
communications engineering Article

https://doi.org/10.1038/s44172-024-00326-w

AI-driven system for non-contact
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Continuous monitoring of nocturnal blood pressure is crucial for hypertension management and
cardiovascular risk assessment. However, current clinical methods are invasive and discomforting,
posing challenges. These traditional techniques often disrupt sleep, impacting patient compliance
and measurement accuracy. Here we introduce a non-contact system for continuous monitoring of
nocturnal bloodpressure, utilizing ballistocardiogramsignals. The key component of this system is the
utilization of advanced, flexible fiber optic sensors designed to capture medical-grade
ballistocardiogram signals accurately. Our artificial intelligence model extracts deep learning and
fiducial features with physical meanings and implements an efficient, lightweight personalization
schemeon the edgedevice. Furthermore, the system incorporates a crucial algorithm to automatically
detect the user’s sleeping posture, ensuring accurate measurement of nocturnal blood pressure. The
model underwent rigorous evaluation using open-source and self-collected datasets comprising 158
subjects, demonstrating its effectiveness across various blood pressure ranges, demographic
groups, and sleep states. This innovative system, suitable for real-world unconstrained sleeping
scenarios, allows for enhanced hypertension screening and management and provides new insights
for clinical research into cardiovascular complications.

Compared to snapshot blood pressure measurement, continuous blood
pressure monitoring provides additional information and insights for
screening, diagnosis, and treatment of cardiovascular and cerebrovascular
diseases1,2. Recently, nocturnal hypertension has been reported to be a sig-
nificant risk factor for cardiovascular incidents3–6. Nocturnal blood pressure
has a better prognostic value than daytime blood pressure3,7, and it can
independently predict the risk ofmortality and cardiovascular events5,8. The
significance of nocturnal blood pressure control for hypertension man-
agement has been widely acknowledged. However, most clinically adopted
continuous blood pressure monitoring methods, such as intra-arterial
catheters and cuff-based sphygmomanometers, present significant

limitations. These include invasiveness, discomfort, and the potential to
disrupt sleep, posing challenges for long-term patient compliance and
accurate nocturnal blood pressure monitoring9.

Recent advancements in wearable technology and non-invasive sen-
sors have improved the ability to monitor blood pressure non-invasively,
continuously, and comfortably. Estimating blood pressure accurately using
wearable cuffless devices remains a formidable challenge10–14. The prevalent
method forbloodpressure estimation inwearable technology is basedon the
Moens-Korteweg equations15–18,which reveal the relationshipbetweenpulse
wave velocity (PWV) and arterial stiffness to in driving blood pressure.
Non-invasive measurement of PWV is feasible over a known distance.
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However, blood vessel length is difficult to measure, and researchers typi-
cally use pulse arrival time (PAT) and pulse transit time (PTT) as an
approximation of PWV. For example, PAT can be measured as the time
difference between the R-peak of an electrocardiogram (ECG) and the foot
of a peripheral photoplethysmogram (PPG) waveform. While promising,
this methodology overlooks the intrinsic dynamic variations in the con-
tractility of peripheral vascular smooth muscle (SM)16,19 during specific
conditions, such as administration of vasoactive pharmaceuticals20,21 and
circadian rhythms22. Therefore, this approach requires frequent calibration
(e.g., every 5min to 2 h23–27) to guarantee accuracy. In addition, users must
wear devices that require frequent recharging, degrading the convenience
and user compliance.

Ballistocardiogram (BCG) was initially observed by Gordon on a
weighing scale in 187728. The BCG signals document the ballistic forces due
to the abrupt ejection of blood into the great vessels during each heartbeat,
encompassing breathing and body movement. It measures the body’s
overall micro-movements triggered by the forces associated with heart
contraction, thereby providing insights into the overall performance of the
circulatory system.Kim et al.29mathematically built the BCGgenesismodel,
where the genesis of BCG signals is interpreted as the blood pressure gra-
dient difference between the ascending and descending aorta. This finding
underpins the rationale for using BCG to infer continuous blood pressure.
In addition, BCG is reflected by the aorta, which is less affected by the SM
contractility compared to the PTT-based method16,19.

In this article, we present a lightweight AI system that can con-
tinuously, contactlessly, and accurately monitor nocturnal blood pres-
sure using high-quality medical-grade BCG signals. As shown in Fig. 1a,
b, our system includes a specialized flexible fiber optic sensor that can be
deployed under the pillow for contactless sensing, and real-time BCG
data is collected as the system input. Our AI system fuses both deep-
learning features and hand-crafted fiducial features with physical
meanings, and the pretrainedmodel undergoes efficient and lightweight
personalization on the edge device. The deep-learning features are
extracted based on the U2Net structure, which is good at capturing the
salient andmulti-scale features from the BCGwaveform.We propose an
automatic delineation algorithm to locate fiducial points of each BCG
cycle and calculate fiducial features that incorporate cardiovascular
domain knowledge. The system can also automatically recognize a
subject’s sleep posture, which is a critical factor in ensuring accurate
nocturnal blood pressure measurement.

Our proposal was extensively evaluated in both open-source
(40 subjects)30 and self-collected clinical datasets (118 subjects), covering
large blood pressure (BP) fluctuation ranges and large populations with
dynamic demography. Our self-collected dataset is the largest BCG-BP
dataset, which involves 85 subjects tested in the daytime and 33 subjects
tested in nocturnal sleep scenarios without any constraint. Our system aims
to deliver an effective, accurate, contactless BP monitor in real-world,
unconstrained sleeping environments. It represents a breakthrough in
nocturnal BPmonitoring, offering a user-friendly, low-cost, and easy-to-use
alternative to traditionalmethods. It not only revolutionizes theway to early
screening and bettermanagement of hypertension and other cardiovascular
diseases but alsobuilds a foundation for innovative clinical researchon some
hypertension complications.

Results
Our nocturnal continuous blood pressure system integrates a medical-
grade, high-fidelity BCG sensing hardware system and an AI software
system infused with the physical characteristics for BP measurement. The
hardware system is based on fiber optic sensing, primarily consisting of a
laser emitter, step-indexmultimode fiber, and a photodiode receiver, which
ensures the collected BCG signals are of high fidelity, and suitable for
medical-grade applications. Furthermore, our sensor mat is flexible and
biocompatible, ensuring user comfort, safety, and portability. It can be easily
integrated into medical textiles and everyday items such as cushions, pil-
lows, chairs, and beds.

As depicted in Fig. 1c, the AI software system encompasses several key
components: (1) Data preparation, involving signal preprocessing of raw
BCG data, segment-wise posture recognition, and delineation of fiducial
points for each cardiac cycle; (2) Feature extraction, focusing on deriving
both deep-learning representations and fiducial features that have physical
meaning; (3) Edge computing, sharing model weights from the cloud-
pretrained deep-learning model and inserting a lightweight machine
learning algorithm as the regressor for personalized fine-tuning and BP
inference; (4) Customized user interface, which establishes communication
with the edge terminal viaWiFi and provides real-time display of the user’s
vital signs data (see Supplementary Movie 1).

Flexible fiber optic BCG sensor
The circuit and block diagram of the fiber optic BCG sensing hardware
system are depicted in Fig. 1d. It includes a Fabry–Perot (FP) laser diode
(LD) as the light source, which emits at a wavelength of 1550 nm and a
power of 3mW. The photodetector (PD), utilizing an InGaAs PIN con-
figuration, is capable of detecting light in the range of 850 to 1700 nm. A
precision analog-to-digital converter (ADC) with one channel and 16-bit
resolution is employed to sample BCG signals at a rate of 500 Hz. The
system utilizes a high-performance microcontroller unit (MCU) featuring
an ARM 32-bit Cortex-M4 CPU, which can operate at frequencies up to
168MHz. This MCU manages the general-purpose input/output (GPIO)
pins, supplying voltage to circuit components and transmitting ADC-
sampled BCG data to the user interface. The entire circuit requires an
external power supply of 5 V 1A via USB. In practical use, the device
consumes a maximum of only 0.32W when fully operational. Figure 1e
plots the samplewaveforms from time-synchronized ECG, BCG, andfinger
cuff-based pulse sensors.

An exploded view in Fig. 2a highlights the multi-layered structure of
the sensor mat. A section of step-indexmultimode silica optical fiber with a
core diameter of 62.5 μm and numerical aperture (NA) of 0.275 is used as
the sensing fiber. The bare fiber is wound and attached to a PET plastic film
with a size of 270mm× 450mm× 0.3mm in a certain pattern. A grid-
shaped polyamide fiber with a 1.1 mm opening (Λ) is covered over the
optical fiber, acting as the deformer to bend the fiber core. Two medical-
grade semi-transparent silicone elastomers (300mm× 500mm× 1mm)
are pressed together and enclose the sensing fiber in between. Finally, we
craft an outer coveringmade of polyester material, which fits snugly against
the silicone layer, completely encasing the entire sensor mat. Figure 2b
shows that the deformer causes periodic (Λ)fiber deformation change by an
amount ΔX, inducing micro-bending loss. Figure 2c shows a typical plot of
sensoroutputPas a functionofweightF. The force is applieduniformlyover
the area of 0.05m2 within the sensor mat. Figure 2d shows the sensor
sensitivity curve as a function of weight based on the fitting curve of Fig. 2c.
More details regarding micro-bending fiber optic theory and sensor char-
acteristics are illustrated in Supplementary Note 1.

Datasets and model training
The first dataset is the Kansas dataset30, which is an open-source dataset
developed by researchers at Kansas State University. This open-source
dataset features a variety of synchronized multimodal physiological signals,
including BCG, ECG, PPG, and arterial blood pressure (ABP) waveform.
The BCG signals within this dataset were obtained using a combination of
four electromechanical film (EMFi) sensors under the mattress and four
load cells positioned under the foot of the bed. To ensure accurate time
alignment and consistent data sampling at 1000Hz, both sensor types were
integrated using a National Instruments 9220 analog input module. Data
were collected from 40 subjects (17 males) with ages ranging from 18 to 65
years. Four of the subjects have cardiovascular-related conditions. Overall,
the systolic pressure ranges from 58.7 to 187.0 mmHg, and the diastolic
pressure ranges from 44.5 to 101.0 mmHg. Individually, the systolic pres-
sure dynamics (max-min) varied from 11 to 46 mmHg, and the diastolic
pressure dynamics varied from 5 to 27 mmHg. In total, over 4.5 h of data
were collected.
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Fig. 1 | The concept and system overview of non-contact continuous nocturnal
blood pressure (BP)monitor. aA typical use scenario of our system,where the fiber
optic sensing mat is placed beneath the user’s pillow. b The system prototype
deployed in the real world. c Block diagrams of the system. The data preparation
stage preprocesses ballistocardiogram signals for posture recognition and fiducial
point delineation. The feature extraction stage extracts meaningful features for
training a base model. The base model will be directly deployed in the edge device,
while a Random Forest model is trained as the personalized regressor to infer the BP

in the edge. The customized user interface enables WiFi connectivity for live vital
sign monitoring. d System’s circuit and block diagram. The fiber optic sensing
capability primarily builds upon a laser emitter, a section of multimode fiber, and a
photodiode receiver. e Sample waveforms from time-synchronized electro-
cardiogram (ECG), ballistocardiogram (BCG), and finger cuff-based pulse sensors.
BPF is a bandpass filter, Vref is reference voltage, VBUS is USB power voltage, and
a.u. is arbitrary units.
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The second dataset is a self-collected dataset from the Department of
Cardiac Intensive Care Unit at Guangdong Second Provincial General
Hospital. The self-collected dataset consists of two subgroups: a daytime
group and a nocturnal group. The first group, consisting of 85 subjects, was
collected during the day while the subjects lay awake in bed. The second
group comprises 33 subjects, each of whom records data for a minimum of
6 h during uncontrolled, natural sleep periods. Supplementary Table 1
describes the demography of these two groups. Supplementary Figs. 3–6
plots BP variation ranges for each subject in the self-collected daytime and
nocturnal dataset. Blood pressure changes in response to different body
postures, awake and sleep states during measurement31,32. The daytime
group accounted for the validation of the system performance in the supine
posture butdidnot actually reflect thenocturnal bloodpressure during sleep
states. Therefore, we use the nocturnal group to complement this issue.

We deployed the proposed flexible fiber optic BCG sensor under the
pillow to accurately measure BCG signals at 500Hz. The FDA-approved
Caretaker device33 (Caretaker Medical LLC, Charlottesville, VA, USA) was
used as a ground truth device that provided beat-to-beat non-invasive blood
pressure,ECG, andother vital signs data. Synchronizationbetween theBCG
sensor and ground truth device was achieved via network time
protocol (NTP).

Figure 2e shows the high-level schematic for extracting fiducial points
from the input raw BCG signals and visualizes the output results of each
step. The subject-wise raw data were first processed through a 1–10Hz

bandpass filter and then normalized to a uniform scale. Then, a 5-s sliding
window with a 1-s frameshift was applied to obtain samples. Each 5-s
segment was fed into U-Net for fiducial point delineation. Based on fiducial
points, we calculatedfive typesoffiducial features: extremum, displacement,
time interval, time ratio, and area under the curve (AUC), as illustrated in
Fig. 2f. The description of the full list of 44 fiducial features is given in
SupplementaryTable 2.More details onhowwepreprocess theBCG signals
to get fiducial features are shown in Supplementary Figs. 13–17.

To prevent data leakage, we performed leave-one-out cross-validation
formodel evaluation, which guarantees that no sample of the testing subject
is used in the pre-training stage. As shown in Supplementary Fig. 10, the
parameters of the pretrained U2-Net encoder were frozen and directly
deployed in the edge device through weight sharing. As for the personali-
zation stage, we replaced the multi-layer perceptron (MLP) layers with the
Random Forest (RF) regressor and incorporated personal information
(gender, age, height, and weight) and fiducial features for personalization.
We only used the data from the first 30 seconds to train the RF-based
personalization module.

Clinical study in daytime dataset
We first evaluate our system using the Kansas dataset and our self-collected
daytime dataset. Figure 3a, b depicts the overall correlation and
Bland–Altmanplots for the estimated SBPandDBP.For theKansas dataset,
correlation plots reveal correlation coefficients of 0.90 for SBP and 0.92 for
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DBP when compared with reference BP values. This indicates a strong
correlation between the estimated and reference BP values. The
Bland–Altmanplots show that themean error (ME) and standard deviation
(STD) are −0.19 ± 8.31mmHg for SBP and −0.04 ± 4.48mmHg for DBP.
Meanwhile, the dotted lines represent the limit of agreement (LOA)34,
defined as ME ± 1.96 × STD. LOA of SBP and DBP are [−16.43, 15.92]
mmHg and [−8.87, 8.70] mmHg, respectively. Supplementary Fig. 7 plots
the comparison results between the estimated BP and reference BP values
using testing samples from all the subjects in the open-source dataset.

In our daytime dataset (Fig. 3c, d), the predicted SBP and DBP show
correlation coefficients of 0.93 and 0.95 with reference BP, respectively. The
ME and STD are 0.13 ± 7.02 mmHg for SBP, 0.06 ± 3.50mmHg for DBP.
LOAof SBP andDBP are [−13.62, 13.89]mmHg and [−6.79, 6.95]mmHg,
respectively. Figure 3e, f details themean absolute error (MAE) for different
BP rangeswith a step size of 5mmHgwith respect to reference BP.Thefine-
tuned model obtains an overall MAE of 4.78 mmHg for SBP and 2.40
mmHg for DBP. Figure 3g, h plots theMAEhistogram at different intervals
of BP changes (from −30 to 30 mmHg with a step size of 5 mmHg)
compared to the calibrationbaselineBP.Theperformance is accurate (MAE
≤7 mmHg) for BP changes from baseline between −25 and +30 mmHg.
Supplementary Fig. 8 plots the comparison results between the estimatedBP
and reference BP values using testing samples from all the subjects in our
daytime dataset.

Supplementary Table 3 summarizes the international clinical
requirement of ANSI/AAMI/ISO standard35, IEEE 1708 standard36,37, and
British Hypertension Society (BHS) protocol38. Supplementary Table 4
provides the overall performance regarding metrics of these standards and
lists the detailed results for various subpopulations. Overall, the daytime
results demonstrate that our system meets the ANSI/AAMI/ISO standard
and achieves the Grade A rating according to IEEE 1708 and BHS criteria.

Continuous nocturnal blood pressure monitoring
Our nocturnal experiment was conducted under natural sleep scenarios
without any constraints on sleep posture. To reduce variation caused by
body posture, current clinical guidelines39 recommend that BP should be
measured in supine posture (UP). Therefore, we designed the sleep posture
recognitionmodules to ensure accurate BPmeasurement during the proper
postural condition. In this section, we first validate the effectiveness of
posture recognition by using the daytime dataset, where data of four sleep
postures (namely, UP, DOWN, LEFT, RIGHT) were collected. Figure 4a
plots the confusion matrix of classification accuracy regarding 85 persons.
On average, the classification accuracy of four postures is 86.2%. Figure 4b
shows the receiver operating characteristic (ROC) curves obtained under
different thresholds. The average area under the curve value is 0.967. In
practice, we only consider the recognition of supine posture (i.e., UP) as the
standard BP measurement posture. The binary classification accuracy
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reaches 94.1%when testedwithwhole-night sleep data. As shown in Fig. 4c,
the AUC values of ROC curves are 0.985 for supine posture (UP) and 0.986
for non-supine posture (non-UP).

When a subject is stable in the supine posture, the system will infer his
nocturnal BP continuously. As shown in Fig. 4d, e, the Pearson correlation
coefficient for nocturnal sleeping SBP andDBP is 0.91 and 0.94, respectively.
Compared to daytime, the nocturnal dataset exhibits a higher estimation
error, withmean errors and standard deviations of −0.26 and 9.43 for SBP,
−0.15 and 4.75 for DBP. Figure 4f, g plots the MAE for different BP ranges
grouped by reference BP.On average, theMAE for SBP andDBP estimation
is 6.90 mmHg and 3.46 mmHg, respectively. Figure 4h, i plots the MAE
histogram at different intervals of BP changes (from −30 to 30 mmHg)
compared to the calibration baseline BP. The performance is accurate for BP
changes from baseline between −15 and +20 mmHg, where MAE is less
than 7 mmHg. Beyond this range, the error significantly increases. We plot
all subjects’data andcompare the estimatedBPand referenceBP throughout
the night in Supplementary Fig. 9. Detailed statistics for various BP and age
levels in the nocturnal dataset are given in Supplementary Table 5.

Ablation study
We conducted extensive experiments to evaluate the effectiveness of key
designswithin the system. In this section,we examine the impactof different
fiducial feature subsets, the personalization module, and the posture
recognition module. The corresponding results are presented in Table 1.

First, we explore the impact of employing different fiducial feature
subsets (Task 3–7). We discover that incorporating personal information
(Task 4) or fiducial features (Task 5) reduces the standard deviation of SBP
by 0.36 (4.55%) and 0.65 (8.22%), respectively. Fusing all the deep learning
and hand-crafted features with domain knowledge (Task 6) further reduces
the standard deviation of SBP by 0.89 (11.25%) due to the deep interaction
amongmore features in themodel.The results validate that the featureshave
different degrees of physical meanings related to BP inference.

Subsequently, we assess the impact of the personalization module
(Tasks 1–2, 4–5, and 6–7). For the open-source dataset, the personalization
reduces the standard deviation of SBP from 14.57 to 6.60. For the daytime
dataset, the personalization reduces the standard deviation of SBP from
14.20 to 7.02. For the nocturnal dataset, the personalization reduces the

a b

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.2

0.4

0.6

0.8

1

Tr
ue

 P
os

iti
ve

 R
at

e

UP (AUC = 0.976)
DOWN (AUC = 0.970)
LEFT (AUC = 0.963)
RIGHT (AUC = 0.958)

c

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.2

0.4

0.6

0.8

1

Tr
ue

 P
os

iti
ve

 R
at

e

UP (AUC = 0.985)
Non-UP (AUC = 0.986)

d e

f

100 120 140 160 180 200
Reference Systolic Blood Pressure (mmHg)

0

2000

4000

6000

8000

N
um

be
r o

f s
am

pl
e

0

20

40

60

80

Ab
so

lu
te

 E
rro

rs
 (m

m
H

g)

Pre-trained
Personalized

Data Distribution

g

50 60 70 80 90 100 110
Reference Systolic Blood Pressure (mmHg)

0

2000

4000

6000

8000

10000

12000

N
um

be
r o

f s
am

pl
e

0

10

20

30

40

Ab
so

lu
te

 E
rro

rs
 (m

m
H

g)

Pre-trained
Personalized

Data Distribution

h

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30
Relative Change in SBP (mmHg)

0

5

10

15

20

25

M
AE

 (m
m

H
g)

Pre-trained
Personalized

MAE = 7

i

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30
Relative Change in DBP (mmHg)

0

5

10

15

20

25

M
AE

 (m
m

H
g)

Pre-trained
Personalized

MAE = 7

Fig. 4 | Performance of the clinical study for continuous nocturnal bloodpressure
monitoring. aConfusionmatrix of sleep posture prediction during the day, grouped
by four different sleep postures. b, cReceiver operating characteristic curves for four
postures classification (b), and binary posture classification during the night (c).
d, eThe correlation and Bland–Altman plots for the self-collected nocturnal dataset,
where d is for systolic blood pressure (SBP) results, and e is for diastolic blood
pressure (DBP) results. f, gMean absolute error (MAE) for different blood pressure

levels before and after personalization, where f is for SBP results, and g is for DBP
results. The blue line indicates the number of samples, while the box plots indicate
absolute errors. Error bars represent the range of data within 1.5 times the inter-
quartile range (IQR) from the first quartile (Q1) to the third quartile (Q3). h, i The
distribution of MAE of all subjects at different BP change intervals, where h is for
SBP results, and i is forDBP results. The red line indicatesMAE = 7mmHg. SD is the
standard deviation of mean error.
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standard deviation of SBP from 24.92 to 9.48. This reveals the effectiveness
and necessity of using lightweight samples for personalization.

Finally, we evaluate the impact of the posture recognition module
(Task 9–10). We see that when turning off the posture recognition and
inferring the BP using all the nocturnal data, the performance degrades by a
lot. This occurs as the testing set includes significant data collected in non-
lying postures. The fluctuations and changes in blood pressure collected in
these poses are elusive, and the training set does not contain samplesof these
poses, so the AI model cannot accurately infer the blood pressure under
non-standard posture, which causes poor estimation results.

Model interpretability
Figure 5a, b present scatter plots generated using t-distributed stochastic
neighborhood embedding (T-SNE) techniques. T-SNE is a statistical
method for visualizing high-dimensional data by reducing it to two or three
dimensions. The points in Fig. 5a, b represent the fused features in two-
dimensional space, with color gradients from dark to light indicating
varying blood pressure values for specific samples. The visualization reveals
that our AImodel learns the non-linearmapping from extracted features to
BP values.

Additionally, we utilize interpretable hand-crafted feature sets for
performance optimization. In this analysis, we employ Shapley Additive
exPlanations (SHAP), known for effectively illustrating the impact of
individual features on each sample. This method not only highlights the
influence of these features on the model but also clearly indicates whether
their effects are positive or negative. Figure 5c, d present summary plots
interpreting the overall samples for SBP and DBP, respectively. In these
plots, each row corresponds to a specific feature, and the horizontal axis
represents the SHAP values. Individual points on these plots denote sam-
ples, where the color indicates the feature value: red for higher values, and
blue for lower values. The breadth of the distribution in these areas signifies
the extent of influence each feature has. More influential features are
positioned at the top. Notably, the four most important features are
∣A(J)− (L)∣, ∣A(J)−A(K)∣, ∣A(H)− (J)∣, andA(L) for SBP estimation, while
that for DBP estimation are T(H, I)/T, ∣A(J)−A(L)∣,T(H, J), ∣A(H)−A(J)∣.
Kim et al.,40 indicate that the “H-J interval” (i.e., ∣A(H) − (J)∣) represents
aortic PTT, a well-known surrogate of DBP, and “J-K amplitude” (i.e.,
∣A(J) − A(K)∣) represents aortic outlet, a surrogate of pulse pressure. Sup-
plementary Note 2 provides more detailed explanations on how BCG
fiducial features represent the heart’s geometric deformation and correlate
with blood pressure waves.

Discussion
This study marks an advancement in blood pressure monitoring. We
develop an AI system leveraging high-sensitivity fiber optic sensors and

integrating advanced deep-learning algorithms for non-invasive, con-
tinuous nocturnal blood pressure monitoring. Our contribution lies in the
system’s ability to capture high-fidelity,medical-grade ballistocardiographic
signals and infer precise blood pressure readings. This technical innovation
represents a leap forward in both themethodology and application of blood
pressure monitoring.

The implications of our findings are multifaceted. Firstly, our system
enables early screening, aiding in the timely identification and intervention
of prehypertension and also isolated nocturnal hypertension. Secondly, it
plays a crucial role in themanagement of chronicdiseases, particularly in the
adjustment of antihypertensive medication and the assessment of drug
efficacy, by facilitating long-term monitoring and personalized manage-
ment. Lastly, our system, being contactless, detects real nocturnal BP
readings, which is pivotal in uncovering the truth of hypertension compli-
cations, such as hypertension with sleep apnea. With the revelation of true
nocturnal blood pressure profiles, a sound foundation is provided for lots of
clinical research.

Looking ahead, our system’s potential applications are extensive. It
can be seamlessly integrated into various everyday items like pillows,
mattresses, chairs, and cushions. This integration offers the potential of
passive, continuous health monitoring in an individual’s home, pro-
viding valuable feedback to healthcare providers. Such a deployment
could revolutionize the way we approach health monitoring and man-
agement at a personal level.

Despite its advancements, this study has limitations. Nocturnal blood
pressure measurements exhibit greater variability than that in the daytime,
which raises questions about the system’s precision in comparison to
medical-grade devices. Furthermore, the absence of a longitudinal study
means yet to determine the duration for which a single calibration remains
valid. The necessity for calibration also presents a challenge, steering future
research toward the development of calibration-free systems. Future studies
should focus on enhancing the accuracy of nocturnal blood pressure mea-
surements and extending the longevity of calibration stability, to make the
system more robust and user-friendly.

The significant error increase at the data’s outermost edges may be
attributed to a straightforward reason: the model struggles to make
accurate predictions at these extremes because it lacks sufficient training
data in these ranges. As depicted in Figs. 3f, g, 4f, g, there is a sharp
decline in the quantity of data available for abnormal BP levels. This is
attributable to the study design and falls within normal dynamic var-
iation for subjects.

In conclusion, while our system represents a step forward in blood
pressure monitoring technology, ongoing research, and development are
essential to address its current limitations and fully realize its potential in
both clinical and home settings.

Table 1 | Ablation study

Task Dataset PR BCG PI FF PM Diastolic blood pressure Systolic blood pressure

Corr MAE ME STD Corr MAE ME STD

1 OS ✓ ✓ ✓ ✓ ✓ 0.84 3.31 -0.36 8.31 0.90 5.97 -0.18 6.60

2 OS ✓ ✓ ✓ ✓ × 0.11 7.70 −1.80 10.27 0.30 11.59 −3.60 14.57

3 Self-day – ✓ – – ✓ 0.93 2.78 0.15 4.06 0.91 5.42 0.32 7.91

4 Self-day – ✓ ✓ – ✓ 0.94 2.66 −0.04 3.88 0.92 5.25 0.03 7.55

5 Self-day – ✓ – ✓ ✓ 0.95 2.56 0.15 3.69 0.92 5.03 0.30 7.26

6 Self-day – ✓ ✓ ✓ ✓ 0.95 2.41 0.08 3.50 0.93 4.78 0.13 7.02

7 Self-day – ✓ ✓ ✓ × 0.56 7.17 −1.00 9.44 0.62 10.68 −3.80 14.20

8 Self-night ✓ ✓ ✓ ✓ × 0.06 11.90 −0.08 15.34 0.14 19.11 −0.10 24.92

9 Self-night ✓ ✓ ✓ ✓ ✓ 0.94 3.46 −0.15 4.75 0.91 6.93 −0.27 9.48

10 Self-night × ✓ ✓ ✓ ✓ 0.83 5.74 −1.10 7.64 0.75 11.53 −2.10 15.22

Investigation of the impact of different feature subsets, the personalization module, and the sleep posture recognition module. PR for posture recognition, BCG for ballistocardiogram, PI for personal
information, FF forfiducial features,PM for personalizationmodule,OS for open-sourcedataset, Self-Day for self-collecteddaytimedataset, Self-Night for self-collectednocturnal dataset,DBP for diastolic
blood pressure, SBP for systolic blood pressure, Corr for Pearson correlation coefficient, MAE for mean absolute error, ME for mean error, STD for standard deviation of mean error.
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Methods
Dataset collection
Initially, the study included 88 subjects in the daytime dataset and 40 sub-
jects in the nocturnal dataset. Three patients were excluded from the day-
time dataset and seven from the nocturnal dataset due to storage errors,
missing channel data, and device disconnection. The inclusion and exclu-
sion criteria are listed in Supplementary Note 3. A comprehensive demo-
graphic breakdown of the included subjects is presented in Supplementary
Table 1.

The daytime data collection involves two sessions. The first session
collects standard data, and the second session focuses on data from various
sleeping positions. The specific procedure for thefirst session is as follows: A
flexible fiber optic sensor is placed under the pillow, a Caretaker oximeter is
clipped to the subject’s right index finger, a Caretaker sleeve-type cuff is
wrapped around the middle finger for beat-to-beat blood pressure mea-
surements, and a Caretaker single-channel flexible wireless ECG patch is
attached to the chest. After the sensors are properly fitted, the subject liesflat
on the bedwith arms resting by their sides. Clinical standard blood pressure
is measured once with the cuff-based BP device, followed by device cali-
bration according to the Caretaker’s instructions. After the continuous
blood pressure device is calibrated, the first standard data collection begins,
lasting for 3min. During the measurement, the subject is asked to breathe
normally but not move their body. After the first collection, the subject
stands up and immerses their left hand in ice water for 30 s to induce blood
pressurefluctuations due to vasoconstriction.After 30 s, the subject lies back

on the bed for the second standard data collection, also lasting for 3min.
Subsequently, the subject performs 1min of squatting exercises to increase
the heart rate. After the heart rate is elevated, they lie back on the bed for the
third standard data collection, continuing for 3min. After this, the subject
stands up and rests before starting the second session. In the second session,
the subject is required to lie still in various positions—flat, on the left side, on
the right side, and prone—for 3min each to collect data. At the end,medical
personnel measure and record the subject’s blood pressure in the lying
position using a cuff blood pressure monitor.

For the nocturnal dataset, all subjects are required to sleep in the
hospital bed for an entire night (from 10 p.m. to 6 a.m., ensuring at least 6 h
of sleep data collection). Before falling asleep and afterwaking up, amedical
personnel measures and records the subject’s lying blood pressure using a
cuff blood pressure monitor. Throughout the collection process, there is no
restriction on the subject’s sleeping position or behavior. An RGB camera is
installed to annotate sleep postures.

The study protocol was reviewed and approved by the institutional
review board of the Guangdong Second Provincial General Hospital (pro-
tocol no. 2023-KY-KZ-082-01).All subjects reviewedand signed theprinted
consent formsbeforeparticipating inour study.Noexport of humangenetic
material or data in this study.

Data preprocessing. A sixth-order Butterworth bandpass filter, with
cutoff frequencies of 1–10 Hz, is applied to remove respiratory and high-
frequency noise from BCG signals. This ensures the data reflects cardiac-

(a) (b)

(c) (d)

Fig. 5 | Interpretation of artificial intelligence model using T-SNE and SHAP
analysis. a, b Scatter plot of extracted features after dimension reduction using
t-distributed stochastic neighborhood embedding (T-SNE) techniques, where a uses

daytime data, and b uses nocturnal data. c, d Feature important ranking using
Shapley additive exPlanations (SHAP) analysis, where c is for SBP and d is for DBP.
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related vibrations with high fidelity. To balance accuracy and computa-
tional efficiency, all data are downsampled and unified at a rate of 250 Hz.
Then, the filtered signals will be normalized using Z-score normalization
before input into the U-net automatic delineation. Supplementary
Figs. 3–17 provide a long-term session of BCG signals to show how the
signals are processed and get the fiducial points. The fiber optic sensor is
highly sensitive. In some extreme cases, there are motion artifacts caused
by body movements. Supplementary Figs. 15–17 illustrate how our sys-
tem deals with noisy signals and gets precise fiducial points at the same
time. It’sworthmentioning that ourU-netmodel is trainedwith standard
BCG signals to automatically label the fiducial points, and the U-net
model does not recognize the unseen noisy segment and will not label
fiducial points on those parts, which helps us to eliminate the noisy
segment from the input data.

Hardware design. The circuit’s key components include (1) a micro-
control unit (STM32F407ZGT6, STMicroelectronics), (2) an analog-to-
digital converter (ADS1146IPWR,Texas Instruments), (3) a Fabry–Perot
laser (1550 nm, 3 mV), (4) an InGaAs PIN photodiode (850–1700 nm),
(5) power management, (6) a WiFi system-on-a-chip (ESP8266,
ESPRESSIF), and (7) a self-assembled fiber optic sensor mat.

Assembly of the sensor mat begins by spreading dual-sided silicone-
acrylate adhesive (2477p, 3M) over one side of the PET film. Then, a
section of bare step-index multimode silica optical fiber is wound over
the PET film. A grid-shaped polyamide fiber film that is the same size as
PET film is covered over the optical fiber. Another PET film layer covers
the polyamide fiber film. Two medical-grade silicone elastomers
(300mm× 500mm× 1mm) were pressed together using external
clamps and allowed to cure, thereby creating a sealed enclosure with
sensing fiber in between. In the end, an outer covering made of leather
material, which fits snugly against the silicone layer, completely encases
the entire sensor mat.

Model implementation. The AI system is built on three learning-based
models: (1) a ResNet-LSTM structure for sleep posture detection, (2) a
U-Net for automatic delineation, and (3) a U2-Net structure integrated
with RF-based personalization for real-time continuous non-contact BP
inference.

Sleep posture detection. Blood pressure readings are known to vary with
different postural conditions. Clinically, to obtain precise blood pressure
measurements, patients are required to be in a supine position, lying flat.
Our system should specifically identify periods when the user is in a supine
position.Owing to the 3D structure of the aorta, the BCGwaveforms exhibit
significant differences when users adopt various sleeping postures41,42.
Therefore, we train a general neural network based on the ResNet-LSTM
structure, which takes 10-s BCG signals as input and outputs the current
postural condition. This neural networkmodel utilizes a three-layer ResNet
to extract global structural representations from the BCG signals and a
single-layer LSTM to capture the temporal dependency between heartbeat
cycles.

Automatic delineation. The automatic delineation algorithm aims to
identify the fiducial points (H, I, J, K, and L) in each BCG cycle. We take
advantage of deep-learning techniques to automatically label the fiducial
points. We adopt the efficient and lightweight U-Net structure with 1D
convolutional layers in our neural network43. The trained neural network
takes one-channel pre-processed BCG signals of 10 s as input and outputs
six-channel softmax probability scores. Each channel has the same length.
One of the channels indicates the probability score of background sample
points, while the other channels correspond to each fiducial peak. This sub-
network is trained using fiducial peak annotations from human experts.

BP inference. The most essential part is the AI model for continuous
BP inference. As shown in Supplementary Fig. 10, the training of

cNBP-Net has two stages: pre-training in the cloud and personali-
zation in the edge. In the pre-training stage, we use a large number of
labeled samples from different users to train a base model, as shown
in Supplementary Fig. 11. The base model has a U2-net structure as
the deep-learning features extractor and two MLP layers as the BP
regressor. Compared to traditional U-Net, which only uses con-
volutional layers for feature extraction, the U2-net adopts U-units
(Supplementary Fig. 12) to extract multi-scale features while pre-
serving critical signal characteristics. A U-unit first uses a plain
convolutional layer for local feature extraction, where the input
signals are transformed into an intermediate representation with Cout

channels. Then, a U-shape symmetric encoder-decoder structure
with a height of L = 6 gradually downsamples the intermediate
representations and encodes them into multi-scale features. Finally,
the output of a U-unit is a summation that fuses local features and
multi-scale features. Overall, the U2-net is made up of multiple U-
units, 2x downsampling operations, and 2x upsampling operations.
Specifically, there are 5 U-units in the U2-net encoder and 4 U-units
in the U2-net decoder. In the training stage, the base model will not
only predict the BP values but also output the reconstructed BCG
signals. The Huber loss function is used to evaluate regression loss
between BP prediction and ground truth BP. The MSE loss function
is used to evaluate the reconstruction loss between reconstructed
BCG and BCG input. The joint optimization of these two loss
functions enables the neural networks to learn general feature
representations while preserving necessary BCG characteristics in
the code.

During the personalization stage, only the trained U2-net encoder is
deployed in the edge device, and the MLP layers will be replaced by an RF
regressor. The RF regressor takes both deep-learning features and hand-
crafted features into consideration and learns the non-linearmapping from
fused features to blood pressure labels.Whenmeeting an unseen target user,
a small portion of labeled samples will be used to personalize the RF
regressor. Inpractice, a user canmeasure their ground truthBPasdata labels
using a cuff-based sphygmomanometer.

Using RF as a regressor has the following advantages: Firstly, unlike
MLP, RF does not require back-propagation, therefore the computational
load is significantly less. The model can be easily trained in a low-cost and
lightweight edge device. Secondly, machine learning models require less
amount of training samples compared to deep-learning models. Moreover,
RF is an ensemble learning algorithm and it is based on bootstrapping,
making it less likely to overfit. In practice, users can measure their blood
pressure several times using a cuff-based blood pressure monitor to obtain
ground truth annotations for their BCG data. This is done to initialize and
personalize their continuous blood pressure prediction model. Then, a
regular re-calibration (typically every 7–28 days) is needed to maintain the
model accuracy.

Statistical analysis. Analysis of sensor datawas performed inPython 3.8
using openly available packages, includingNumPy (1.22.2), SciPy (1.7.3),
Pandas (1.2.4), neurokit2 (0.2.0), Scikit-learn (1.0.2), and SHAP (0.43.0).
Visualization was created using MATLAB R2020a.

Evaluation metrics. To evaluate the performance of the blood pressure
prediction using BCG signals, we employ several statistical metrics. Each
metric provides a unique perspective on the accuracy and reliability of the
predictions. Below are the formulas for each metric:
1. Mean error (ME): This metric calculates the average of the errors

between the predicted and actual values. It is defined as:

ME ¼ 1
n

Xn
i¼1

ðxi � yiÞ

where xi is the predictedvalue for the ith sample, and yi is the actual value for
the ith sample.
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2. Mean absolute error (MAE): This metric computes the average of the
absolute differences between the predicted and actual values. It is given
by:

MAE ¼ 1
n

Xn
i¼1

jxi � yij

3. Standard deviation (STD): This metric indicates the amount of var-
iation in the prediction errors. It is calculated as:

STD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

ðxi � yi �MEÞ2
s

4. Pearson correlation coefficient (Corr): This metric measures the linear
correlation between the predicted and actual values. It is defined as:

Corr ¼
Pn

i¼1ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � �xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðyi � �yÞ2

q

where �x and �y are the mean of the predicted values and actual values,
respectively.
5. The receiver operating characteristic (ROC) curves: It is plotted by

assessing the trade-offs between sensitivity and specificity across
different threshold settings, where the sensitivity and specificity are
calculated as (TP: true positive; FN: false negative; TN: true negative;
FP: false positive):

Sensitivity ¼ TP
TPþ FN

; Specificity ¼ TN
TNþ FP

The 95% confidence interval (CI) is constructed based on leave-one-out
validation results.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The main data supporting the results of this study are available within the
paper and its Supplementary Information. The public datasets used in this
study can be accessed via IEEE Dataport44. The labeled dataset generated
during the current study is available in the following figshare repository45.

Code availability
The custom code is available at GitHub46.
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