point of the pseudo-time trajectory, followed by C3. As pseudo-

time increased, differentiation into C2, C1, and C0 occurred, with

C5 positioned at the endpoint of the pseudo-time path (Figure 3D).
FIGURE 3

Trajectory analysis of OS cell subsets with distinct differentiation patterns. (A) UMAP visualization of the subsets of osteoblastic cells. (B) Volcano
plots showing the celltype-specific markers of each subset. (C) Boxplots showing the predicted cellular potency and absolute developmental
potential of osteoblastic cell subset. (D) Trajectory analysis revealed cell subsets of osteoblastic cells with distinct differentiation states. (E) The
variations of metabolic pathway activities along with the pseudotime.
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Interestingly, despite C4 theoretically appearing earlier in the

pseudo-time framework than C3, its differentiation potential was

not as robust as that of C3. The activity levels of the four metabolic

pathways also mirrored these findings. The pathways in C4, C3, and

C0 were activated earlier and with greater intensity, while C1 and

C2 followed closely behind. C5 exhibited the latest activation and

the lowest intensity of pathway activation (Figure 3E).
3.4 Differential expression and
enrichment analysis

We conducted a differential expression analysis on the merged

bulk RNA sequencing dataset, visualizing the results through volcano

plots and heatmaps. Overall, the number of genes expressed at higher

levels in the tumor group was significantly greater (Figures 4A, B).

GeneOntology (GO) analysis of theDEGs indicated that tumor tissues
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were primarily enriched in processes related to cell signaling and

regulation (small GTPase mediated signal transduction, nucleoside-

triphosphatase regulator activity, GTPase regulator activity), cell

structure and motility (extracellular structure organization, external

encapsulating structure organization, extracellular matrix

organization, cell-substrate junction, focal adhesion, cell leading

edge, lamellipodium), bone and connective tissue development

(bone development, collagen binding), and intracellular structure

and function (endoplasmic reticulum lumen, actin binding)

(Figure 4C). The results from the KEGG pathway analysis were

consistent, showing that tumor tissues were predominantly enriched

in pathways related to cytoskeleton and structure (Cytoskeleton in

muscle cells, Regulation of actin cytoskeleton, Focal adhesion,

Adherens junction), cell cycle and proliferation (Cell cycle), signaling

and regulation (Rap1 signaling pathway, Wnt signaling pathway,

PI3K-Akt signaling pathway, Sphingolipid signaling pathway), as

well as Proteoglycans in cancer (Figure 4D).
FIGURE 4

Identification and functional enrichment analysis of DEGs between OS patients and controls. (A) Volcano plot of DEGs between OS and control in
the merged cohort of TARGET-OS and GTEx. P<0.05 and |log2FoldChange|>1 were identified as significant DEGs. (B) b Heatmap of DEGs. (C, D)
Barplots of the BP, CC, MF (C), and KEGG pathways (D) of DEGs.
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3.5 WGCNA

We first employed GSVA to evaluate the scores of four highly

activated metabolic pathways across samples in the merged dataset

(Figure 5A). Subsequently, we determined the optimal soft

threshold (b) for constructing a scale-free network by analyzing

scale independence and mean connectivity (Figures 5B, C). We

calculated the correlation between module characteristics and the

four metabolic pathways, revealing a significant negative correlation

of the MEyellow module with all four pathways (R < -0.3, p < 0.01,

Figure 5D). Next, we performed further filtering of the genes within

this module to identify core genes (Figure 5E). The Gene Ontology

(GO) analysis of these core genes indicated significant enrichment

in several biological functions (Figure 5F), including nucleic acid

enzymatic activity and DNA metabolism (nuclease activity, ATP-

dependent activity acting on DNA, snRNA 3’-end processing),

redox reactions and metabolism (oxidoreductase activity, carbon-
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nitrogen lyase activity), signaling and receptor binding (activin

receptor binding), cellular structure and connections (centriole,

tight junction, bicellular tight junction, lateral element),

intracellular transport and membrane structures (trans-Golgi

network membrane, clathrin coat, intraflagellar transport particle,

integrator complex, intraflagellar transport particle B), as well as cell

cycle regulation (negative regulation of cell cycle).
3.6 Risk signature for osteosarcoma
patients based on the TARGET-OS cohort

We first identified the intersection of core genes from the

WGCNA analysis, marker genes obtained from single-cell

analysis, and DEGs, visualizing the results using a Venn diagram

(Figure 6A). A univariate Cox regression analysis of the intersected

genes revealed heterogeneity in their prognostic impacts
FIGURE 5

Metabolism-related genes were screened by WGCNA. (A) Heatmap of the four highly activated metabolic pathways. (B) Analysis of the scale-free
index for various soft-threshold powers (b). (C) Cluster dendrogram of the coexpression modules. Each color indicates a co-expression module. (D)
Module-trait heatmap displaying the correlation between module eigengenes and clinical traits. (E) Correlation between module membership and
gene significance in the yellow modules. Dots in colors were regarded as the hub genes of the module. (F) The top enriched GO terms of the hub
genes of the module.
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(Figure 6B). Afterward, we conducted LASSO regression analysis on

the genes that intersected (Figure 6C) and determined the best

lambda value of 0.040, resulting in the subsequent formula for the

risk score:

Risk score = PTK7∗( − 0:015) + COL5A2∗( − 0:108) + COL5A1∗

( − 0:122) + ALPL∗( − 0:093) + MDFI∗(0:143) + SDC2∗

( − 0:012) + TMSB4XP8∗( − 0:159) + SPP1∗( − 0:103)

Kaplan-Meier survival curves demonstrated that the high-risk

group exhibited significantly poorer survival compared to the low-

risk group across three independent cohorts (AUC>0.6,

Figures 6D, E).
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3.7 Further analysis of the model

Heatmaps were employed to illustrate the differences in

expression levels of model genes alongside clinical pathological

characteristics across the two risk categories (Figure 7A). It is

important to highlight that the high-risk category exhibited an

elevated mortality rate, with patients who had passed away showing

significantly increased risk scores (p < 0.05, Figures 7C, D).

Subsequently, we pinpointed DEGs between the two risk

categories and performed GSEA on these identified DEGs. The

Wnt Signaling Pathway showed significant upregulation in the

high-risk category (Normalized Enrichment Score (NES) = 1.85,
FIGURE 6

Construction of risk signature in the TARGET-OS cohort. (A) Venn diagram analysis of hub genes of modules, single-cell markers, and DEGs from
TARGET-OS bulk cohort. (B) Univariate cox regression analysis of 39 genes in TARGET-OS cohort. (C) The selection of prognostic genes based on
the optimal parameter l that was obtained in the LASSO regression analysis. (D) K-M curves displayed survival outcomes of patients in two risk
groups from the three cohorts. (E) Time-dependent ROC curves were drawn to assess survival rate at 1-year, 3-year, and 5-year in the three cohort.
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p = 0.01, Figure 8A), whereas the Nod-Like Receptor Signaling

Pathway was prominently upregulated in the low-risk category

(NES = -1.78, p < 0.05, Figure 8B).

Using GSVA, we assessed the scores of multiple cancer hallmark

pathways between the two groups. The findings demonstrated that the

high-risk group had notably lower scores in various pathways, such as

Allograft Rejection, Apoptosis, Complement, IL2-STAT5 Signaling,

Inflammatory Response, Interferon Gamma Response, Peroxisome,

and the Reactive Oxygen Species Pathway (p < 0.05, Figure 8C).

Additionally, we determined the levels of immune cell infiltration for

both risk groups utilizing the CIBERSORT algorithm. The results

indicated that the low-risk group showed significantly higher levels of

immune cell infiltration across all examined immune cell types

compared to the high-risk group (p < 0.01, Figure 9A). In particular,

immune-related genes including LAYN, HAVCR2, PDCD1, LAG3,

CCL2, IL6, CXCR2, TGFB1, CXCR4, TGFB2, IL10, and TGFB3 were

substantially elevated in the high-risk group (p < 0.05, Figures 9B, C).

Moreover, the TIDE scores indicated that the percentage of patients in

the high-risk category classified as “True”was significantly lower than

that in the low-risk category (p = 0.002, Figure 9D). This observation

implies that patients in the high-risk group may have heightened

tumor immune evasion capabilities, which can lead to variations in

immunotherapy response and potentially poorer prognosis.

Furthermore, the concentrations of cancer-associated fibroblasts

(CAF) and myeloid-derived suppressor cells (MDSC) were

significantly elevated in the high-risk group (p < 0.001, Figure 9E).

Finally, we conducted drug sensitivity assessments, which illustrated
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that individuals in the high-risk group showed diminished sensitivity

to several therapeutic agents, including AZD5582, JAK inhibitors,

Ruxolitinib, and Staurosporine, when compared to those in the low-

risk group (p < 0.05, Figure 9F). This suggests that the high-risk cohort

may exhibit resistance to certain treatment modalities.
3.8 COL5A1 promotes proliferation of
osteosarcoma cells

Currently, there is a lack of research on the role of COL5A1 in

osteosarcoma cells; therefore, we selected this gene from our model

for further experimental validation. Comparative expression

analysis among the cell lines revealed that COL5A1 was

significantly overexpressed in osteosarcoma cell lines (p < 0.05,

Figure 10A). Subsequently, we performed knockdown experiments

in two cell lines, demonstrating a high knockdown efficiency (p <

0.01, Figure 10B). Results from the CCK8 assay indicated that

knockdown of COL5A1 significantly inhibited the proliferation of

tumor cells (p < 0.01, Figures 10C, D). These findings suggest that

COL5A1 plays a role in promoting osteosarcoma cell proliferation.
4 Discussion

Osteosarcoma, also known as osteogenic sarcoma, is a malignant

tumor that originates from mesenchymal bone tissue and is
FIGURE 7

Correlation analysis of risk scores with clinical characteristics. (A) Heatmap of risk model and clinical characteristics. (B-D) Relationship between age,
stage, and survival status with the analysis model.
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characterized by the direct production of osteoid or bone matrix by

tumor cells (23). The most frequently occurring primary malignant

bone tumor primarily impacts adolescents between the ages of 10 and

20, as well as individuals older than 65, showing a slightly greater

prevalence in males compared to females (24). The tumor primarily

affects long bones, such as the distal femur and proximal tibia, and

exhibits certain hereditary predispositions and geographic variations.

Osteosarcoma is highly malignant, and its prognosis is often poor.

Various factors influence the prognosis, but early detection and

standardized comprehensive treatment are crucial for improving

patient survival rates. In spite of the recent progress made in

surgical, chemotherapy, and radiotherapy techniques, the five-year

survival rate for patients with osteosarcoma has seen little

improvement, posing considerable challenges for treatment.

GPI-anchor biosynthesis is a vital post-translational modification

process that involves anchoring non-transmembrane proteins to the

outer leaflet of the cytoplasmic membrane, thereby participating in

various biological processes, including signal transduction, cell

adhesion, transport, and metabolism (25, 26). The creation of

glycosaminoglycans, particularly heparan sulfate/heparin, is a

multifaceted process that requires the enzymatic activity of several

different enzymes. Glycosaminoglycans belong to a group of linear

polysaccharides made up of repeating units of disaccharides.

Acetylated heparan sulfate/heparin serves an important structural
Frontiers in Immunology 13
and regulatory function within the extracellular matrix and on cellular

surfaces, engaging in a variety of biological activities, including cell

adhesion, signal transduction, coagulation, and angiogenesis (27).

Glycolysis and gluconeogenesis represent core pathways in energy

metabolism (28, 29). Glycolysis involves the breakdown of glucose

into pyruvate, generating ATP, while gluconeogenesis refers to the

conversion of non-carbohydrate precursors into glucose or glycogen

(30). Both pathways play critical roles in maintaining blood glucose

levels, providing energy, and regulating metabolic balance. The

biosynthesis of unsaturated fatty acids involves the catalytic action

of various enzymes. Unsaturated fatty acids are essential components

of cell membranes, crucial for maintaining membrane fluidity and

stability. Additionally, unsaturated fatty acids participate in various

biological processes, including signal transduction, cell adhesion, and

inflammatory responses.

Through our examination of single-cell sequencing data, we

discovered various cellular subpopulations within osteosarcoma

tissue, highlighting the metabolic diversity present among these

groups. Notably, the metabolic pathways of GPI-anchor

biosynthesis, glycosaminoglycan biosynthesis (heparan sulfate/

heparin), glycolysis/gluconeogenesis, and the biosynthesis of

unsaturated fatty acids were highly activated in osteoblastic cells.

These findings not only enhance our understanding of the

metabolic characteristics of osteosarcoma but also provide clues
FIGURE 8

Biological characteristics between high-and low-risk groups. (A, B) The upregulated (A) and downregulated (B) KEGG pathways in high-risk group.
(C) The differences of estimated GSVA scores of cancer hallmarks between high- and low-risk groups.
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for the development of new therapeutic strategies. Furthermore, we

conducted a detailed analysis of the osteoblastic cell subpopulations.

Through dimensionality reduction and clustering, we identified six

subpopulations, revealing heterogeneity in gene expression among

them. Results from CytoTRACE2 and pseudotime analyses

indicated differences in differentiat ion potential and

developmental trajectories among the various subpopulations.

These findings illuminate the heterogeneity among osteosarcoma
Frontiers in Immunology 14
cells and lay a foundation for subsequent functional studies and

therapeutic target identification.

In our differential expression and enrichment analyses, we

discovered several genes and pathways that exhibited significant

aberrant expression in osteosarcoma, closely related to the

biological processes of malignant proliferation, invasion, and

metastasis. For instance, GO analysis results indicated enrichment

in the tumor tissue concerning cellular signaling and regulation
FIGURE 9

Distinct TME landscapes and therapeutic agents between high-and low-risk groups. (A) Box plot illustrating the distributions of 22 immune cell
subsets determined by CIBERSORT between two risk groups. (B, C) Box plot illustrating the expression profiles of T cell exhaustion markers (B) and
M2 polarization regulators (C) between two risk groups. (D) Stacked plot showed the distribution of predicted responders determined by the TIDE
webtool between two risk groups. (E) Violin plot displaying the infiltration levels of CAF and MDSC between two risk groups. (F) Violin plot displaying
the estimated IC50 of therapeutic agents between two risk groups.
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(small GTPase-mediated signal transduction, nucleoside

triphosphatase regulator activity, GTPase regulator activity),

cellular structure and movement (extracellular structure

organization, external encapsulating structure organization,

extracellular matrix organization, cell-substrate junction, focal

adhesion, cell leading edge, lamellipodium), skeletal and

connective tissue development (bone development, collagen

binding), and intracellular structure and function (endoplasmic

reticulum lumen, actin binding). In the KEGG analysis, tumor

tissues primarily enriched pathways related to the cytoskeleton and

structure (cytoskeleton in muscle cells, regulation of actin

cytoskeleton, focal adhesion, adherens junction), cell cycle and

proliferation (cell cycle), signaling and regulation (Rap1 signaling

pathway, Wnt signaling pathway, PI3K-Akt signaling pathway,

sphingolipid signaling pathway), and proteoglycans in cancer.

These findings are consistent with the biological characteristics of

osteosarcoma and provide a basis for subsequent functional

research and therapeutic target selection.

Through WGCNA analysis, we identified co-expression modules

of genes associated with osteosarcoma metabolism and characterized

key genes within these modules. These fundamental genes are

essential in regulating the metabolism of osteosarcoma and could

act as possible therapeutic targets. GO enrichment analysis of these

core genes revealed their enrichment in nuclease activity and DNA

metabolism (nuclease activity, ATP-dependent activity acting on

DNA, snRNA 3’-end processing), redox and metabolism

(oxidoreductase activity, carbon-nitrogen lyase activity), signaling

and receptor binding (activin receptor binding), cellular structure

and connections (centriole, tight junction, bicellular tight junction,
Frontiers in Immunology 15
lateral element), intracellular transport and membrane structures

(trans-Golgi network membrane, clathrin coat, intraflagellar

transport particle, integrator complex, intraflagellar transport

particle B), and cell cycle regulation (negative regulation of the cell

cycle). This further elucidates the complexity of the pathogenesis

of osteosarcoma.

Based on the analysis above, we constructed a risk signature model

for osteosarcoma patients using data from the TARGET-OS cohort.

This model integrates core genes identified throughWGCNA, marker

genes obtained from single-cell analyses, and differentially expressed

genes. The optimal prognostic gene combinations were selected using

Cox regression and LASSO regression analyses. Among the model’s

genes, PTK7 serves as a co-receptor in the Wnt signaling pathway,

regulating cell polarity, movement, and migration, and is upregulated

in various cancers. COL5A2 and COL5A1 encode the a2 and a1
chains of type V collagen, respectively, and are important components

of the extracellular matrix, associated with wound healing and tissue

regeneration. ALPL encodes alkaline phosphatase, which is involved

in bone mineralization. MDFI is related to cytoskeletal remodeling

and cell motility. SDC2, a type of chondroitin sulfate proteoglycan,

plays a role in cell adhesion and signaling. TMSB4XP8 (thymosin b4)
has anti-inflammatory properties and promotes wound healing. SPP1

encodes osteopontin, which is involved in bone metabolism and

tumorigenesis. This risk signature model demonstrated strong

predictive performance across three independent cohorts (AUC >

0.6), providing significant support for prognosis assessment and

personalized treatment in osteosarcoma patients.

To further validate the clinical relevance of this risk signature

model, we conducted comprehensive biological and immunological
FIGURE 10

The effect of COL5A1 on osteosarcoma was verified by wet experiment. (A) Comparison of mRNA expression levels of COL5A1 between cell lines.
(B) Evaluation of COL5A1 knockdown efficiency. (C) Changes in proliferation levels after COL5A1 knockdown in MG63 cell lines. (D) Changes in
proliferation levels after COL5A1 knockdown in SAOS2 cell lines.
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analyses. Our findings indicated that the high-risk group exhibited

poorer prognostic characteristics across several metrics, such as a

higher number of deceased patients and elevated risk scores among

those who died, while the risk scores and patient proportions across

different age groups and stages showed no statistically significant

differences. Furthermore, the group identified as high-risk

demonstrated notably lower scores compared to the low-risk

group across various cancer hallmark pathways, such as allograft

rejection, apoptosis, complement, IL2-STAT5 signaling,

inflammatory response, interferon gamma response, peroxisome

pathways, and reactive oxygen species pathways. This further

validates the model’s effectiveness.

Moreover, immune cell infiltration levels were assessed using the

CIBERSORT algorithm, revealing that the high-risk group exhibited

lower levels of immune cell infiltration. The actual ratio of high-risk

individuals in the TIDE score wasmarkedly less than that found in the

low-risk group, suggesting increased capabilities for tumor immune

evasion and variations in immunotherapy responsiveness among the

high-risk population. Sensitivity analyses showed that high-risk

patients were less responsive to treatments with AZD5582, JAK,

Ruxolitinib, and Staurosporine, suggesting that these patients may

require personalized therapeutic regimens.

In summary, this study systematically analyzed gene expression

in osteosarcoma, elucidating its pathogenic mechanisms and

metabolic characteristics, and established a risk signature model

for osteosarcoma patients based on the TARGET-OS cohort. This

model provides robust support for prognosis assessment and

individualized treatment strategies, while also laying the

groundwork for further functional studies and therapeutic target

identification. Our study provides valuable insights into the

heterogeneity of osteosarcoma cell characteristics and metabolic

states, with potential clinical implications for targeted therapy and

prognostic assessment. The risk signature model developed based

on core genes, marker genes, and differentially expressed genes

shows robust predictive performance across independent cohorts,

suggesting its feasibility in clinical settings. This model could aid in

patient stratification, guiding personalized treatment strategies and

improving clinical outcomes. Although this research contributes

significantly to our understanding of osteosarcoma pathogenesis

and points toward new therapeutic strategies, it is not without

limitations, such as a limited sample size and a lack of in vitro or in

vivo experimental validation. Future studies will aim to expand the

sample size and conduct more extensive experimental validations to

corroborate our findings.
5 Conclusion

In summary, this study systematically analyzes gene expression

in osteosarcoma, elucidating its pathogenesis and metabolic
Frontiers in Immunology 16
characteristics. We developed a risk signature model for

osteosarcoma patients based on the TARGET-OS cohort. This

model offers robust support for prognostic assessment and

personalized treatment in osteosarcoma patients, laying the

groundwork for further functional studies and therapeutic target

identification. The results of our research not only deepen our

comprehension of the mechanisms underlying the disease but also

offer valuable insights and hints for formulating new

treatment approaches.
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population genetics. J Hum Genet. (2021) 66:85–91. doi: 10.1038/s10038-020-00851-4

23. Qi XT, Li YL, Zhang YQ, Xu T, Lu B, Fang L, et al. Yang B et al: KLF4 functions
as an oncogene in promoting cancer stem cell-like characteristics in osteosarcoma cells.
Acta Pharmacol Sin. (2019) 40:546–55. doi: 10.1038/s41401-018-0050-6

24. Wang L, Huang X, You X, Yi T, Lu B, Liu J, et al. Nanoparticle enhanced
combination therapy for stem-like progenitors defined by single-cell transcriptomics in
chemotherapy-resistant osteosarcoma. Signal Transduct Target Ther. (2020) 5:196.
doi: 10.1038/s41392-020-00248-x

25. Liu D, Liu Y, Zhang D, Chen X, Liu Q, Xiong B, et al. Fang H et al: quantitative
proteome profiling reveals cellobiose-dependent protein processing and export
pathways for the lignocellulolytic response in Neurospora crassa. Appl Environ
Microbiol. (2020) 86. doi: 10.1128/AEM.00653-20

26. Lin Z, Xie F, Triviño M, Zhao T, Coppens F, Sterck L, et al. Self-incompatibility
requires GPI anchor remodeling by the poppy PGAP1 ortholog HLD1. Curr Biol.
(2022) 32:1909–1923.e1905. doi: 10.1016/j.cub.2022.02.072

27. Patel VN, Pineda DL, Berenstein E, Hauser BR, Choi S, Prochazkova M, et al.
Kulkarni A et al: Loss of Hs3st3a1 or Hs3st3b1 enzymes alters heparan sulfate to reduce
epithelial morphogenesis and adult salivary gland function. Matrix Biol. (2021) 103-
104:37–57. doi: 10.1016/j.matbio.2021.10.002

28. Liu ZH, Li T, He QY, Sun Z, Jiang Y. Role of mitochondria in regulating lutein
and chlorophyll biosynthesis in chlorella pyrenoidosa under heterotrophic conditions.
Mar Drugs. (2018) 16. doi: 10.3390/md16100354

29. Chen J, Mitra R, Zhang S, Zuo Z, Lin L, Zhao D, et al. Unusual
phosphoenolpyruvate (PEP) synthetase-like protein crucial to enhancement of
polyhydroxyalkanoate accumulation in haloferax mediterranei revealed by dissection
of PEP-pyruvate interconversion mechanism. Appl Environ Microbiol. (2019) 85.
doi: 10.1128/AEM.00984-19

30. Arends CJ, Wilson LH, Estrella A, Kwon OS, Weinstein DA, Lee YM. A mouse
model of glycogen storage disease type IX-beta: A role for phkb in glycogenolysis. Int J
Mol Sci. (2022) 23. doi: 10.3390/ijms23179944
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1507476/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1507476/full#supplementary-material
https://doi.org/10.3389/fphar.2021.770846
https://doi.org/10.3389/fphar.2021.770846
https://doi.org/10.1016/j.bioactmat.2021.01.006
https://doi.org/10.1080/21655979.2021.2017679
https://doi.org/10.1080/15384101.2019.1618127
https://doi.org/10.3390/ijms21114059
https://doi.org/10.3892/ijo.2018.4285
https://doi.org/10.3389/fphar.2021.724923
https://doi.org/10.3390/foods11213539
https://doi.org/10.7554/eLife.23649
https://doi.org/10.1093/annonc/mdt066
https://doi.org/10.1093/glycob/cwz039
https://doi.org/10.1007/s00401-019-02085-x
https://doi.org/10.3390/nu12103192
https://doi.org/10.3390/ijms18071376
https://doi.org/10.3389/fmicb.2018.01296
https://doi.org/10.3389/fmicb.2018.01296
https://doi.org/10.3389/fmicb.2015.00066
https://doi.org/10.1186/s40168-020-00936-4
https://doi.org/10.1111/cas.v112.11
https://doi.org/10.3389/fonc.2021.554779
https://doi.org/10.3389/fonc.2021.554779
https://doi.org/10.1038/s41467-019-14152-8
https://doi.org/10.3389/fonc.2022.879288
https://doi.org/10.1038/s10038-020-00851-4
https://doi.org/10.1038/s41401-018-0050-6
https://doi.org/10.1038/s41392-020-00248-x
https://doi.org/10.1128/AEM.00653-20
https://doi.org/10.1016/j.cub.2022.02.072
https://doi.org/10.1016/j.matbio.2021.10.002
https://doi.org/10.3390/md16100354
https://doi.org/10.1128/AEM.00984-19
https://doi.org/10.3390/ijms23179944
https://doi.org/10.3389/fimmu.2024.1507476
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Exploring the heterogeneity of osteosarcoma cell characteristics and metabolic states and their association with clinical prognosis
	1 Introduction
	2 Materials and methods
	2.1 Data acquisition and preprocessing
	2.2 Single-cell sequencing data analysis
	2.3 Differential expression analysis and enrichment analysis
	2.4 Weighted gene co-expression network analysis
	2.5 Risk signature based on osteosarcoma patients from the TARGET-OS cohort
	2.6 Further analysis of the model
	2.7 Cell culture
	2.8 Transfection
	2.9 Total RNA extraction and RT-qPCR
	2.10 Cell counting kit-8
	2.11 Statistical analysis

	3 Results
	3.1 Single-cell sequencing data analysis
	3.2 Metabolic analysis of single-cell subpopulations
	3.3 Analysis of osteoblastic cell subpopulations
	3.4 Differential expression and enrichment analysis
	3.5 WGCNA
	3.6 Risk signature for osteosarcoma patients based on the TARGET-OS cohort
	3.7 Further analysis of the model
	3.8 COL5A1 promotes proliferation of osteosarcoma cells

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


