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Dear Editor,
We read with interest the laboratory analysis and meta- analysis 
performed by Ahmad et al. [1]. Using a review of the published 
literature, the study included controlled/randomized clinical 
trials (RCTs), retrospective or prospective cohorts, and case- 
controlled studies with five or more patients. These studies 
separated stroke groups from stroke mimic/control groups and 
reported D- Dimer values within the 24 h. The analysis revealed 
a positive effect size for D- Dimer in the stroke group.

However, we would like to highlight several methodological 
concerns presented in this paper. First, the estimates of vari-
ance among studies may lack precision, especially when a small 
number of studies are included in the meta- analysis. This un-
certainty was overlooked when applying a conventional normal 
approximation for random- effects models, potentially impact-
ing the accuracy of the inferences drawn. The issue of impre-
cise variances estimates becomes critical when the sample size 
of included studies is small. Neglecting this uncertainty when 
integrating the random effects can have detrimental conse-
quences for statistical inferences. To address this concern, the 
Hartung and Knapp (HK)- adjusted method should be used to 
estimate random effects and their confidence intervals (CIs), 
rather than relying on the standard approach [2, 3]. A previous 
meta- analysis compared D- Dimer levels (ng/ml) between stroke 
groups and stroke mimics/controls within 6 hours, reporting a 
standard mean difference (SMD) of 0.49; 95% confidence inter-
val (CI) = [0.29, 0.69]; and p < 0.00001 [1]. We reanalyzed the 
data using random effects models with the HK adjustment. The 

updated results showed SMD = 0.49; 95% CI = [0.03, 0.95]; and 
p = 0.045 (Figure 1). After the HK adjustment, the p value of the 
overall effect approached the borderline for statistical signifi-
cance (p = 0.05) for D- Dimer levels in the stroke group compared 
with the control group. Caution is advised regarding potential 
small- study bias when performing meta- analyses. It is import-
ant to note that the 95% CI for the random effect became wider 
after the HK adjustment, likely due to a decrease in statistical 
power for the test [4].

From a clinical perspective, it is essential to recognize that cor-
relation does not imply causation, particularly in nonexperimen-
tal studies [5]. When two events, A and B, are related, several 
possibilities exist: (1) A causes B; (2) B causes A; (3) both A and B 
have no causal relationship but are influenced by a third factor; 
or (4) the relationship is coincidental. Confirming true causal 
relationships between events is a significant challenge and re-
quires empirical evidence to validate hypotheses. Data- driven 
analysis can deepen our understanding of disease mechanisms 
and offer evidence to address clinical challenges. With advanced 
data- driven architectures, it is possible to establish strong empir-
ical causality through rigorous analysis of comprehensive data.

RCTs offer the highest level of evidence by providing inferences 
with strict control of confounding variables [6]. However, even 
in well- designed RCTs, certain factors, such as living environ-
ments and socioeconomic conditions, cannot be fully controlled. 
In epidemiological research, no matter how well the study de-
sign and measurements are set, the presence of potential and 
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unmeasured confounders cannot be entirely ruled out [7]. This 
limitation may lead to different outcomes across studies with 
similar designs and objectives. Additionally, researchers often 
do not release original data due to privacy concerns.

Fortunately, meta- analysis, a cutting- edge data- driven approach, 
has been developed to address conflicting research results [8]. 
By pooling data from multiple studies and accounting for study 
variance (random effects), meta- analysis can provide more ro-
bust conclusions [8]. Recently, Mendelian randomization (MR) 
has gained prominence as a method for identifying risk factors 
and making true causal inferences [9]. MR offers an alternative 
approach to mitigate the effects of potential and unmeasured 
confounders in determining disease causality. One of the most 
common techniques in MR is using two- stage least squares to 

adjust for confounders in linear regression models. Figure 2 il-
lustrates the increasing number of instrumental variable (IV) 
and MR- related papers published in recent years, demonstrat-
ing a growing interest in MR as a tool for understanding disease 
causality.

There are some limitations that need to be addressed in the 
study. The authors reported that stroke patients had higher 
D- Dimer values on presentation than stroke mimics/controls, 
based on their meta- analysis. However, it is important to note 
that the subgroup analysis included a small number of studies 
(n = 3; Figure 1) [1], which increases the likelihood of bias due 
to the limited sample size. While the results remained similar 
after adjustment (SMD = 0.49), the p value increased (p = 0.045), 
reflecting the borderline statistical significance. It is crucial to 

FIGURE 1    |    Comparison of D- Dimer levels (ng/mL) between stroke patients and stroke mimics/controls within 6 h, following the Hartung and 
Knapp adjustment.
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FIGURE 2    |    Trends in the use of Mendelian randomization and instrumental variable approaches in the literature over time. PubMed search 
strategy (October of 2024): For MR analysis, search items included (mendelian random*[tiab]) or (Mendelian Randomization Analysis*[MeSH]); for 
instrumental variable analysis, search items included (instrumental variable*[tiab]).
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remember that the study size should ideally include more than 
five studies (> 5) to ensure robust results [2, 3]. In this case, the 
HK adjustment was applied to weighted least squares regression 
models. Another significant limitation is that correlation does 
not imply causation [5]. The authors could consider employ-
ing genome- wide association studies using the MR approach 
to investigate the causal relationship between D- Dimer levels 
and stroke diagnosis or prognosis in future research [10]. In 
summary, while this study provides valuable insights into the 
association between D- Dimer levels and stroke diagnosis, it 
highlights the need for more extensive research and rigorous 
methodologies to refine the mean difference of D- Dimer values 
as a diagnostic tool, either alone or in conjunction with other 
interventions.
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