Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 Oct;136(2):329–334. doi: 10.1042/bj1360329

Lysine metabolism in mammals

Florence C I Fellows 1,*, Maxwell H R Lewis 1
PMCID: PMC1165958  PMID: 4774398

Abstract

The enzymes involved in the initial degradative steps of lysine metabolism, lysine–2-oxoglutarate reductase and saccharopine dehydrogenase, were studied and their activities in different mammals compared. Values obtained in human, rat, pig, dog, cat, ox and sheep liver indicated that in vitro, appreciable degradation of lysine to saccharopine (4–6nmol/min per mg of protein) occurred. The specific activity of saccharopine dehydrogenase in most species studied was higher than that of lysine–oxoglutarate reductase. The rate of production of glutamate from saccharopine in each animal species was investigated and related to the rate of production of α-aminoadipate. The rate of formation of lysine from saccharopine, catalysed by saccharopine oxidoreductase, was examined and correlated with the dietary intake of lysine in each species studied.

Full text

PDF
333

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carson N. A., Scally B. G., Neill D. W., Carré L. J. Saccharopinuria: a new inborn error of lysine metabolism. Nature. 1968 May 18;218(5142):679–679. doi: 10.1038/218679a0. [DOI] [PubMed] [Google Scholar]
  2. Dancis J., Hutzler J., Cox R. P., Woody N. C. Familial hyperlysinemia with lysine-ketoglutarate reductase insufficiency. J Clin Invest. 1969 Aug;48(8):1447–1452. doi: 10.1172/JCI106110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fellows F. C. Biosynthesis and degradation of saccharopine, an intermediate of lysine metabolism. Biochem J. 1973 Oct;136(2):321–327. doi: 10.1042/bj1360321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Grove J., Henderson L. M. The metabolism of D- and L-lysine in the intact rat, perfused liver and liver mitochondria. Biochim Biophys Acta. 1968 Aug 6;165(1):113–120. doi: 10.1016/0304-4165(68)90195-5. [DOI] [PubMed] [Google Scholar]
  5. Higashino K., Fujioka M., Yamamura Y. The conversion of L-lysine to saccharopine and alpha-aminoadipate in mouse. Arch Biochem Biophys. 1971 Feb;142(2):606–614. doi: 10.1016/0003-9861(71)90525-x. [DOI] [PubMed] [Google Scholar]
  6. Higashino K., Tsukada K., Lieberman I. Saccharopine, a product of lysine breakdown by mammalian liver. Biochem Biophys Res Commun. 1965 Jul 26;20(3):285–290. doi: 10.1016/0006-291x(65)90361-x. [DOI] [PubMed] [Google Scholar]
  7. Hutzler J., Dancis J. Conversion of lysine to saccharopine by human tissues. Biochim Biophys Acta. 1968 Apr 16;158(1):62–69. doi: 10.1016/0304-4165(68)90072-x. [DOI] [PubMed] [Google Scholar]
  8. Hutzler J., Dancis J. Saccharopine cleavage by a dehydrogenase of human liver. Biochim Biophys Acta. 1970 May 13;206(2):205–214. doi: 10.1016/0005-2744(70)90104-x. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Neuberger A., Webster T. A. The lysine requirements of the adult rat. Biochem J. 1945;39(2):200–202. doi: 10.1042/bj0390200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. PAIK W. K., BLOCH-FRANKENTHAL L., BIRNBAUM S. M., WINITZ M., GREENSTEIN J. P. epsilon-lysine acylase. Arch Biochem Biophys. 1957 Jul;69:56–66. doi: 10.1016/0003-9861(57)90472-1. [DOI] [PubMed] [Google Scholar]
  12. ROSE W. C., WIXOM R. L., LOCKHART H. B., LAMBERT G. F. The amino acid requirements of man. XV. The valine requirement; summary and final observations. J Biol Chem. 1955 Dec;217(2):987–995. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES