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Obstructive sleep apnea (OSA) is a state of sleep disorder, characterized by repetitive 
episodes of apnea and chronic intermittent hypoxia. OSA has an extremely high 
prevalence worldwide and represents a serious challenge to public health, yet its 
severity is frequently underestimated. It is now well established that neurocognitive 
dysfunction, manifested as deficits in attention, memory, and executive functions, 
is a common complication observed in patients with OSA, whereas the specific 
pathogenesis remains poorly understood, despite the likelihood of involvement 
of inflammation. Here, we provide an overview of the current state of the art, 
demonstrating the intimacy of OSA with inflammation and cognitive impairment. 
Subsequently, we present the recent findings on the investigation of gut microbiota 
alteration in the OSA conditions, based on both patients-based clinical studies 
and animal models of OSA. We present an insightful discussion on the role of 
changes in the abundance of specific gut microbial members, including short-chain 
fatty acid (SCFA)-producers and/or microbes with pathogenic potential, in the 
pathogenesis of inflammation and further cognitive dysfunction. The transplantation 
of fecal microbiota from the mouse model of OSA can elicit inflammation and 
neurobehavioral disorders in naïve mice, thereby validating the causal relationship 
to inflammation and cognitive abnormality. This work calls for greater attention 
on OSA and the associated inflammation, which require timely and effective 
therapy to protect the brain from irreversible damage. This work also suggests that 
modification of the gut microbiota using prebiotics, probiotics or fecal microbiota 
transplantation may represent a potential adjuvant therapy for OSA.
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Introduction

Obstructive sleep apnea (OSA) is a chronic sleep-related breathing disorder that is 
characterized by recurrent collapses in the upper airway during sleep, directly causing sleep 
fragmentation (SF) and chronic intermittent hypoxemia (IH) (Lévy et  al., 2015). The 
development of OSA is largely attributed to a narrow, high-arched hard palate, or midface 
hypoplasia with retro-positioning of the maxilla and chin, or an enlarged pharynx, in the 
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majority of cases observed in individuals with obesity (Neelapu et al., 
2017; Kubota et al., 2005). The structural disproportions would in 
turn bring the soft palate and tongue closer to the back of the throat, 
thus leading to partial or complete airway blockage. Apnea hypopnea 
index (AHI), which is defined as an average number of partial or full 
breathing stop events within an hour of sleep, is the most common 
used indicator for the OSA diagnosis and severity determination 
(Shahar, 2014; Pevernagie et al., 2020). A number of epidemiological 
studies based on AHI have revealed a high prevalence of OSA 
globally (Benjafield et al., 2019; Grote, 2019; Wei et al., 2022; Lv et al., 
2023). Two consecutive works have demonstrated that the OSA 
incidence in the adult population of the USA is approximately 33% 
among males but lower among females (Benjafield et al., 2019). The 
overall prevalence of OSA among 38,000 Russian citizens is 48.9% 
(Khokhrina et al., 2020). Notably, studies covering China (Ding et al., 
2022), Chile (Peñafiel et al., 2019), Canada (Dosman et al., 2022), 
Germany (Fietze et  al., 2019), Switzerland (Heinzer et  al., 2015), 
Singapore (Tan et al., 2016), and Japan (Nakayama-Ashida et al., 
2008) revealed a higher incidence of OSA, all of them exceeding 50%. 
Therefore, these findings collectively indicate that OSA is the most 
prevalent disease diagnosed in the department of 
otorhinolaryngology. The typical symptoms of OSA often include 
snoring, breathing breaks, excessive daytime sleepiness, and dry 
mouth and headache upon waking (Veasey and Rosen, 2019; Gottlieb 
and Punjabi, 2020). More importantly, prolonged exposure of OSA 
patients to IH could activate systematic inflammation and impact 
central nervous system (CNS), which ultimately lead to brain 
structural injury and severe neurocognitive deficits. The precise 
mechanism by which inflammation is induced in the OSA condition 
remains poorly understood.

Herein, we provide an overview of the current state of the art, and 
discuss a hypothetical scenario in which OSA may directly alter the 
composition of the gut microbiota, elicit inflammatory responses, and 
consequently lead to neurocognitive impairment. This paper reviews 
progress from both clinical studies and animal models are included.

Neurocognitive dysfunction is 
prevalent in OSA

Recent decades have borne witness to an increasing clarity 
regarding the prevalence of neurocognitive dysfunction among 
patients diagnosed with OSA. This phenomenon is characterized by 
deficits in attention, memory, and executive functions (Vanek et al., 
2020; Xia et  al., 2023; Kloepfer et  al., 2009; Bawden et  al., 2011; 
Hrubos-Strøm et al., 2012; Shieu et al., 2022). Indeed, clinical studies 
focusing on the effects of OSA have found that three distinct types of 
memory, including verbal, procedural and working memory, 
significantly decayed in the patients with OSA (Cunningham et al., 
2023; Teh et  al., 2023; Kloepfer et  al., 2009; Naëgelé et  al., 2006). 
Furthermore, several studies employed a more comprehensive set of 
tools to systematically identify cognitive impairment relevant to OSA 
(Xia et al., 2023; Bawden et al., 2011; Gnoni et al., 2023). Reviews of 
high quality are recommended to be consulted for a more detailed 
account of the cognitive impairment caused by OSA. This relatively 
underdiagnosed syndrome affects approximately 1 billion people 
globally and represents a significant public health concern (Benjafield 
et al., 2019).

In alignment with the abnormal cognitive function, structural 
alterations in brain tissues or regions have been identified through the 
utilization of diverse imaging technologies such as resting-state 
functional magnetic resonance imaging (fMRI) and computed 
tomography (CT). The affected areas across studies are diverse and 
often involved with multiple subregions (Zimmerman and Aloia, 
2006), including the integrity of the gray or white matter (Lee et al., 
2022; Castronovo et  al., 2014), hippocampus (Kheirandish-Gozal 
et al., 2018; Macey et al., 2018; Gale and Hopkins, 2004), frontal lobe 
(Bai et al., 2021; Shu et al., 2022), temporal lobe (Shu et al., 2022; 
Morrell et al., 2010), cerebellum (Shu et al., 2022, Morrell et al., 2010), 
corpus callosum (Kheirandish-Gozal et al., 2018), and insular cortex 
(Kheirandish-Gozal et al., 2018). Despite the complexity and diversity, 
most of these areas are responsible for neurocognitive performance, 
indicating that structural alteration is a probable underlying cause of 
the observed deterioration in neurocognitive performance. For 
example, changes in the hippocampal volume have been identified in 
multiple studies through the MRI-based imaging analysis, while the 
hippocampus apoptosis or atrophy can cause learning, mnemonic, 
attentional, and executive function deficits. An early study, which 
involved with 17 newly diagnosed, untreated OSA patients and 15 
age-matched healthy control subjects found that neurocognitive 
impairments were linked with a reduction of gray matter volume in 
the left hippocampus (entorhinal cortex), left posterior parietal cortex, 
and right superior frontal gyrus (Canessa et al., 2011). In another 
similar investigation, researchers identified atrophy of the neocortex 
and cerebellum, as well as a reduction in the volume of the 
hippocampal dentate gyrus and cerebellar dentate nucleus in patients 
with OSA (Kim H. et  al., 2016). Of particular interest, after the 
continuous positive airway pressure (CPAP) treatment was 
administered to the patient cohorts in both studies, the impaired brain 
structure was restored to normality together with improved cognitive 
function, indicative of the reversibility of cognition deficits.

The intimate association of OSA with neurocognitive dysfunction 
has been also observed in a range of animal models, including pigs 
(Lonergan et al., 1998), dogs (Hendricks et al., 1993; Hendricks et al., 
1987), rabbits (Schiefer et al., 2020; Yu et al., 2014), cats (Neuzeret 
et al., 2011), rats (Nácher et al., 2007; Farré et al., 2003), and mice (Qiu 
et al., 2023; Puech et al., 2022; Veasey et al., 2013; Nair et al., 2011a; 
Zhu et al., 2007; Puech et al., 2023). The disease has been modeled 
using either sleep fragmentation (SF), or intermittent hypoxia (IH), or 
both. SF can be induced by sleep disruption with experimental devices 
(Nair et  al., 2011b; Ramesh et  al., 2012), while IH is triggered by 
repeated exposure to lower oxygen levels (Badran et al., 2020; Puech 
et  al., 2022). Although adverse effects of IH and SF on cognitive 
function may differ, common outcomes include impaired sleep 
quality, abnormal behavior, reduced learning ability and impaired 
physical functioning. In a study based on a rat model of OSA, for 
example, exposure to IH resulted in deficits in spatial memory and 
learning performance as assessed by Morris water maze tasks, together 
with the hippocampal apoptosis (Gao et al., 2017).

Inflammation caused by OSA is very 
likely to induce cognitive deficits

The pathogenesis of cognitive impairment induced by OSA is 
believed to be complex and remains poorly elucidated (Lv et al., 2023; 
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Liu et al., 2020; Orrù et al., 2020). However, several lines of evidence 
from both clinical and animal model studies strongly support 
involvement of inflammation. Firstly, numerous studies have found 
that OSA can cause a systematic or local inflammation, as evidenced 
by increased levels of serum inflammatory cytokines are often 
observed in OSA patients (Liu et  al., 2020; Nadeem et  al., 2013; 
Bouloukaki et  al., 2017; Bozic et  al., 2018; Motamedi et  al., 2018; 
Svatikova et al., 2003; Sozer et al., 2018). Tumor necrosis factor (TNF)-
α and interleukin (IL)-6 are two representative biomarkers that are 
closely linked with OSA (Kheirandish-Gozal and Gozal, 2019), and 
more intriguingly both are also thought to contribute to 
neurocognitive dysfunction (Tegeler et  al., 2016). Secondly, it is 
frequently observed that the activation of inflammatory processes and 
cognitive deficits occur concurrently in a considerable number of 
rodent models of OSA induced by IH (Liu et al., 2020; Dong et al., 
2018; Sapin et al., 2015; Shi et al., 2018; Snyder et al., 2017; Darnall 
et al., 2017; Kim et al., 2013; Smith S. M. et al., 2013; Deng et al., 2015). 
Thirdly, in clinical studies, the magnitude of inflammation, as 
indicated by serum levels of various inflammatory cytokines, is 
frequently correlated with the severity of OSA (Nadeem et al., 2013; 
Sozer et al., 2018; Bouloukaki et al., 2017; Bozic et al., 2018; Motamedi 
et al., 2018). For instance, a recent analysis involving 858 OSA patients 
and 190 matched controls demonstrated that the serum levels of uric 
acid and high-sensitivity C-reactive protein (hsCRP), two markers of 
inflammation, were elevated in the severe group compared to the mild 
group (Bouloukaki et al., 2017). Fourthly, effective OSA therapy by 
CPAP can improve neurocognitive performance and also reduce/
resolve inflammation (Tichanon et al., 2016; Lu et al., 2017; Ohga 
et al., 2003; Kuramoto et al., 2009; Wu et al., 2010; Jin et al., 2017; 
Yokoe et  al., 2003; Steiropoulos et  al., 2009; Schiza et  al., 2010). 
Altogether, ample evidence from these works substantiates the pivotal 
role of OSA-induced neuroinflammation in the pathogenesis of 
neuronal injury and subsequent cognitive deficits.

The precise mechanistic pathway by which OSA triggers 
inflammation remains poorly understood. However, it has been 
postulated that HIF-1α, a critical transcription factor responsive to 
hypoxic conditions, is activated to increase ROS synthesis, which 
would in turn initiate oxidative stress and the inflammatory process 
(McGettrick and O’Neill, 2020). Furthermore, there is also evidence 
to show that chronic IH conditions observed in OSA patients 
stimulate leptin, an obesity biomarker in white adipose tissue (Pan and 
Kastin, 2014), while leptin can further promote production of 
proinflammatory cytokines (Berger and Polotsky, 2018). These 
changes may further lead to monocyte-endothelial cell adhesion, 
dysfunction of endothelial cells, breach of the blood–brain barrier, and 
finally the perfusion of inflammatory cytokines and macrophages into 
the central nervous system. Consequently, the excessive 
neuroinflammatory response results in the activation of glial cells, 
synaptic damage and loss, neuronal necrosis and apoptosis, and 
ultimately a significant exacerbation of neurocognitive deficits (Liu 
et al., 2020).

OSA altered gut microbiota

In addition to the aforementioned effects on inflammation and 
cognitive function, the impact of OSA can even extend to the 
gastrointestinal tract to modulate the oxygen concentrations and 

further the ecosystem, where at least 100 trillion bacteria colonize 
(Honda and Littman, 2016; Rooks and Garrett, 2016; Gomaa, 
2020). In light of the existence of an oxygen concentration gradient 
in the range of 150–200 μm near the gut epithelium (Espey, 2013) 
and the susceptible responsiveness of gut microbiota to oxygen 
level change (Albenberg et al., 2014), it seems highly probable that 
chronic exposure to hypoxia would favor the survival of obligate 
anaerobes and therefore alter the bacterial diversity. Indeed, several 
mouse model-based studies have demonstrated that IH 
intervention can induce a periodic hypoxia pattern in the arterial 
blood and the lumen of the small intestine, as well as an increased 
abundance of obligate and facultative anaerobes (Moreno-Indias 
et al., 2015; Khalyfa et al., 2021; Lucking et al., 2018; Durgan et al., 
2016), despite the possibility that IH-induced systemic immune 
responses may exert a modulatory effect on gut microbiota. 
Another important feature of OSA is nocturnal arousal due to 
sleep fragmentation. Interestingly exposure of mice to sleep 
fragmentation also caused notable change in gut microbiota, 
characterized by an increase in Firmicutes and a decrease in 
Bacteroidetes at the phylum level (Poroyko et  al., 2016). It is 
noteworthy that a gut dysbiosis was also a prevalent trait in OSA 
patients. Two clinical studies investigating the OSA patients from 
disparate regions in China identified an altered gut microbiota 
profile (Ko et  al., 2019; Wang et  al., 2022). Furthermore, the 
composition of the gut microbiota was found to be significantly 
altered in pediatric patients with OSA in comparison to their 
age-matched healthy controls (Valentini et al., 2020; Collado et al., 
2019). Consistently, an interesting single-armed study that 
investigated the responses of nine normal-weight men under two 
occasions, either with two nights of normal sleep or two nights of 
partial sleep deprivation. It revealed that sleep loss can directly 
induce an increased Firmicutes to Bacteroides (F/B) ratio in gut 
microbiota (Benedict et al., 2016).

Gut microbiota composition alteration 
associated with inflammatory 
activation in OSA patients

In light of the pivotal roles of gut microbiota in regulating human 
physiology, particularly immunity (Kamada et al., 2012; Donohoe 
et al., 2011; Zheng et al., 2020; Belkaid and Harrison, 2017; Albhaisi 
et al., 2020; Morais et al., 2021), a hypothesis was therefore proposed 
that the OSA-induced gut dysbiosis, often featured with a changed 
F/B ratio, might contribute to inflammation, and potentially the 
cognitive dysfunction. In the context of the microbiota-immune 
system interaction, multiple microbial metabolites and components, 
including short-chain fatty acids (SCFAs), lipopolysaccharide (LPS) 
and exotoxins, act as potent effectors, facilitating a bridge between 
gut microbiota and local or systematic immunity (Rooks and Garrett, 
2016; Wang G. et al., 2019). Indeed, the immunological effects of 
these microbiota-derived molecules are manifold, encompassing 
both innate and adaptive immunity (Tang et al., 2021). SCFAs are 
primarily produced from indigestible oligosaccharides by some 
beneficial members of the Bacteroidetes phylum, including the 
families Lactobacillaceae, Ruminococcaceae, Erysipelotrichaceae, 
Bifidobacteriaceae, and Clostridium (den Besten et  al., 2013). In 
addition to serving as a source of energy for intestinal epithelial cells 
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(IEC) (Rivière et  al., 2016), SCFAs have pleotropic roles in the 
fortification of the gut barrier and maintenance of immune 
homeostasis. More specifically, these beneficial regulatory actions 
include stimulation of mucus production (Wrzosek et  al., 2013), 
regulation of tight junction (TJ) proteins via multifaceted signaling 
pathways (Parada Venegas et  al., 2019), polarization of anti-
inflammatory macrophages (Ji et al., 2016), increased production of 
antimicrobial peptide (AMP) (Qiu et  al., 2012), activation of 
NLR-family-pyrin-domain-containing-3 (NLRP3) inflammasomes 
and production of homeostatic cytokine interleukin-18 (IL-18) 
(Macia et  al., 2015), modulation of B cell differentiation and 
Immunoglobulin A (IgA) secretion (Kim M. et al., 2016), reduced 
expression of T cell-activating molecules on antigen-presenting cells 
(Park et al., 2015), and increased number and function of colonic 
regulatory T (Tregs) cells (Smith P. M. et al., 2013). In contrast, several 
gut microbial members, including Desulfovibrio, Prevotella, 
Lachnospiraceae, and Paraprevotella, have been demonstrated to 
induce inflammatory responses and disrupt the structural integrity 
of the gut barrier. LPS is a well-known bacterial endotoxin with 
profound immunostimulatory and inflammatory capacity. Contrary 
to the beneficial effects of SCFAs, LPS has the potential to bind to its 
cognate toll-like-receptor (TLR4) and promote the activation of 
inflammatory macrophage (M1 polarization), which in turn leads to 
the production of an array of inflammatory cytokines, IL-1β, IL-6, 
IL-12, and TNF-α (Martinez et al., 2008). Through the same signal 
pathway, LPS can also compromise the integrity of the intestinal 
barrier (Guo et al., 2013). Furthermore, the prevalence of Prevotella 
and Desulfovibrio, which possess mucin-degrading capabilities, was 
found to be elevated in individuals with OSA, thereby exacerbating 
the gut permeability. An increase in those bacterial species will 
therefore cause the leakage of LPS and other bacterial components 
from the gut into the blood circulation, thus stimulating the release 
of inflammatory mediators and aggravating systemic inflammation.

Consistent with the above analysis, an investigation into the 
alteration of the gut microbiota in OSA patients indeed validated 
the abundance reduction in the abundance of bacteria associated 
with SCFA production, or alternatively an increase in the 
abundance of pathogenic ones, despite the fact that only a limited 
number of clinical studies in this direction existed. One study 
involving 93 OSA patients revealed that alterations in the gut 
microbiota were characterized by a decrease in the abundance of 
SCFA producers (including Faecalibacterium, Bifidobacterium, 
Lactobacillus, and Bacteroides), an increase for the pathogenic 
Prevotella, and concomitantly a reduction in the serum levels of 
IL-6 (Ko et al., 2019). Interestingly, this work did not identify a 
profound change in the F/B ratio between the OSA patients and 
healthy controls (Ko et al., 2019), suggesting that the F/B ratio 
alteration may not be a general OSA-associated rule, and that a 
more detailed analysis of specific bacterial taxa level should 
be necessary. In another observational study, the inflammation-
related bacteria (Megamonas, Lactobacillus, Megasphaera, and 
Coprococcus at the genus level) were also enriched in OSA patients, 
while Alistipes, Eubacterium coprostanoligenes, Blautia, Roseburia, 
Fusobacteria, and Ruminococcus gnavus were found to be depleted. 
The pro-inflammatory cytokine IL-1β and TNF-α were elevated 
with OSA (Lu et al., 2022). A comparable pattern was identified 
among the pediatric OSA patients, whereby the relative abundances 
of several well-documented SCFA producers, including Bacteroides, 

Bifidobacterium, Ruminococcus, Collinsella, and Faecalibacterium, 
exhibited a decline (Valentini et  al., 2020). The hypothesis was 
further validated in the two clinical trials, in which healthy human 
subjects were exposed to either a short-term or a long-term period 
of sleep deprivation, directly resulted in a reduction of the 
abovementioned species with SCFA-production capacity (Gao 
et al., 2023; Benedict et al., 2016).

Moreover, a comparable pattern was observed in multiple OSA 
animal model-based gut microfloral analyses, with an increase in 
pathogenic microbes being a particularly prevalent finding. For 
example, Prevotella, Paraprevotella, Desulfovibrio, and 
Lachnospiraceae were found to be enriched in a mouse model of OSA, 
induced by either SF or IH (Gao et al., 2023; Poroyko et al., 2016; 
Badran et al., 2020; Khalyfa et al., 2021; Badran et al., 2023; Yan et al., 
2024). Interestingly, treatment of the sleep-deprived mice with 
butyrate, a type of SCFA, significantly ameliorated intestinal mucosa 
injury and inflammation response through the suppression of the 
HDAC3–GSK-3β–Nrf2–NF-κB signaling cascade (Gao et al., 2023). 
In another study, neonatal brain immaturity, white matter injury 
(WMI), reduced abundance of beneficial gut microbes Bacteroides 
thetaiotaomicron and Parabacteroides distasonis and accumulation of 
microbiota-derived cholic acid were identified in chronically hypoxic 
rats, whereas administration of B. thetaiotaomicron and P. distasonis 
reverted the cholic acid concentration and rescued the chronic 
hypoxia-induced WMI and inflammation. These findings suggest 
that the administration of SCFAs or probiotics may represent a 
potential strategy for alleviating the inflammation and neurocognitive 
deficits associated with OSA (Yan et al., 2024).

Fecal microbiota transplant (FMT) simply implies the transfer 
of stool samples from a donor’s colon to a recipient’s colon (Gupta 
and Khanna, 2017). FMT has demonstrated considerable promise 
in the treatment of intestinal infection, inflammatory bowel 
disease, hypertension, obesity, and diabetes mellitus (Kelly et al., 
2015; Turnbaugh et al., 2006; Adnan et al., 2017; Wang H. et al., 
2019). Although only a few studies have employed FMT in 
analyzing the basis of OSA, two recent works showed that FMT 
from the IH-mice can elicit inflammation and neurobehavioral 
disorders in naïve mice (Badran et al., 2020; Poroyko et al., 2016). 
This provides further robust evidence that gut microbiota dysbiosis 
is, at least partially, a causal basis of cognitive dysfunction.

Conclusions and perspectives

The prevalence of OSA is markedly high across countries and 
regions, and it is frequently complexed with a variety of 
comorbidities. With firm evidence from both clinical studies and 
animal models, the present review reveals a clear and compelling 
link of OSA with alterations in the gut microbiota, systematic 
inflammation, brain substructural changes and neurocognitive 
impairment, respectively. A hypothesis is therefore proposed to 
explain the pathogenesis of OSA that chronic IH or SF in OSA 
patients would trigger gut microbiota dysbiosis, which is often 
characterized by depletion of producers of beneficial microbial 
metabolites, or/and enrichment of microbes with potentials to 
impair mucosa and activate inflammation (Figure 1). This in turn 
results in the activation of systematic inflammation, with 
inflammatory cytokines breaching the blood–brain barrier, 
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activating microglial cells, and ultimately causing necrosis and 
apoptosis of neural cells and neurocognitive deficits. It is 
imperative to emphasize the importance of timely diagnosis and 
treatment of OSA and its associated inflammation, in order to 
prevent or alleviate the irreversible neurocognitive damage. 
Moreover, the modulation of gut microbiota using prebiotics (such 
as butyrate), or probiotics (SCFA producers) may represent a 
potential and effective adjuvant therapy for OSA. More future 
works in this direction are still needed.
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FIGURE 1

A schematic diagram explaining how obstructive sleep apnea (OSA) would alter the gut microbiota, activate systematic inflammation, and 
consequently induce brain tissue injury and cognitive dysfunction. (1) The OSA-induced hypoxia might alter the oxygen concentration near the gut 
epithelium. (2) The depleted oxygen radiation thus favors the increased abundance of obligate and facultative anaerobes, resulting in the gut 
microbiota change that is mostly featured with an increased ratio of Firmicutes to Bacteroides (F/B). Specifically, producers of beneficial metabolites 
such as SCFAs and polyamines decrease, while microbial members with pathogenic potentials increase. (3) The gut microbiota composition change 
further leads to accumulation of microbial toxins, and/or decrease of a wide spectrum of beneficial metabolites. (4) The gut barrier function might 
be compromised, and levels of various inflammatory cytokines are elevated, resulting in a systematic inflammation. (5) The inflammatory cytokines can 
breach the BBB, activate microglial cells, cause neuroinflammation, and consequently result in cognitive deficits. OSA, obstructive sleep apnea; SCFAs, 
short chain fatty acids; LPS, lipopolysaccharide; IL-6, interleukin-6; TNF-α, tumor necrosis factor-α; BBB, blood brain barrier.
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